Find vertical tangent lines

Fact:

The curve $y=f(x)$ has a vertical tangent line at the point $(a, f(a))$ if
(i) $f(x)$ is a continuous at $x=a$.
(ii) $\lim _{x \rightarrow a}\left|f^{\prime}(x)\right|=\infty$ or equivalently, $\lim _{x \rightarrow a} \frac{1}{\left|f^{\prime}(x)\right|}=0$. (When a is an end point of the domain of $f(x)$, the limit should be an appropriate side limit. See Example 1).

When both (i) and (ii) are satisfied, the vertical line $x=a$ is a tangent line of the curve $y=f(x)$ at the point $(a, f(a))$.

Example 1 Find all the points on the graph $y=x^{1 / 2}-x^{3 / 2}$ where the tangent line is either horizontal or vertical.

Solution: We first observe the domain of $f(x)=x^{1 / 2}-x^{3 / 2}$ is $[0, \infty)$. Since horizontal tangent lines occur when $y^{\prime}=0$ and vertical tangent lines occur when (i) and (ii) above are satisfied, we should compute the derivative.

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}-\frac{3}{2} x^{1 / 2}=\frac{1}{2 \sqrt{x}}-\frac{3 \sqrt{x}}{2}=\frac{1}{2 \sqrt{x}}-\frac{3 x}{2 \sqrt{x}}=\frac{1-3 x}{2 \sqrt{x}} .
$$

Therefore, when $x=\frac{1}{3}, y^{\prime}=0$ and so $y=f(x)$ has a horizontal tangent line at $\left(\frac{1}{3}, f\left(\frac{1}{3}\right)\right)$; and as $f(x)$ is (right) continuous at 0 , and $\lim _{x \rightarrow 0^{+}}\left|f^{\prime}(x)\right|=\infty, y=f(x)$ has a vertical tangent line at $(0,0)$.

Example 2 Find all the points on the graph $y=\frac{x}{\sqrt{1-x^{2}}}$ where the tangent line is either horizontal or vertical.

Solution: We first observe the domain of $f(x)=\frac{x}{\sqrt{1-x^{2}}}$ is $(-1,1)$. Since horizontal tangent lines occur when $y^{\prime}=0$ and vertical tangent lines occur when (i) and (ii) above are satisfied, we should compute the derivative. Write $f(x)=x\left(1-x^{2}\right)^{-\frac{1}{2}}$.

$$
\begin{aligned}
y^{\prime} & =\left(1-x^{2}\right)^{-\frac{1}{2}}+x\left(\frac{-1}{2}\right)\left(1-x^{2}\right)^{-\frac{3}{2}}(-2 x) \\
& =\frac{1}{\left(1-x^{2}\right)^{\frac{1}{2}}}+\frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}} \\
& =\frac{1-x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}}+\frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

$$
=\frac{1-x^{2}+x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}}=\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} .
$$

One can also use quotient rule to compute the derivative:

$$
y^{\prime}=\frac{\sqrt{1-x^{2}}-x \frac{-2 x}{2 \sqrt{1-x^{2}}}}{1-x^{2}}=\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} .
$$

Therefore, for any $x, f^{\prime}(x) \neq 0$, and so the graph does not have a horizontal tangent line. When $x=1, \lim _{x \rightarrow 1^{-}}\left|f^{\prime}(x)\right|=\infty$, and $x=-1, \lim _{x \rightarrow-1^{+}}\left|f^{\prime}(x)\right|=\infty$, but as these points are not in the domain of $f(x), y=f(x)$ does not have a vertical tangent line either.

Example 3 Find all the points on the graph $y=x \sqrt{4-x^{2}}$ where the tangent line is either horizontal or vertical.

Solution: We first observe the domain of $f(x)=x \sqrt{4-x^{2}}$ is $[-2,2]$. Since horizontal tangent lines occur when $y^{\prime}=0$ and vertical tangent lines occur when (i) and (ii) above are satisfied, we should compute the derivative. View $f(x)=x\left(4-x^{2}\right)^{\frac{1}{2}}$.

$$
\begin{aligned}
y^{\prime} & =\left(4-x^{2}\right)^{\frac{1}{2}}+x \frac{1}{2}\left(4-x^{2}\right)^{\frac{-1}{2}}(-2 x)=\sqrt{4-x^{2}}-\frac{x^{2}}{\sqrt{4-x^{2}}} \\
& =\frac{4-x^{2}}{\sqrt{4-x^{2}}}-\frac{x^{2}}{\sqrt{4-x^{2}}}=\frac{4-x^{2}-x^{2}}{\sqrt{4-x^{2}}} \\
& =\frac{2\left(2-x^{2}\right)}{\sqrt{4-x^{2}}} .
\end{aligned}
$$

Therefore, when $x= \pm \sqrt{2}, y^{\prime}=0$ and so $y=f(x)$ has a horizontal tangent line at $(-\sqrt{2}, f(-\sqrt{2}))$ and at $(\sqrt{2}, f(\sqrt{2}))$; and as $f(x)$ is (right) continuous at $x=-2$, and (left) continuous at $x=2$, and as $\lim _{x \rightarrow-2^{+}}\left|f^{\prime}(x)\right|=\infty$ and as $\lim _{x \rightarrow 2^{-}}\left|f^{\prime}(x)\right|=\infty, y=f(x)$ has a vertical tangent line at both $(-2, f(-2))$ and $(2, f(2))$.

