Determine the equation of a straight line in the plane

Some Facts about lines

(1) For non vertical line L, if L passes a point (x_0, y_0) with slope m, then an equation of line L is

$$y - y_0 = m(x - x_0).$$

(2) If a non vertical line L passes through distinct points (x_1, y_1) and $x_2(y_2)$, then the slope of L is

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

(3) A vertical line passing through (x_0, y_0) has equation $x = x_0$; a horizontal line passing through (x_0, y_0) has equation $y = y_0$.

(4) A line L intersects the x-axis at (a,0) (the number a will be called the x-intersect of L) and the y-axis at (0,b) (the number b will be called the y-intersect of L) has equation

$$\frac{x}{a} + \frac{y}{b} = 1.$$

(5) Two non vertical lines are parallel if and only if they have the same slope; and two non vertical lines are perpendicular to each other if and only if the product of their slopes equals -1.

(6) The angle θ between the x-axis and a non vertical line L is called an **angle of inclination**, and the slope of L is $m = \tan \theta$.

Example 1 Find an equation of the line L that passes through (2, -3) and (5, 3).

Solution: Then the slope of L is

$$m = \frac{3 - (-3)}{5 - 2} = \frac{6}{3} = 2.$$

As L passes through (2, -3), an equation of L is

$$y - (-3) = 2(x - 2).$$

Example 2 Find an equation of the line L that has slope 6 and y-intersect 7.

Solution: The line has y-intersect 7 means that (0,7) is on the line. Therefore an equation of L is

$$y - 7 = 6(x - 0)$$
.

Example 3 Find an equation of the line L that has angle of inclination 135^o and contains (4,2).

Solution: The slope of L is $m = \tan 135^{\circ} = \tan \frac{3\pi}{4} = -1$ Therefore an equation of L is

$$y-2 = -1(x-4)$$
.

Example 4 Find an equation of the line L that passes through (1,5) and is parallel to the line with equation 2x + y = 10.

Solution: Rewrite 2x + y = 10 into y = -2x + 10. Then the slope of this line is -2. Note that L also has the same slope and so an equation of L is

$$y - 5 = -2(x - 1)$$
.

Example 5 Find an equation of the line L that passes through (1,5) and is perpendicular to the line with equation 2x + y = 10.

Solution: Rewrite 2x + y = 10 into y = -2x + 10. Then the slope of this line is -2. Let m denote the slope of L. Then (-2)m = -1, and so $m = \frac{1}{2}$. Thus an equation of L is

$$y - 5 = \frac{1}{2}(x - 1).$$