MATH 251 - QUIZ 1 SOLUTIONS

1. Let $\mathbf{a}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$.
(1A) Compute $3 \mathbf{a}+4 \mathbf{b}$.

$$
3 \mathbf{a}+4 \mathbf{b}=3(1,-2,3)+4(1,3,-2)=(3,-6,9)+(4,12,-8)=(7,6,1) .
$$

(1B) Compute $(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})$.

$$
(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a}^{2}-\mathbf{b}^{2}=\left(1+(-2)^{2}+3^{2}\right)-\left(1+3^{2}+(-2)^{2}\right)=0 .
$$

(1C) Find x such that $\mathbf{c}=\mathbf{i}+\mathbf{j}+x \mathbf{k}$ is perpendicular to the vector $\mathbf{a}+\mathbf{b}$.
Note that $\mathbf{c} \cdot(\mathbf{a}+\mathbf{b})=(1,1, x) \cdot(2,1,1)=2+1+x$. For \mathbf{c} to be perpendicular to $\mathbf{a}+\mathbf{b}$, the dot product must be zero and so x must satisfy $2+1+x=0$, yielding $x=-3$.
(1D) Find the components $C o m p_{\mathbf{a}} \mathbf{b}$ and $C o m p_{\mathrm{b}} \mathbf{a}$.
Apply the fomula in your notes or in your textbook (page 722, Formula (14)) to compute them.

$$
\operatorname{Comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}=\frac{1-6-6}{\sqrt{1+9+4}}=\frac{-11}{\sqrt{14}}
$$

and

$$
\operatorname{Comp}_{\mathbf{b}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}=\frac{1-6-6}{\sqrt{1+4+9}}=\frac{-11}{\sqrt{14}} .
$$

(1E) Find the direction cosines (also called directional numbers) of a.
Use the result in (1D) that $|\mathbf{a}|=\sqrt{14}$. Then compute the direction cosines as follows:

$$
\cos \alpha=\frac{1}{\sqrt{14}}, \cos \beta=\frac{-2}{\sqrt{14}}, \cos \gamma=\frac{3}{\sqrt{14}} .
$$

