1. Find the the mass and centroid of the first-octant region that is interior to $x^{2}+z^{2}=1$ and $y^{2}+z^{2}=1$ (with density $\delta \equiv 1$).

Solution Project the solid on the $y z$-plane. Then on the $y z$-plane, the region R is bounded by $y=0, z=0$ and $y^{2}+z^{2}=1$. Thus

$$
\begin{aligned}
m & =\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} d x d y d z=\int_{0}^{1}\left(1-z^{2}\right) d z=\frac{2}{3} \\
\bar{x} & =\frac{3}{2} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} x d x d y d z=\frac{3}{2} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \frac{1-z^{2}}{2} d y d z \\
& =\frac{3}{2} \int_{0}^{1} \frac{\left(1-z^{2}\right)^{\frac{3}{2}}}{2} d z \\
& =\frac{3}{4}\left[\frac{y}{8}\left(5-2 y^{2}\right) \sqrt{1-y^{2}}+\frac{3}{8} \sin ^{-1} y\right]_{0}^{1}=\frac{9 \pi}{64} \\
\bar{y} & =\frac{3}{2} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} y d y d x d z==\frac{9 \pi}{64} \\
\bar{z} & =\frac{3}{2} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} z d y d x d z=\frac{3}{2} \int_{0}^{1}\left(1-z^{2}\right) z d z=\frac{3}{8} .
\end{aligned}
$$

2. Find the volume of the region that lies inside both $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}-2 x=0$.

Solution One can compute the volume of the first quadrant of the solid (thus the solid lies between $z=\sqrt{4-\left(x^{2}+y^{2}\right)}$, and $\left.z=0\right)$. The projection on the $x y$-plane is a region bounded by $(x-1)^{2}+y^{2}=1$ and $x=0$, or $r=2 \cos \theta$ with $0 \leq \theta \leq \pi / 2$ in polar. Therefore, the volume is, in cylindrical coordinates,

$$
\begin{aligned}
\mathrm{V} & =4 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \int_{0}^{\sqrt{4-r^{2}}} r d z d r d \theta=4 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r \sqrt{4-r^{2}} d r d \theta \\
& =4 \int_{0}^{\pi / 2}\left[\frac{-1}{3}\left(4-r^{2}\right)^{\frac{3}{2}}\right]_{0}^{2 \cos \theta} d \theta=\frac{32}{3} \int_{0}^{\pi / 2}\left(1-\sin ^{3} \theta\right) d \theta \\
& =\frac{32}{3} \int_{0}^{\pi / 2}\left(1-\left(1-\cos ^{2} \theta\right) \sin \theta\right) d \theta=\frac{32}{3}\left[\theta+\cos \theta-\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi / 2}=\frac{16}{9}(3 \pi-4)
\end{aligned}
$$

3. Find the volume of the region bounded by $z=x^{2}+2 y^{2}$ and $z=12-2 x^{2}-y^{2}$.

Solution Project the intersection of the two surfaces down to the $x y$-plane (by getting rid of z in the system of equations $z=x^{2}+2 y^{2}$ and $z=12-2 x^{2}-y^{2}$), we get a region R on the $x y$-plane bounded by $x^{2}+y^{2}=4$. Use cylindrical coordinates, we have

$$
\mathrm{V}=\int_{-\pi}^{\pi} \int_{0}^{2} \int_{x^{2}+2 y^{2}}^{12-2 x^{2}-y^{2}} r d z d r d \theta
$$

$$
=\int_{-\pi}^{\pi} \int_{0}^{2} r\left(12-3 r^{2}\right) d r d \theta=\int_{-\pi}^{\pi} 12 d \theta=24 \pi
$$

4. (Use spherical coordinates) Find the volume of the region bounded by the plane $z=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution As at lateral the boundary of the cone, $\tan \phi=1, \phi \leq \frac{\pi}{4}$. Thus $-\pi \leq \theta \leq \pi$, $0 \leq \phi \leq \pi / 4$ and $0 \leq \rho \leq \rho \sin \phi$.

$$
\begin{array}{rlr}
\mathrm{V} & =\int_{-\pi}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{1}{3} \int_{-\pi}^{\pi} \int_{0}^{\pi / 4} \sec ^{3} \phi \sin \phi d \rho d \phi d \theta \\
& =\frac{1}{3} \int_{-\pi}^{\pi} \int_{0}^{\pi / 4} \sec ^{2} \phi \tan \phi d \phi d \theta \quad \text { set } u=\tan \phi \\
& =\frac{1}{3} \int_{-\pi}^{\pi} d \theta \int_{0}^{1} u d u=\frac{\pi}{3}
\end{array}
$$

5. (Use cylindrical coordinates) Find the volume of the region bounded by the plane $z=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution For each fixed θ with $-\pi \leq \theta \leq \pi$, the cross section is a triangle on $r z$-plane bounded by $r=z, r=0$ and $z=1$. Thus

$$
\begin{aligned}
\mathrm{V} & =\int_{-\pi}^{\pi} \int_{0}^{1} \int_{0}^{z} r d r d z d \theta \\
& =\int_{-\pi}^{\pi} \int_{0}^{1} \frac{z^{2}}{2} d z d \theta=\frac{2 \pi}{6}=\frac{\pi}{3}
\end{aligned}
$$

