Application of the intermediate value property of continuous functions

Intermediate Value Property:

If a function $f(x)$ is continuous on a closed interval $[a, b]$, and if K is a number between $f(a)$ and $f(b)$, then there must be a point c in the interval $[a, b]$ such that $f(c)=K$.

This property is often used to show the existence of an equation.

Example 1 Apply intermediate value property to show that the equation $x^{5}-3 x^{2}=-1$ has a solution in the interval $[0,1]$.

Solution: Let $f(x)=x^{5}-3 x^{2}$. Then $f(x)$ is a continuous function with $f(0)=0$ and $f(1)=$ -2 . As -1 is a value between -2 and 0 , the intermediate value property of continuous functions indicates that $f(x)=-1$ must have a solution in the interval $[0,1]$.

Example 2 Apply intermediate value property to show that the equation $x^{5}-5 x^{3}+3=0$ has a solution in the interval $[-1,1]$.

Solution: Let $f(x)=x^{5}-5 x^{3}+3$. Then $f(x)$ is a continuous function with $f(-1)=7$ and $f(1)=-1$. As 0 is a value between -1 and 7 , the intermediate value property of continuous functions indicates that $f(x)=0$ must have a solution in the interval $[-1,1]$.

Example 3 Apply intermediate value property to show that the equation $\sqrt{x^{6}+5 x^{4}+9}=$ 3.5 has a solution in the interval $[0,1]$.

Solution: Let $f(x)=\sqrt{x^{6}+5 x^{4}+9}$. Then $f(x)$ is a continuous function with $f(0)=3$ and $f(1)=4$. As 3.5 is a value between 3 and 4 , the intermediate value property of continuous functions indicates that $f(x)=3.5$ must have a solution in the interval $[0,1]$.

