Determine monotone intervals of a function

Facts: Let $f(x)$ be a function on an interval I.
(1) If for any pair of points x_{1}, x_{2} in I with $x_{1}<x_{2}$ we always have $f\left(x_{1}\right)>f\left(x_{2}\right)$ (respectively, $\left.f\left(x_{1}\right)<f\left(x_{2}\right)\right)$ then $f(x)$ is decreasing (respectively, increasing) in the interval I. If for any pair of points x_{1}, x_{2} in I with $x_{1}<x_{2}$ we always have $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ (respectively, $\left.f\left(x_{1}\right) \geq f\left(x_{2}\right)\right)$ then $f(x)$ is non increasing (respectively, non decreasing) in the interval I.
(2) If $f^{\prime}(x)>0$ (respectively, $f^{\prime}(x)<0$) for all x in I, then $f(x)$ is decreasing (respectively, increasing) in the interval I.
(3) To determine the monotone intervals of f (the intervals in which $f(x)$ is either always increasing or always decreasing), we can use the following process.
(Step 1) Compute $f^{\prime}(x)$, and find the points at which $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. Let c_{1}, c_{2}, \ldots denote these points.
(Step 2) These points c_{1}, c_{2}, \ldots will partition the domain of $f(x)$ into intervals. Determine the sign of $f^{\prime}(x)$ in each of the intervals and then apply (2) to make conclusions.

Example 1 Determine the open intervals in which the function $f(x)=2 x-\frac{1}{6} x^{2}-\frac{1}{9} x^{3}$ is increasing and those in which $f(x)$ is decreasing.
Solution: Note that the domain of $f(x)$ is $(-\infty, \infty)$.
(Step 1) Compute $f^{\prime}(x)=2-\frac{1}{3} x-\frac{1}{3} x^{2}$. Set $f^{\prime}(x)=2-\frac{1}{3} x-\frac{1}{3} x^{2}=0$. Use 3 as a common denominator to get

$$
\frac{6-x-x^{2}}{3}=0, \text { and so }(2-x)(3+x)=0 .
$$

Thus $c_{1}=-3$ and $c_{2}=2$ are the critical points.
(Step 2) The two points -3 and 2 partitioned the domain of $f(x)$ into intervals $(-\infty,-3)$, $(-3,2)$ and $(2, \infty)$.

Since $f^{\prime}(-4)<0, f^{\prime}(0)>0$ and $f^{\prime}(3)<0$, we conclude that $f^{\prime}(x)<0$ in both $(-\infty,-3)$ and $(2, \infty)$, and that $f^{\prime}(x)>0$ in $(-3,2)$. Therefore, $f(x)$ is decreasing in both $(-\infty,-3)$ and $(2, \infty)$, and $f(x)$ is increasing in $(-3,2)$.

Example 2 Determine the open intervals in which the function $f(x)=\frac{x}{x+1}$ is increasing and those in which $f(x)$ is decreasing.

Solution: Note that the domain of $f(x)$ is $(-\infty,-1)$ and $(-1, \infty)$.
(Step 1) Compute $f^{\prime}(x)=\frac{-1}{(x+1)^{2}}$. Thus $f^{\prime}(x)>0$ for any x in the domain of $f(x)$.
(Step 2) Therefore, $f(x)$ is decreasing in both $(-\infty,-1)$ and $(-1, \infty)$.

Example 3 Determine the open intervals in which the function $f(x)=\frac{(x-1)^{2}}{x^{2}-3}$ is increasing and those in which $f(x)$ is decreasing.
Solution: Note that the domain of $f(x)$ is $(-\infty,-\sqrt{3}),(-\sqrt{3}, \sqrt{3})$ and $(\sqrt{3}, \infty)$.
(Step 1) Compute

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2(x-1)\left(x^{2}-3\right)-2 x(x-1)^{2}}{\left(x^{2}-3\right)^{2}} \\
& =\frac{\left(2 x^{3}-2 x^{2}-6 x+6\right)-\left(2 x^{3}-4 x^{2}+2 x\right)}{\left(x^{2}-3\right)^{2}} \\
& =\frac{2\left(x^{2}-4 x+3\right)}{\left(x^{2}-3\right)^{2}}=\frac{2(x-1)(x-3)}{\left(x^{2}-3\right)^{2}}
\end{aligned}
$$

Thus $c_{1}=1$ and $c_{2}=3$ are the critical points.
(Step 2) The two points 1 and 3 partitioned the domain of $f(x)$ into intervals $(-\infty,-\sqrt{3})$, $(-\sqrt{3}, 1),(1, \sqrt{3}),(\sqrt{3}, 3)$ and $(3, \infty)$.

Since $f^{\prime}(-4)>0, f^{\prime}(0)>0, f^{\prime}(1.5)<0, f^{\prime}(2)<0$, and $f^{\prime}(4)>0$, we conclude that $f^{\prime}(x)<0$ in the intervals $(1, \sqrt{3})$ and $(\sqrt{3}, 3)$, and that $f^{\prime}(x)>0$ in $(-\infty,-\sqrt{3}),(-\sqrt{3}, 1)$, and $(3, \infty)$. Therefore, $f(x)$ is decreasing in both $(1, \sqrt{3})$ and $(\sqrt{3}, 3)$, and $f(x)$ is increasing in $(-\infty,-\sqrt{3}),(-\sqrt{3}, 1)$, and $(3, \infty)$.

