NAME:
I.D.:

Instruction: Circle your answers and show all your work CLEARLY. Solutions with answer only and without supporting procedures will have little credit.

1. Compute the value of the triple integral $\iiint_{T} f(x, y, z) d V$, where $f(x, y, z)=x^{2}$, and T is the tetrahedron bounded by the coordinate planes and the first octant part of the plane with equation $x+y+z=1$.
Solution As the solid is in the first octant, we observe that $0 \leq x \leq 1$. For fixed x, $0 \leq y \leq 1-x$. For fixed x and $y, 0 \leq z \leq 1-x-y$. Thus the answer is

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^{2} d z d y d x=\int_{0}^{1} \int_{0}^{1-x} x^{2}(1-x-y) d y d x \\
& =\int_{0}^{1}\left[x^{2}(1-x)^{2}-\frac{x^{2}(1-x)^{2}}{2}\right] d x=\frac{1}{2} \int_{0}^{1}\left(x^{2}-2 x^{4}+x^{4}\right) d x=\frac{1}{60} .
\end{aligned}
$$

2. Compute the value of the triple integral $\iiint_{T} f(x, y, z) d V$, where $f(x, y, z)=x y z$, and T lies below the surface $z=1-x^{2}$ and above the rectangle $-1 \leq x \leq 1,0 \leq y \leq 2$ in the $z=0$ plane.

Solution The rectangle region in the $x y$-plane suggests the following integration bounds. The answer is (you may use the integration property of an odd function over a symmetric interval).

$$
\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1-x^{2}} x y z d z d y d x=\frac{1}{2} \int_{-1}^{1} x\left(1-x^{2}\right)^{2} d x \int_{0}^{2} y d y=\frac{1}{2} \int_{-1}^{1}\left(x-2 x^{3}+x^{5}\right) d x=0 .
$$

3. Compute the value of the triple integral $\iiint_{T} f(x, y, z) d V$, where $f(x, y, z)=2 y+z$, and T lies below the surface $z=4-y^{2}$ and above the rectangle $-1 \leq x \leq 1,-2 \leq y \leq 2$ in the $x y$-plane.
Solution Following the bounds given, we set up the integral as follows. (One could use the properties of odd and even functions to simplify the last step of integration for $d y$, in which case both $16 y$ and $-4 y^{3}$ disappear).

$$
\begin{aligned}
& \int_{-1}^{1} \int_{-2}^{2} \int_{0}^{4-y^{2}}(2 y+z) d z d y d x=\int_{-1}^{1} d x \int_{-2}^{2}\left(2 y\left(4-y^{2}\right)+\frac{\left(4-y^{2}\right)^{2}}{2}\right) d y \\
= & \int_{-2}^{2}\left(16+16 y-8 y^{2}-4 y^{3}+y^{4}\right) d y=2\left[16 y-\frac{8 y^{3}}{3}+\frac{y^{5}}{5}\right]_{0}^{2}=\frac{512}{15} .
\end{aligned}
$$

4. Find the volume of the solid bounded by the surfaces $y+z=4, y=4-x^{2}, y=0$ and $z=0$ by triple integration.

Solution The solid lies between $z=0$ and $z=4-y$ over a region R on the $x y$-plane bounded by $y=4-x^{2}$ and $y=0$. The bounds for R will then be $-2 \leq x \leq 2$ and $0 \leq y \leq 4-x^{2}$. Thus the volume is

$$
\begin{aligned}
V & =\int_{-2}^{2} \int_{0}^{4-x^{2}} \int_{0}^{4-y} d z d y d x=\int_{-2}^{2} \int_{0}^{4-x^{2}}(4-y) d y d x=\int_{-2}^{2}\left[4 y-\frac{y^{2}}{2}\right]_{0}^{4-x^{2}} d x \\
& =\int_{-2}^{2}\left[8-\frac{x^{4}}{2}\right] d x=\left[8 x-\frac{x^{5}}{10}\right]_{-2}^{2}=\frac{128}{5}
\end{aligned}
$$

5. Find the volume of the solid bounded by the surfaces $z=x^{2}, y+z=4, y=0$ and $z=0$ by triple integration.

Solution View the y-axis as the vertical axis. Then T lies between $y=0$ and $y=4-z$. The region R on the $x z$-plane is bounded by $z=x^{2}$ and $z=4$ (obtained by substituting $y=0$ in $y+z=4)$. Therefore, the volume is

$$
\begin{aligned}
V & =\iint_{R}\left(\int_{0}^{4-z} d y\right) d A=\int_{-2}^{2} \int_{x^{2}}^{4}(4-z) d z d x=\int_{-2}^{2}\left[4 z-\frac{z^{2}}{2}\right]_{x^{2}}^{4} d x \\
& =\int_{-2}^{2}\left(8-4 x^{2}+\frac{x^{4}}{2}\right) d x=\left[8 x-\frac{4 x^{3}}{3}+\frac{x^{5}}{10}\right]_{-2}^{2}=64\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{10}\right)=\frac{256}{15}
\end{aligned}
$$

