Find derivatives by using differentiation rules

Differentiation Rules:

(1) Derivative of a constant: Let C be a constant, then $\frac{d}{d x} C=0$.
(2) Power Rule: For a real number n,

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(3) Linear Property: For constant a and b and functions $f(x)$ and $g(x)$,

$$
[a f(x)+b g(x)]^{\prime}=a f^{\prime}(x)+b g^{\prime}(x) \text { and }[a f(x)-b g(x)]^{\prime}=a f^{\prime}(x)-b g^{\prime}(x)
$$

(4) Product Rule: $[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
(5) Quotient Rule:

$$
\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

(6) Generalized Power Rule: for a real number n and a differentiable function $f(x)$,

$$
\frac{d}{d x}[f(x)]^{n}=n[f(x)]^{n-1} f^{\prime}(x)
$$

Example 1 Apply differentiation rules to find the derivative of $f(x)=\left(2 x^{2}-1\right)\left(x^{3}+2\right)$.
Solution: The function $f(x)$ is a product, and each factor is a polynomial. So we first apply Product Rule, and then apply the linear property and the power rule to get:

$$
\begin{aligned}
f^{\prime}(x) & =\underline{\left(2(2) x^{2-1}-0\right)}\left(x^{3}+2\right)+\left(2 x^{2}-1\right) \underline{\left(3 x^{3-1}+0\right)}=4 x\left(x^{3}+2\right)+3 x^{2}\left(2 x^{2}-1\right) \\
& =4 x^{4}+8 x+6 x^{4}-3 x^{2}=10 x^{4}-3 x^{2}+8 x
\end{aligned}
$$

Example 2 Apply differentiation rules to find the derivative of $f(x)=\frac{2 x^{2}-1}{x^{3}+2}$.
Solution 1: The function $f(x)$ is a quotient. So we first apply Quotient Rule, and then apply the linear property and the generalized power rule to get:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(2(2) x^{2-1}-0\right)\left(x^{3}+2\right)-\left(2 x^{2}-1\right) \underline{\left(3 x^{3-1}+0\right)}}{\left(x^{3}+2\right)^{2}}=\frac{4 x\left(x^{3}+2\right)+3 x^{2}\left(2 x^{2}-1\right)}{\left(x^{3}+2\right)^{2}} \\
& =\frac{4 x^{4}+8 x+6 x^{4}-3 x^{2}}{\left(x^{3}+2\right)^{2}}=\frac{x\left(10 x^{3}-3 x+8\right)}{\left(x^{3}+2\right)^{2}}
\end{aligned}
$$

Solution 2: View the function $f(x)$ as a product by using negative exponents.

$$
f(x)=\left(2 x^{2}-1\right)\left(x^{3}+2\right)^{-1}
$$

Then apply Product Rule, and then the linear property and the power rule to get the answer (the answer is intentionally not simplified to make it easier for a reader to see the computation process).

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(2(2) x^{2-1}-0\right)}{}\left(x^{3}+2\right)^{-1}+\left(2 x^{2}-1\right)(-1)\left(x^{3}+2\right)^{-1-1}\left(3 x^{3-1}+0\right) \\
& =4 x\left(x^{3}+2\right)^{-1}-3 x^{2}\left(2 x^{2}-1\right)\left(x^{3}+2\right)^{-2}
\end{aligned}
$$

Example 3 Apply differentiation rules to find the derivative of $f(x)=\frac{2 x^{3}-3 x^{2}+4 x-5}{x^{2}}$.
Solution: The function $f(x)$ is a quotient. But we are not in a hurry to apply Quotient Rule, as we observed that the denominator is just a power of x. Thus we first simplify the fraction.

$$
f(x)=\frac{2 x^{3}-3 x^{2}+4 x-5}{x^{2}}=\frac{2 x^{3}}{x^{2}}-\frac{3 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{5}{x^{2}}=2 x-3+4 x^{-1}-5 x^{-2}
$$

Then apply the linear property and the power rule.

$$
f^{\prime}(x)=\left[2 x-3+4 x^{-1}-5 x^{-2}\right]^{\prime}=2-0+4(-1) x^{-1-1}-5(-2) x^{-2-1}=2-\frac{4}{x^{2}}+\frac{10}{x^{3}}
$$

Example 4 Write an equation of the line tangent to the curve $f(x)=\left(\frac{2}{x}-\frac{1}{x^{2}}\right)^{-1}$ at the point (2, 4/3).

Solution: The equation of this line has the form

$$
y-\frac{4}{3}=\underline{f^{\prime}(2)}(x-\underline{2}) .
$$

To find the slope $f^{\prime}(2)$, we first compute the derivative $f^{\prime}(x)$. To do that it may be better to simplify the fraction first

$$
f(x)=\left(\frac{2}{x}-\frac{1}{x^{2}}\right)^{-1}=\left(\frac{2 x}{x^{2}}-\frac{1}{x^{2}}\right)^{-1}=\left(\frac{2 x-1}{x^{2}}\right)^{-1}=\frac{x^{2}}{2 x-1}
$$

Then, apply Quotient Rule

$$
f^{\prime}(x)=\frac{2 x(2 x-1)-\underline{2} x^{2}}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}}{(2 x-1)^{2}}=\frac{2 x^{2}-2 x}{(2 x-1)^{2}}
$$

Hence $f^{\prime}(2)=\frac{4}{9}$, and so the equation is

$$
y-\frac{4}{\underline{3}}=\frac{4}{\underline{9}}(x-\underline{2}) .
$$

