The First Derivative Test and the classification of critical points (open interval min-max problems)

The First Derivative Test Suppose that $f(x)$ is continuous on an interval I and is differentiable in I except possibly a point c inside I.
(i) If $f^{\prime}(x)>0$ on the left side of c and $f^{\prime}(x)<0$ on the right side of c, then $f(c)$ is a local maximum value of $f(x)$ on I.
(ii) If $f^{\prime}(x)<0$ on the left side of c and $f^{\prime}(x)>0$ on the right side of c, then $f(c)$ is a local minimum value of $f(x)$ on I.

Example 1 Apply the first derivative test to classify the critical points of $f(x)=2 x^{3}+3 x^{2}-$ $36 x+17$.
Solution: Since $f(x)$ is a polynomial, $f(x)$ is differentiable (and so continuous) in its domain $(-\infty, \infty)$.

Compute

$$
f^{\prime}(x)=6 x^{2}+6 x-36=6\left(x^{2}+x-6\right)=6(x-2)(x+3) .
$$

Thus the critical points of $f(x)$ are $x=2$ and $x=-3$. These points divide the domain of $f(x)$ into three intervals: $(-\infty,-3),(-3,2)$ and $(2, \infty)$.

Since $f^{\prime}(-4)>0, f^{\prime}(0)<0$ and $f^{\prime}(3)>0$, we conclude that $f^{\prime}(x)>0$ in both $(-\infty,-3)$ and $(2, \infty)$, and that $f^{\prime}(x)<0$ in $(-3,2)$. Therefore, $f(x)$ is increasing in both $(-\infty,-3)$ and $(2, \infty)$, and $f(x)$ is decreasing in $(-3,2)$.

By The First Derivative Test, $f(-3)$ is a local maximum value and $f(2)$ is a local minimum value of $f(x)$ in its domain.

Example 2 Apply the first derivative test to classify the critical points of $f(x)=x^{2}+\frac{16}{x}$.
Solution: Note that $f(x)$ is differentiable (and so continuous) in its domain which consists of two intervals $(-\infty, 0)$ and $(0, \infty)$.

Compute

$$
f^{\prime}(x)=2 x-\frac{16}{x^{2}}=\frac{2 x^{3}-16}{x^{2}}=\frac{2\left(x^{3}-8\right)}{x^{2}} .
$$

Thus the only critical point of $f(x)$ is $x=2$. This point divide the domain of $f(x)$ into three intervals: $(-\infty, 0),(0,2)$ and $(2, \infty)$.

Since $f^{\prime}(-1)<0, f^{\prime}(1)<0$ and $f^{\prime}(3)>0$, we conclude that $f^{\prime}(x)<0$ in both $(-\infty, 0)$ and $(0,1)$, and that $f^{\prime}(x)>0$ in $(2, \infty)$. Therefore, $f(x)$ is decreasing in both $(-\infty,-3)$ and $(0,2)$, and $f(x)$ is increasing in $(2, \infty)$.

By The First Derivative Test, $f(2)$ is a local minimum value of $f(x)$ in its domain.

Example 3 Apply the first derivative test to classify the critical points of $f(x)=4+x^{\frac{2}{3}}$.
Solution: Note that $f(x)$ differentiable (and so continuous) in its domain (infty, ∞).
Compute

$$
f^{\prime}(x)=\frac{2}{3} x^{\frac{-1}{3}}
$$

Thus the only critical point of $f(x)$ is $x=0$ (at which $f^{\prime}(x)$ does not exist). This point divide the domain of $f(x)$ into two intervals: $(-\infty, 0)$ and $(2, \infty)$.

Since $f^{\prime}(-1)<0$, and $f^{\prime}(1)>0$, we conclude that $f^{\prime}(x)<0$ in $(-\infty, 0)$, and that $f^{\prime}(x)>0$ in $(0, \infty)$. Therefore, $f(x)$ is decreasing in $(-\infty, 0)$, and $f(x)$ is increasing in $(0, \infty)$.

By The First Derivative Test, $f(0)$ is a local minimum value of $f(x)$ in its domain.
Example 4 Find the point (x, y) on the graph $y=4-x^{2}$ that is closest to the point $(3,4)$.
Solution: By the distance formula, the distance we want to minimize of
$d(x)=\sqrt{(x-3)^{2}+(y-4)^{2}}=\sqrt{(x-3)^{2}+\left(4-x^{2}-4\right)^{2}}=\sqrt{(x-3)^{2}+\left(x^{2}\right)^{2}}=\sqrt{x^{4}+x^{2}-6 x+9}$.
This amounts to minimize the function

$$
f(x)=[d(x)]^{2}=x^{4}+x^{2}-6 x+9
$$

on its domain (-infty, ∞).
Compute $f^{\prime}(x)=4 x^{3}+2 x-6$. Observe that $f(1)=0$, and so using division, we have

$$
f^{\prime}(x)=(x-1)\left(4 x^{2}+4 x+6\right)=2(x-1)\left(2 x^{2}+2 x+3\right)
$$

Note that $2 x^{2}+2 x-3>0$ (for example, using quadratic formula to see that $2 x^{2}+2 x-3=0$ does not have real roots) for any x. Thus $x=1$ is the only critical point. which divides the domain of $f(x)$ in to these intervals: $(-\infty, 1)$ and $(1, \infty)$. As $f^{\prime}(0)<0$, and $f^{\prime}(2)>0$. Therefore, by the first derivative test, $f(1)$ is the only local minimum value of $f(x)$ in $(-\infty, \infty)$, and so $f(1)=5$ is also the absolute minimum of $f(x)$ in its domain. Therefore, the point we are looking for is $(1,3)$, and the shortest distance it $\sqrt{f(1)}=\sqrt{5}$.

Example 5 Determine two real numbers with difference 20 and minimum possible product.
Solution: Let x and y denote these two real numbers with $x \leq y$. Then $y=20+x$. Thus we want to minimize

$$
f(x)=x y=x(20+x)=20 x+x^{2}
$$

in $(-\infty, \infty)$. Note that $f^{\prime}(x)=2 x+20$, and so $x=-10$ is the only critical point. As $f^{\prime}(x)<0$ when $x<-10$ and $f^{\prime}(x)>0$ when $x>-10$. Therefore $f(-10)$ is the only local minimum value of $f(x)$ in $(-\infty, \infty)$, and so it is also the absolute minimum value of $f(x)$ in its domain. Hence $x=-10$ and $y=10$ are the two numbers we want.

