Determine monotone intervals of a function

Facts: Let f(x) be a function on an interval I.

- (1) If for any pair of points x_1, x_2 in I with $x_1 < x_2$ we always have $f(x_1) > f(x_2)$ (respectively, $f(x_1) < f(x_2)$) then f(x) is **decreasing** (respectively, **increasing**) in the interval I. If for any pair of points x_1, x_2 in I with $x_1 < x_2$ we always have $f(x_1) \le f(x_2)$ (respectively, $f(x_1) \ge f(x_2)$) then f(x) is **non increasing** (respectively, **non decreasing**) in the interval I.
- (2) If f'(x) > 0 (respectively, f'(x) < 0) for all x in I, then f(x) is decreasing (respectively, increasing) in the interval I.
- (3) To determine the monotone intervals of f (the intervals in which f(x) is either always increasing or always decreasing), we can use the following process.
- (Step 1) Compute f'(x), and find the points at which f'(x) = 0 or f'(x) does not exist. Let $c_1, c_2, ...$ denote these points.
- (Step 2) These points $c_1, c_2, ...$ will partition the domain of f(x) into intervals. Determine the sign of f'(x) in each of the intervals and then apply (2) to make conclusions.

Example 1 Determine the open intervals in which the function $f(x) = 2x - \frac{1}{6}x^2 - \frac{1}{9}x^3$ is increasing and those in which f(x) is decreasing.

Solution: Note that the domain of f(x) is $(-\infty, \infty)$.

(Step 1) Compute $f'(x) = 2 - \frac{1}{3}x - \frac{1}{3}x^2$. Set $f'(x) = 2 - \frac{1}{3}x - \frac{1}{3}x^2 = 0$. Use 3 as a common denominator to get

$$\frac{6-x-x^2}{3} = 0, \text{ and so } (2-x)(3+x) = 0.$$

Thus $c_1 = -3$ and $c_2 = 2$ are the critical points.

(Step 2) The two points -3 and 2 partitioned the domain of f(x) into intervals $(-\infty, -3)$, (-3, 2) and $(2, \infty)$.

Since f'(-4) < 0, f'(0) > 0 and f'(3) < 0, we conclude that f'(x) < 0 in both $(-\infty, -3)$ and $(2, \infty)$, and that f'(x) > 0 in (-3, 2). Therefore, f(x) is decreasing in both $(-\infty, -3)$ and $(2, \infty)$, and f(x) is increasing in (-3, 2).

Example 2 Determine the open intervals in which the function $f(x) = \frac{x}{x+1}$ is increasing and those in which f(x) is decreasing.

Solution: Note that the domain of f(x) is $(-\infty, -1)$ and $(-1, \infty)$.

(Step 1) Compute $f'(x) = \frac{-1}{(x+1)^2}$. Thus f'(x) > 0 for any x in the domain of f(x).

(Step 2) Therefore, f(x) is decreasing in both $(-\infty, -1)$ and $(-1, \infty)$.

Example 3 Determine the open intervals in which the function $f(x) = \frac{(x-1)^2}{x^2-3}$ is increasing and those in which f(x) is decreasing.

Solution: Note that the domain of f(x) is $(-\infty, -\sqrt{3})$, $(-\sqrt{3}, \sqrt{3})$ and $(\sqrt{3}, \infty)$. (Step 1) Compute

$$f'(x) = \frac{2(x-1)(x^2-3) - 2x(x-1)^2}{(x^2-3)^2}$$

$$= \frac{(2x^3 - 2x^2 - 6x + 6) - (2x^3 - 4x^2 + 2x)}{(x^2-3)^2}$$

$$= \frac{2(x^2 - 4x + 3)}{(x^2-3)^2} = \frac{2(x-1)(x-3)}{(x^2-3)^2}.$$

Thus $c_1 = 1$ and $c_2 = 3$ are the critical points.

(Step 2) The two points 1 and 3 partitioned the domain of f(x) into intervals $(-\infty, -\sqrt{3})$, $(-\sqrt{3}, 1)$, $(1, \sqrt{3})$, $(\sqrt{3}, 3)$ and $(3, \infty)$.

Since f'(-4) > 0, f'(0) > 0, f'(1.5) < 0, f'(2) < 0, and f'(4) > 0, we conclude that f'(x) < 0 in the intervals $(1, \sqrt{3})$ and $(\sqrt{3}, 3)$, and that f'(x) > 0 in $(-\infty, -\sqrt{3})$, $(-\sqrt{3}, 1)$, and $(3, \infty)$. Therefore, f(x) is decreasing in both $(1, \sqrt{3})$ and $(\sqrt{3}, 3)$, and f(x) is increasing in $(-\infty, -\sqrt{3})$, $(-\sqrt{3}, 1)$, and $(3, \infty)$.