Compute derivatives of trigonometric functions

Facts: Let $u=u(x)$ be a differentiable function.

$$
\begin{aligned}
\frac{d}{d x} \sin u(x)=\cos u(x) \frac{d u}{d x} & \frac{d}{d x} \cos u(x)=-\sin u(x) \frac{d u}{d x} \\
\frac{d}{d x} \tan u(x)=\sec ^{2} u(x) \frac{d u}{d x} & \frac{d}{d x} \cot u(x)=-\csc ^{2} u(x) \frac{d u}{d x} \\
\frac{d}{d x} \sec u(x)=\sec u(x) \tan u(x) \frac{d u}{d x} & \frac{d}{d x} \csc u(x)=-\csc u(x) \cot u(x) \frac{d u}{d x}
\end{aligned}
$$

Example 1 Given $f(x)=\cos (5 x) \sin (7 x)$, find $f^{\prime}(x)$.
Solution: Apply product rule, and then use the differentiation formulas for sine and cosine functions.

$$
f^{\prime}(x)=\frac{\frac{d \cos (5 x)}{d x}}{d i n}(7 x)+\cos (5 x) \frac{\frac{d \sin (7 x)}{d x}}{\underline{d x}}=-5 \sin (5 x) \sin (7 x)+7 \cos (5 x) \cos (7 x) .
$$

Example 2 Given $f(x)=(\tan x)^{7}$, find $f^{\prime}(x)$.
Solution: Apply generalized power rule, and then use the differentiation formula for $\tan x$.

$$
f^{\prime}(x)=7(\tan x)^{7-1} \frac{d \tan x}{d x}=7(\tan x)^{6} \sec ^{2} x .
$$

Example 3 Given $f(x)=\sec x \sin x$, find $f^{\prime}(x)$.
Solution: Apply product rule, and then use the differentiation formulas for sine and secant functions.

$$
f^{\prime}(x)=\underline{\sec x \tan x} \sin x+\sec x \underline{\cos x} .
$$

Example 4 Given $f(x)=\sec (\sin x)$, find $f^{\prime}(x)$.
Solution: Compare this with Example 3. This is a composition function, not a product. Therefore, we apply Chain Rule to view $f(x)=\sec u(x)$ with $u=\sin x$.

$$
f^{\prime}(x)=\sec u(x) \tan u(x) \frac{d u(x)}{d x}=\sec (\sin x) \tan (\sin x) \cos x .
$$

Example 5 Given $f(x)=x \cos x$, find an equation of the line tangent to the curve $y=f(x)$ at the point where $x=\pi$.

Solution: Note that $f(\pi)=\pi \cos \pi=-\pi$. Thus the line passes through $(\pi,-\pi)$. To find the slope of the line, we compute $f^{\prime}(x)$ using product rule.

$$
f^{\prime}(x)=\cos x-x \sin x
$$

Thus the slope $m=f^{\prime}(\pi)=\cos \pi-\pi \sin \pi=-1$, and so the answer is

$$
y-(-\pi)=(-1)(x-\pi) \text { or } x+y=0
$$

Example 6 Given $f(x)=x-2 \sin x$, find all points on the curve $y=f(x)$ where the tangent line is horizontal.

Solution: This amounts to find the points at which $f^{\prime}(x)=0$. Note that

$$
f^{\prime}(x)=1-2 \cos x
$$

Thus $f^{\prime}(x)=0$ if and only if $\cos x=\frac{1}{2}$, which means that $x= \pm \frac{\pi}{3}+ \pm 3 n \pi$, for any integer n. Thus the points at which $y=f(x)$ has horizontal tangent line are $\left(\pm \frac{\pi}{3}+ \pm 2 n \pi, f\left(\pm \frac{\pi}{3}+\right.\right.$ $\pm 2 n \pi)$), for any integer n. (There are infinitely many of such places).

Example 7 A water trough is to be made from a long strip of tin 6 ft wide by bending up at an angle θ a 2-ft strip on each side. What angle θ would maximize the cross section area, and thus the volume, of the trough?

Solution: We first express the area in turns of the angle θ. We notice that the cross section is a trapezoid. From geometry, we know that the area of this trapezoid is

$$
A(\theta)=\frac{2+(2+4 \cos \theta)}{2}(2 \sin \theta)=4(1+\cos \theta) \sin \theta
$$

As θ ranges from 0 to $\frac{\pi}{2}$, we are maximizing $A(\theta)$ over the interval $\left[0, \frac{\pi}{2}\right]$. Note that $\sin ^{2} \theta+\cos ^{2} \theta=1$, or $-\sin ^{2} \theta=\cos ^{2} \theta-1$. We have

$$
A^{\prime}(\theta)=4\left[-\sin ^{2} \theta+(1+\cos \theta) \cos \theta\right]=4\left(\cos \theta+2 \cos ^{2} \theta-1\right)
$$

To solve the equation $\cos \theta+2 \cos ^{2} \theta-1=0$, we first factor the left side to get $(2 \cos \theta-$ $1)(\cos$ thet $a+1)=0$. Therefore, either $\cos \theta=\frac{1}{2}$, whence in $\left[0, \frac{\pi}{2}\right], \theta=\frac{\pi}{3}$; or $\cos \theta=1$, whence in $\left[0, \frac{\pi}{2}\right], \theta=0$.

Computing the corresponding values of A, we have $A(0)=0, A\left(\frac{\pi}{3}\right)=4\left(1+\frac{1}{2}\right) \frac{\sqrt{3}}{2}=3 \sqrt{3}$ and $A\left(\frac{\pi}{2}\right)=4$. Since $\sqrt{3}>1.7$, we conclude that $3 \sqrt{3}>4$, and so $\theta=\frac{\pi}{3}$ maximizes the cross sectional area.

