Determine the equation of a straight line in the plane

Some Facts about lines

(1) For non vertical line L, if L passes a point $\left(x_{0}, y_{0}\right)$ with slope m, then an equation of line L is

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

(2) If a non vertical line L passes through distinct points $\left(x_{1}, y_{1}\right)$ and $x_{2}\left(y_{2}\right)$, then the slope of L is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

(3) A vertical line passing through $\left(x_{0}, y_{0}\right)$ has equation $x=x_{0}$; a horizontal line passing through $\left(x_{0}, y_{0}\right)$ has equation $y=y_{0}$.
(4) A line L intersects the x-axis at $(a, 0)$ (the number a will be called the x-intersect of L) and the y-axis at $(0, b)$ (the number b will be called the y-intersect of L) has equation

$$
\frac{x}{a}+\frac{y}{b}=1
$$

(5) Two non vertical lines are parallel if and only if they have the same slope; and two non vertical lines are perpendicular to each other if and only if the product of their slopes equals -1 .
(6) The angle θ between the x-axis and a non vertical line L is called an angle of inclination, and the slope of L is $m=\tan \theta$.

Example 1 Find an equation of the line L that passes through $(2,-3)$ and $(5,3)$.
Solution: Then the slope of L is

$$
m=\frac{3-(-3)}{5-2}=\frac{6}{3}=2 .
$$

As L passes through $(2,-3)$, an equation of L is

$$
y-(-3)=2(x-2)
$$

Example 2 Find an equation of the line L that has slope 6 and y-intersect 7 .

Solution: The line has y-intersect 7 means that $(0,7)$ is on the line. Therefore an equation of L is

$$
y-7=6(x-0)
$$

Example 3 Find an equation of the line L that has angle of inclination 135° and contains $(4,2)$.

Solution: The slope of L is $m=\tan 135^{\circ}=\tan \frac{3 \pi}{4}=-1$ Therefore an equation of L is

$$
y-2=-1(x-4)
$$

Example 4 Find an equation of the line L that passes through $(1,5)$ and is parallel to the line with equation $2 x+y=10$.

Solution: Rewrite $2 x+y=10$ into $y=-2 x+10$. Then the slope of this line is -2 . Note that L also has the same slope and so an equation of L is

$$
y-5=-2(x-1)
$$

Example 5 Find an equation of the line L that passes through $(1,5)$ and is perpendicular to the line with equation $2 x+y=10$.

Solution: Rewrite $2 x+y=10$ into $y=-2 x+10$. Then the slope of this line is -2 . Let m denote the slope of L. Then $(-2) m=-1$, and so $m=\frac{1}{2}$. Thus an equation of L is

$$
y-5=\frac{1}{2}(x-1) .
$$

