Find derivatives by using the chain rule

Chain Rule:

Suppose that function $g(x)$ is differentiable at x and $f(u)$ is differentiable at $u=g(x)$, then the composition function $h(x)=f(g(x))$ is also differentiable at x and

$$
h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

Example 1 Find the derivative of $h(x)=\left(2 x^{2}-x+1\right)^{5}$.
Solution: View $u=g(x)=2 x^{2}-x+1$ and $f(u)=u^{5}$. Then $h(x)=f(g(x))$ and so apply the chain rule to get

$$
h^{\prime}(x)=5 u^{4}(4 x-1)=5\left(2 x^{2}-x+1\right)^{4}(4 x-1) .
$$

Example 2 Find the derivative of $h(x)=\left(\frac{x+1}{x-1}\right)^{7}$.
Solution: View $u=g(x)=\frac{x+1}{x-1}$ and $f(u)=u^{7}$. Then $h(x)=f(g(x))$ and so apply the chain rule to get

$$
h^{\prime}(x)=7 u^{6} \frac{1(x-1)-1(x+1)}{(x-1)^{2}}=7\left(\frac{x+1}{x-1}\right)^{6} \frac{-2}{(x-1)^{2}}=\frac{-14(x+1)^{6}}{(x-1)^{8}} .
$$

Example 3 Find the derivative of $h(x)=\left[x-\left(1-\frac{1}{x}\right)^{-1}\right]^{-2}$.
Solution: It would be better to simplify the function first to make the computation easier.
$h(x)=\left[x-\left(\frac{x-1}{x}\right)^{-1}\right]^{-2}=\left[x-\frac{x}{x-1}\right]^{-2}=\left[\frac{x(x-1)-x}{x-1}\right]^{-2}=\left[\frac{x^{2}-2 x}{x-1}\right]^{-2}=\left[\frac{x-1}{x^{2}-2 x}\right]^{2}$.
View $u=g(x)=\frac{x-1}{x^{2}-2 x}$ and $f(u)=u^{2}$. Then $h(x)=f(g(x))$ and so apply the chain rule to get

$$
h^{\prime}(x)=2 u \frac{1\left(x^{2}-2 x\right)-2(x-1)^{2}}{\left(x^{2}-2 x\right)^{2}}=2\left(\frac{x-1}{x^{2}-2 x}\right) \frac{-x^{2}+2 x-2}{\left(x^{2}-2 x\right)^{2}} .
$$

Example 4 Given: $G(t)=f(h(t)), h(1)=4, f^{\prime}(4)=3$, and $h^{\prime}(1)=-6$. Find $G^{\prime}(1)$.
Solution: Using the chain rule, we get

$$
G^{\prime}(t)=f^{\prime}(h(t)) h^{\prime}(t)
$$

When $t=1$, we are given $h(1)=4, f^{\prime}(4)=3$, and $h^{\prime}(1)=-6$. Substituting these given data, we have the answer

$$
G^{\prime}(1)=f^{\prime}(h(1)) h^{\prime}(1)=f^{\prime}(4) h^{\prime}(1)=3(-6)=-18 .
$$

