Applications of the second derivative: the concavity of the graph and the second derivative test

Facts Let f be a function on an interval I.
(1) Suppose that both f^{\prime} and $f^{\prime \prime}$ exist on I. If $f^{\prime \prime}(x)>0\left(f^{\prime \prime}(x)<0\right.$, respectively) on I, then f is concave upward (concave downward, respectively) at each point in I.
(2) Let c be a point inside I and $f^{\prime \prime}(x)$ exists for the points near c. If f is concave upward on one side of c and concave downward on the other side of c, then the point $(c, f(c))$ is an inflection point of the graph of f. Note that an inflection point may occur at $x=c$ if $f^{\prime \prime}(c)=0$ or if $f^{\prime \prime}(c)$ does not exist but f is continuous at $x=c$.
(3) (The Second Derivative Test) If for some point c inside $I, f^{\prime}(c)=0$ and $f^{\prime \prime}(x)>0$ ($f^{\prime \prime}(x)<0$, respectively) on I, then $f(c)$ is a local minimum (local maximum, respectively) value of $f(x)$ on I.

Example 1 Given a function $f(x)=x^{3}-3 x^{2}$, do each of the following.
(1) Compute $f^{\prime}, f^{\prime \prime}$, and find critical points of f.
(2) Determine the intervals on which the graph of f is concave upward, and those on which the graph of f is concave downward.
(3) Determine the inflection point(s), if there are any.
(4) Classify the critical points.

Solution: The domain of f is $(-\infty, \infty)$.
(1) Compute

$$
f^{\prime}(x)=3 x^{2}-6 x, f^{\prime \prime}(x)=6 x-6=6(x-1)
$$

Set $f^{\prime}(x)=3 x^{2}-6 x=0$, we have $3 x(x-2)=0$, and so $x=0$ and $x=2$ are critical points.
(2) Set $f^{\prime \prime}(x)=6(x-1)=0$, we have $x=1$. This partitions the domain $(-\infty, \infty)$ into two intervals $(-\infty, 1)$ and $(1, \infty)$. Since $f^{\prime \prime}(x)=6(x-1)$, when x is in $(-\infty, 1), f^{\prime \prime}(x)<0$ and so $f(x)$ is concave downward in $(-\infty, 1)$; and when x is in $(1, \infty), f^{\prime \prime}(x)>0$ and so $f(x)$ is concave upward in $(1, \infty)$.
(3) As the concavity changes at $x=1,(1, f(1))=(1,-2)$ is an inflection point of the graph of f.
(4) The critical point $x=2$ is in the interval $(1, \infty)$, on which $f(x)$ is concave upward, and so $f(2)=-4$ is a local minimum value of f. The critical point $x=0$ in the interval $(-\infty, 1)$, on which $f(x)$ is concave downward, and so $f(0)=0$ is a local maximum value of f.

