Compute the higher derivatives

Facts For a function f, the derivative of f^{\prime}, denoted $f^{\prime \prime}$, is the second derivative of f; and the derivative of $f^{\prime \prime}$, denoted $f^{\prime \prime \prime}$ or $f^{(3)}$, is the third derivative of $f \ldots$ With the notation

$$
\begin{aligned}
f^{\prime}(x) & =D_{x}(f(x))=\frac{d f}{d x}, f^{\prime \prime}(x)=D_{x}\left(f^{\prime}(x)\right)=D_{x}^{2}(f(x))=\frac{d^{2} f}{d x^{2}}, \\
f^{(3)}(x) & =D_{x}\left(f^{\prime \prime}(x)\right)=D_{x}^{3}(f(x))=\frac{d^{3} f}{d x^{3}} .
\end{aligned}
$$

we define the nth derivative of $f(x)$ to be

$$
f^{(n)}(x)=D_{x}^{n}(f(x))=\frac{d^{n} f}{d x^{n}} .
$$

Example 1 Compute the first three derivatives of $f(x)=2 x^{4}-3 x^{3}+6 x-17$.
Solution: Compute the derivatives term by term to get

$$
\begin{aligned}
f^{\prime}(x) & =8 x^{3}-9 x^{2}+6 \\
f^{\prime \prime}(x) & =24 x^{2}-18 x \\
f^{\prime \prime \prime}(x) & =48 x-18 .
\end{aligned}
$$

Example 2 Compute the first three derivatives of $f(x)=2 x^{5}+x^{\frac{3}{2}}-\frac{1}{2 x}$.
Solution: Compute the derivatives term by term to get

$$
\begin{aligned}
f^{\prime}(x) & =10 x^{4}+\frac{3}{2} x^{\frac{1}{2}}+\frac{1}{2 x^{2}} \\
f^{\prime \prime}(x) & =40 x^{3}+\frac{3}{4} x^{-\frac{1}{2}}-\frac{1}{x^{3}} \\
f^{\prime \prime \prime}(x) & =120 x^{2}-\frac{3}{8} x^{-\frac{3}{2}}+\frac{3}{x^{4}}
\end{aligned}
$$

Example 3 Compute the first three derivatives of $f(x)=\sin (x) \cos (x)$.
Solution: Apply product rule to get

$$
\begin{aligned}
f^{\prime}(x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
f^{\prime \prime}(x) & =-2 \cos (x) \sin (x)-2 \cos (x) \sin (x)=-4 \cos (x) \sin (x) \\
f^{\prime \prime \prime}(x) & =-4\left(\cos ^{2}(x)-\sin ^{2}(x)\right) .
\end{aligned}
$$

Example 4 Compute the first three derivatives of $f(x)=x^{2} \cos (x)$.

Solution: Apply product rule to get

$$
\begin{aligned}
f^{\prime}(x) & =2 x \cos (x)-x^{2} \sin (x) \\
f^{\prime \prime}(x) & =2 \cos (x)-2 x \sin (x)-2 x \sin (x)+x^{2} \cos (x)=2 \cos (x)-4 x \sin (x)+x^{2} \cos (x) \\
f^{\prime \prime \prime}(x) & =-2 \sin (x)-4 \sin (x)-4 x \cos (x)+2 x \cos (x)-x^{2} \sin (x) \\
& =-6 \sin (x)-2 x \cos (x)-x^{2} \sin (x) .
\end{aligned}
$$

Example 5 Compute the first three derivatives of $f(x)=x \sqrt{x+1}$.
Solution: Write $f(x)=x(x+1)^{\frac{1}{2}}$. Apply product rule and chain rule in each step below.

$$
\begin{aligned}
f^{\prime}(x) & =(x+1)^{\frac{1}{2}}+\frac{1}{2} x(x+1)^{-\frac{1}{2}} \\
f^{\prime \prime}(x) & =\frac{1}{2}(x+1)^{-\frac{1}{2}}+\frac{1}{2}(x+1)^{-\frac{1}{2}}-\frac{1}{4} x(x+1)^{-\frac{3}{2}}=(x+1)^{-\frac{1}{2}}-\frac{1}{4} x(x+1)^{-\frac{3}{2}} \\
f^{\prime \prime \prime}(x) & =-\frac{1}{2}(x+1)^{-\frac{3}{2}}-\frac{1}{4}(x+1)^{-\frac{3}{2}}+\frac{3}{8} x(x+1)^{-\frac{5}{2}}=-\frac{3}{4}(x+1)^{-\frac{3}{2}}+\frac{3}{8} x(x+1)^{-\frac{5}{2}}
\end{aligned}
$$

Example 6 Given $\sin (y)=x y$, compute $\frac{d y}{d x}$ and $\frac{d^{y}}{d x^{2}}$.
Solution: We need to use implicit differentiation. View $y=y(x)$ and differentiate both sides of the equation $\sin (y)=x y$ with respect to x.

$$
\cos (y) y^{\prime}=y+x y^{\prime}, \text { and so } \frac{d y}{d x}=y^{\prime}=\frac{y}{\cos (y)-x} .
$$

To compute $\frac{d^{y}}{d x^{2}}$ is to differentiate both sides of the equation $\cos (y) y^{\prime}=y+x y^{\prime}$ with respect to x. This yields

$$
-\sin (y) y^{\prime}+\cos (y) y^{\prime \prime}=y^{\prime}+y^{\prime}+x y^{\prime \prime}
$$

Substitute $y^{\prime}=\frac{y}{\cos (y)-x}$ to get

$$
\frac{-y \sin (y)}{\cos (y)-x}+\cos (y) y^{\prime \prime}=\frac{2 y}{\cos (y)-x}+x y^{\prime \prime}
$$

and so $(\cos (y)-x) y^{\prime \prime}=\frac{2 y}{\cos (y)-x}+\frac{y \sin (y)}{\cos (y)-x}$. Hence

$$
y^{\prime \prime}=\frac{\frac{2 y}{\cos (y)-x}+\frac{y \sin (y)}{\cos (y)-x}}{\cos (y)-x}=\frac{2 y+y \sin (y)}{(\cos (y)-x)^{2}} .
$$

Example 7 Given $x^{2}+x y+y^{2}=3$, compute $\frac{d y}{d x}$ and $\frac{d^{y}}{d x^{2}}$.
Solution: We need to use implicit differentiation. View $y=y(x)$ and differentiate both sides of the equation $x^{2}+x y+y^{2}=3$ with respect to x.

$$
2 x+y+x y^{\prime}+2 y y^{\prime}=0, \text { and so } \frac{d y}{d x}=y^{\prime}=\frac{-2 x-y}{x+2 y}
$$

One way to compute $\frac{d^{y}}{d x^{2}}$ is to differentiate both sides of the equation $2 x+y+x y^{\prime}+2 y y^{\prime}=0$ with respect to x. This yields

$$
2+y^{\prime}+y^{\prime}+x y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}=0, \text { or } 2+2 y^{\prime}+2\left(y^{\prime}\right)^{2}+x y^{\prime \prime}+2 y y^{\prime \prime}=0
$$

Substitute $y^{\prime}=\frac{-2 x-y}{x+2 y}$ to get

$$
2+2 \frac{-2 x-y}{x+2 y}+2\left(\frac{-2 x-y}{x+2 y}\right)^{2}+x y^{\prime \prime}+2 y y^{\prime \prime}=0
$$

It follows that

$$
(x+2 y) y^{\prime \prime}=-2 \frac{(x+2 y)^{2}-(2 x+y)(x+2 y)+1}{(x+2 y)^{2}}
$$

Thus

$$
y^{\prime \prime}=-2 \frac{(x+2 y)^{2}-(2 x+y)(x+2 y)+1}{(x+2 y)^{3}}
$$

Another way to compute $\frac{d^{y}}{d x^{2}}$ is to differentiate y^{\prime} (using quotient rule below):

$$
\begin{aligned}
y^{\prime \prime} & =D_{x}\left(y^{\prime}\right)=\frac{\left(-2+y^{\prime}\right)(x+2 y)-\left(1-2 y^{\prime}\right)(-2 x-y)}{(x+2 y)^{2}} \\
& =\frac{\left(-2+\frac{-2 x-y}{x+2 y}\right)(x+2 y)+\left(1-2 \frac{-2 x-y}{x+2 y}\right)(2 x+y)}{(x+2 y)^{2}} \\
& =-2 \frac{(x+2 y)^{2}-(2 x+y)(x+2 y)+1}{(x+2 y)^{3}}
\end{aligned}
$$

Example 8 Compute the first three derivatives of $f(x)=\frac{\sin (x)}{x}$.
Solution: Apply quotient rule in computing f^{\prime}, and quotient and product rules in computing $f^{\prime \prime}$ and $f^{\prime \prime \prime}$.

$$
\begin{aligned}
f^{\prime}(x)= & \frac{x \cos (x)-\sin (x)}{x^{2}} \\
f^{\prime \prime}(x)= & \frac{(\cos (x)-x \sin (x)-\cos (x)) x^{2}-2 x(x \cos (x)-\sin (x))}{x^{4}}=\frac{-x^{2} \sin (x)-2 x \cos (x)+2 \sin (x)}{x^{3}} \\
f^{\prime \prime \prime}(x)= & \frac{\left(-2 x \sin (x)-x^{2} \cos (x)-2 \cos (x)+2 x \sin (x)+2 \cos (x)\right) x^{3}}{x^{6}} \\
& -\frac{3 x^{2}\left(-x^{2} \sin (x)-2 x \cos (x)+2 \sin (x)\right)}{x^{6}} \\
= & \frac{\left.-x^{3} \cos (x)+3 x^{2} \sin (x)+6 x \cos (x)-6 \sin (x)\right)}{x^{4}}
\end{aligned}
$$

