MATH 251 - QUIZ 2

NAME:
I.D.:

Instruction: Circle your answers and show all your work CLEARLY. Solutions with answer only and without supporting procedures will have little credit.

1. (Exercise 5 on Page 770) Given a curve with parametric equations $x=3 t \sin t, y=3 t \cos t$ and $z=2 t^{2}$, find the arc length from $t=0$ to $t=4 / 5$.
Solution Compute the derivatives to get $x^{\prime}(t)=3 \sin t+3 t \cos t, y^{\prime}(t)=3 \cos t-3 t \sin t$ and $z^{\prime}(t)=4 t$. Thus the arc length S is

$$
\begin{array}{rlr}
S & =\int_{0}^{4 / 5} \sqrt{(3 \sin t+3 t \cos t)^{2}+(3 \cos t-3 t \sin t)^{2}+(4 t)^{2}} d t \quad \text { by binomial formula } \\
& =\int_{0}^{4 / 5} \sqrt{9 \sin ^{2} t+9 t^{2} \cos ^{2} t+9 \cos ^{2} t+9 t^{2} \sin ^{2} t+16 t^{2}} d t \quad \text { apply } \sin ^{2} t+\cos ^{2} t=1 \\
& =\int_{0}^{4 / 5} \sqrt{9+25 t^{2}} d t \quad \text { set } t=\frac{3}{5} \tan \theta & \\
& =\frac{9}{5} \int_{0}^{\tan ^{-1}(4 / 3)} \sec ^{3} \theta d \theta \quad \text { integration by parts } \\
& =\left(\frac{9}{5}\right)\left(\frac{1}{2}\right)\left[\frac{\sqrt{9+25 t^{2}}}{3} \frac{5 t}{3}+\ln \left(\frac{\sqrt{9+25 t^{2}}}{3}+\frac{5 t}{3}\right)\right]_{0}^{4 / 5} \quad \text { use } \sec \theta=\frac{\sqrt{9+25 t^{2}}}{3} \text { and } \tan \theta=\frac{5 t}{3} \\
& =\frac{9}{10}\left(\frac{20}{9}+\ln 3\right)=2+\frac{9}{10} \ln 3 .
\end{array}
$$

2. Given a curve $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$, find the unit tangent vector and unit normal vector of the curve at $(1,1,1)$.
Solution (Step 1) When $t=1, \mathbf{r}(1)=(1,1,1) . \mathbf{v}=\left(1,2 t, 3 t^{2}\right)$ and $v(t)=\sqrt{1+4 t^{2}+9 t^{4}}$.
(Step 2) At $(1,1,1)$, the unit tangent vector is $\mathbf{T}(1)=(1 / \sqrt{14}, 2 / \sqrt{14}, 3 / \sqrt{14})$.
(Step 3) Note that $\mathbf{a}(t)=(0,2,6 t)$. At $t=1, \mathbf{a}(1)=(0,2,6)$, and so $a_{T}=\frac{\mathbf{a} \cdot \mathbf{v}}{v}=\frac{0+4+18}{\sqrt{14}}=\frac{22}{\sqrt{14}}$.
(Step 4) At $t=1, \mathbf{v} \times \mathbf{a}=(1,2,3) \times(0,2,6)=(12-6,-6,-2)$. Thus at $t=1$,

$$
a_{N}=\frac{|\mathbf{v} \times \mathbf{a}|}{v}=\frac{\sqrt{36+36+4}}{\sqrt{14}}=\sqrt{\frac{76}{14}} .
$$

It follows by $\mathbf{N}=\left(\mathbf{a}-a_{T} \mathbf{T}\right) / a_{N}$ that

$$
\begin{aligned}
\mathbf{N} & =\frac{\sqrt{14}}{\sqrt{76}}\left((0,2,6)-\frac{22}{\sqrt{14}}(1 / \sqrt{14}, 2 / \sqrt{14}, 3 / \sqrt{14})\right) \\
& =\frac{\sqrt{14}}{\sqrt{76}}\left((0,2,6)-\left(\frac{11}{7}, \frac{22}{7}, \frac{33}{7}\right)\right) \\
& =\frac{\sqrt{14}}{\sqrt{76}}\left(-\frac{11}{7},-\frac{8}{7}, \frac{9}{7}\right) .
\end{aligned}
$$

