## The Mean Value Theorem

Rolle's Theorem Suppose that $f(x)$ is continuous on $[a, b]$ and is differentiable in $(a, b)$. If $f(a)=f(b)$, then there exists a point $c$ in $(a . b)$ such that $f^{\prime}(c)=0$.
The Mean Value Theorem Suppose that $f(x)$ is continuous on $[a, b]$ and is differentiable in $(a, b)$. Then there exists a point $c$ in (a.b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Example 1 Show that the function $f(x)=\frac{1-x^{2}}{1+x^{2}}$ satisfies the hypotheses of Rolle's theorem on $[-1,1]$, and find all numbers $c$ in $(-1,1)$ that satisfy the conclusion of that theorem.

Solution: Since $f(x)$ is a rational function with an always positive denominator, $f(x)$ is differentiable (and so continuous) in its domain $(-\infty, \infty)$, and in particular, $f(x)$ is continuous on $[-1,1]$, and differentiable on $(-1,1)$. As $f(-1)=0=f(1)$, we conclude that $f(x)$ satisfies the hypotheses of Rolle's theorem on $[-1,1]$.

Compute

$$
f^{\prime}(x)=\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}=\frac{-4 x}{\left(1+x^{2}\right)^{2}} .
$$

Thus the only point $c$ satisfying $f^{\prime}(c)=0$ is $c=0$.
Example 2 Show that the function $f(x)=\sqrt{x-1}$ satisfies the hypotheses of The Mean Value Theorem on $[2,5]$, and find all numbers $c$ in $(2,5)$ that satisfy the conclusion of that theorem.

Solution: Since $f(x)$ is a composition function of a power function $(f(u)=\sqrt{u})$ and a polynomial $(u=x-1), f(x)$ is continuous in its domain $[1, \infty)$, and differentiable in $(1, \infty)$; and in particular, $f(x)$ is continuous on $[2,5]$, and differentiable on $(2,5)$. Thus $f(x)$ satisfies the hypotheses of The Mean Value Theorem on [2,5].

Compute $f(2)=1$ and $f(5)=2$; and $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$. As in this example, $a=2$ and $b=5$,

$$
\frac{1}{2 \sqrt{x-1}}=f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}=\frac{2-1}{5-2}=\frac{1}{3} .
$$

Thus $2 \sqrt{x-1}=3$, and so $4(x-1)=9$. It follows that $x=\frac{13}{4}$, and so the only point $c$ satisfying the conclusion of that theorem is $c=\frac{13}{4}$.

