1. Compute the double integral

$$
\int_{0}^{\pi / 2} \int_{1}^{e} \frac{\sin y}{x} d x d y
$$

Solution

$$
\int_{0}^{\pi / 2} \int_{0}^{e} \frac{\sin y}{x} d x d y=\int_{0}^{\pi / 2} \sin y d y \int_{1}^{e} \frac{1}{x} d x=[-\cos y]_{0}^{\frac{\pi}{2}}[\ln x]_{1}^{e}=(0-(-1))(\ln e-\ln 1)=1 .
$$

2. Compute the double integral of $f(x, y)=1-x$ over the triangle R whose vertices are $(0,0),(1,1)$ and $(-2,1)$.
Solution Note that the line linking $(0,0)$ and $(1,1)$ has equation $y=x$ and the line linking $(0,0)$ and $(-2,1)$ has equation $-2 y=x$. We can view the region as vertically simple as well as horizontally simple. One way of doing this is:

$$
\begin{aligned}
\text { Ans: } & =\int_{-2}^{0} \int_{-\frac{x}{2}}^{1}(1-x) d y d x+\int_{0}^{1} \int_{x}^{1}(1-x) d y d x=\int_{-2}^{0}[(1-x) y]_{-\frac{x}{2}}^{1} d x+\int_{0}^{1}[(1-x) y]_{x}^{1} d x \\
& =\int_{-2}^{0}\left(1-\frac{x}{2}-\frac{x^{2}}{2}\right) d x+\int_{0}^{1}\left(1-2 x+x^{2}\right) d x=\left[x-\frac{x^{2}}{4}-\frac{x^{3}}{6}\right]_{-2}^{0}+\left[x-x^{2}+\frac{x^{3}}{3}\right]_{0}^{1} \\
& =0-\left(-2-1+\frac{4}{3}\right)+\left(1-1+\frac{1}{3}\right)=2 .
\end{aligned}
$$

Another way of computing the integral is:

$$
\begin{aligned}
\text { Ans: } & =\int_{0}^{1} \int_{-2 y}^{y}(1-x) d x d y=\int_{0}^{1}\left[x-\frac{x^{2}}{2}\right]_{-2 y}^{y} d y \\
& =\int_{0}^{1}\left[y-\frac{y^{2}}{2}-\left((-2 y)-\frac{4 y^{2}}{2}\right)\right] d y=\int_{0}^{1}\left[3 y+\frac{3 y^{2}}{2}\right] d y \\
& =\left[\frac{3 y^{2}}{2}+\frac{y^{3}}{2}\right]_{0}^{1}=2
\end{aligned}
$$

