Compute related rates

The Problem: Given an equation $F(x, y)=0$, where $x=x(t)$ and $y=y(t)$, and given values of x, y and one of $x^{\prime}(t)$ and $y^{\prime}(t)$ (say $x^{\prime}(t)$), we want to find the missing rate value (in this case is $\left.y^{\prime}(t)\right)$.
(Step 1) View $x=x(t)$ and $y=y(t)$, apply chain rule to differentiate both sides of the equation $F(x, y)=0$ with respect to t. This will yield a new equation involving $x, y, x^{\prime}(t)$ and $y^{\prime}(t)$.
(Step 2) Solve the resulting equation from (Step 1) for $y^{\prime}(t)$, assuming that the values of x, y and $x^{\prime}(t)$ are given.

Remark: Please distinguish this problem with the implicit differentiation problem.

Example 1 A circular oil slick of uniform thickness is caused by a spill of $1 \mathrm{~m}^{3}$ of oil. The thickness of the oil slick is decreasing at the rate of $0.1 \mathrm{~cm} / \mathrm{h}$. At what rate is the radius of the slick increasing when the radius is 8 m ?

Solution: Let r and h denote the radius and the thickness of the oil slick, respectively. Then both $r=r(t)$ and $h=h(t)$ are functions of the times t. That the volume of the slick is $1 \mathrm{~m}^{3}$ becomes

$$
\pi r^{2} h=1 .
$$

View $r=r(t)$ and $h=h(t)$ and differentiating both sides of this equation with respect to t, we get

$$
2 \pi r r^{\prime} h+\pi r^{2} h^{\prime}=0 .
$$

We shall use meter as the unit for length. Therefore, $h^{\prime}(t)=-0.001 \mathrm{~m} / \mathrm{h}$. When $r=8$, we have $h=\frac{1}{8^{2} \pi}=\frac{1}{64 \pi}$. Substitute all these in to equation involving the rates, we have

$$
2 \pi(8) r^{\prime}(t) \frac{1}{64 \pi}+\pi 64(-0.001)=0, \text { and so } r^{\prime}(t)=\frac{4 \cdot 64 \pi}{1000}=\frac{32 \pi}{125} \mathrm{~m} / \mathrm{h} .
$$

Thus when the radius is 8 m , the radius of the slick increasing at the rate of $\frac{32 \pi}{125} \mathrm{~m} / \mathrm{h}$.
Example 2 The width of a rectangle is half its length. At what rate is its area increasing if its width is 10 cm and is increasing at $0.5 \mathrm{~cm} / \mathrm{s}^{2}$?.

Solution: Let l and w denote the width and the length of the rectangle, respectively. Then both $l=l(t)$ and $w=w(t)$ are functions of the time t. Moreover, $2 w=l$. Thus the area $A=l w=2 w^{2}$.

View $w=w(t)$ and differentiating $A(t)$ with respect to t, we get

$$
A^{\prime}(t)=4 w w^{\prime}(t) .
$$

When $w=10 \mathrm{~cm}$ and $w^{\prime}(t)=0.5 \mathrm{~cm} / \mathrm{s}^{2}$, we have $A^{\prime}(t)=4(10)(0.5)=20 \mathrm{~cm} / \mathrm{s}$.

