EXAM 4 - Math 251

1. (10 %) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of a solid that is bounded by $z = x^2 + y^2$, x + y = 1, x = 0, y = 0 and z = 0.

Solution: The top surface is $z = x^2 + y^2$ and the bottom is z = 0, over the region R on the xy-plane bounded by x + y = 1, x = 0, y = 0. Therefore, using rectangular coordinates, the integral is

$$Vol = \int_0^1 \int_0^{1-x} \int_0^{x^2+y^2} dz dy dx$$

2. (10 %) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of a solid that lies inside both $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$.

Solution: Let us compute only the upper half solid. The top surface is $z = \sqrt{4 - (x^2 + y^2)}$ and the bottom is z = 0, over the region R on the xy-plane bounded by $x^2 + y^2 = 1$. Therefore, using cylindrical coordinates, the integral is

$$Vol = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} r dz dr d\theta.$$

3. (10 %) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of of a solid that lies inside both $x^2 + y^2 + z^2 = 16$ and $z = \sqrt{x^2 + y^2}$.

Solution: The top surface is $z = \sqrt{16 - (x^2 + y^2)}$ and the bottom is $z = \sqrt{x^2 + y^2}$. Therefore, it is more convenient to use spherical coordinates. The largest ϕ is when $z = \sqrt{x^2 + y^2} = r$, which means $\tan \phi = \frac{r}{z} = 1$, and so $\phi = \pi/4$. In this case $-\pi \le \theta \le \pi$, $0 \le \phi \le \pi/4$ and $0 \le \rho \le 4$. Therefore, the integral is

$$\operatorname{Vol} = \int_{-\pi}^{\pi} \int_{0}^{\pi/4} \int_{0}^{4} \rho^{2} \sin \phi dr hod\phi d\theta.$$

One can also use cylindrical coordinates. For each fixed θ in the interval $[-\pi, \pi]$, the cross section can be viewed as a region R in the rz-plane, where R is bounded by r = 0 on the left, z = r below and $z = \sqrt{16 - r^2}$ above. The maximum value of r can be found by solving z = r and $z = \sqrt{16 - r^2}$ for r. As $r^2 = z^2 = 16 - r^2$, we have $r = \sqrt{8}$ (note that r > 0 and so we throw away $r = -\sqrt{8}$ in the solution). Therefore,

$$\operatorname{Vol} = \int_{-\pi}^{\pi} \int_{0}^{\sqrt{8}} \int_{r}^{\sqrt{16-r^2}} r dz dr d\theta.$$

4. (10 %) Compute the following integral by using the spherical coordinates.

$$I = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} z^2 \sqrt{x^2 + y^2 + z^2} dz dy dx.$$

Solution: The upper surface of the integration solid is $z = \sqrt{4 - x^2 - y^2}$ and the bottom is z = 0. The projection of this solid on the xy-plane is the region enclosed by $x^2 + y^2 = 4$. In spherical coordinates, for each fixed θ_0 in $[-\pi, \pi]$, the cross section (the intersection of the plane $\theta = \theta_0$ and the solid) will be a quarter of the circle $\rho^2 = 4$ (with θ being a constant). Therefore, $0 \le \rho \le 2$ and $0 \le \phi \le \pi/2$. Thus the integral is

$$I = \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} dz dy dx$$

$$= \int_{-\pi}^{\pi} \int_{0}^{\pi/2} \int_{0}^{2} \rho^{5} \cos^{2} \phi \sin \phi dr hod \phi d\theta$$

$$= \int_{-\pi}^{\pi} \int_{0}^{\pi/2} \frac{32}{3} \cos^{2} \phi \sin \phi d\phi d\theta$$

$$= \frac{32}{3} \int_{-\pi}^{\pi} \left[-\frac{\cos^{3} \phi}{3} \right]_{0}^{\pi/2} d\theta = \frac{64\pi}{9}.$$

5. (10 %) Given a vector field $\mathbf{F} = (3x, -2y, -4z)$, compute div \mathbf{F} and curl \mathbf{F} .

Solution:

div
$$\mathbf{F}$$
 = 3 + (-2) + (-4) = -3.
curl \mathbf{F} = (0 - 0, 0 - 0, 0 - 0) = (0, 0, 0)

6. (15 %) Given a function f(x, y) = xy, and a curve $C : x = 3t, y = t^4$ with $0 \le t \le 1$, find $\int_C f ds$ and $\int_C f dx$.

Solution: x' = 3 and $y' = 4t^3$. Thus $ds = \sqrt{9 + 16t^6}dt$.

$$\int_C f ds = \int_0^1 3t^5 \sqrt{9 + 16t^6} dt \qquad \text{set } u = 9 + 16t^6$$
$$= \frac{1}{32} \int_9^{25} u^{1/2} du = \frac{1}{32} \left[\frac{2u^{3/2}}{3} \right]_9^{25} = \frac{49}{24}$$
$$\int_C f dx = \int_0^1 9t^5 dt = \frac{9}{6} = \frac{3}{2}.$$

7. (12 %) Given a vector field $\mathbf{F} = (2xy^2 + 3x^2, 2x^2y + 4y^3)$, do the following. (7A) Verify that this is a conservative field. (7B) Find a potential of \mathbf{F} .

Solution: (7A) Here $P = 2xy^2 + 3x^2$ and $Q = 2x^2y + 4y^3$. As $P_y = 4xy = Q_x$, this is a conservative field.

(7B) Compute $f(x, y) = \int P dx = \int (2xy^2 + 3x^2) dx = x^2y^2 + x^3 + c(y)$. Then $2x^2y + 4y^3 = Q = f_y = 2x^2y + c'(y)$, and so $c'(y) = 4y^3$. Therefore $c(y) = \int 4y^3 dy = y^4$ and so $f(x, y) = x^2y^2 + x^3 + y^4$.

8. (12 %) Do both of the following.

(8A) Verify that $\mathbf{F} = (\cos y, -x \sin y)$ is a conservative field.

(8B) Compute the integral $\int_C \cos y dx - x \sin y dy$ for a curve C from (0,0) to $(2,\pi)$.

Solution: (8A) Here $P = \cos y$ and $Q = -x \sin y$. As $P_y = -\sin y = Q_x$, this is a conservative field.

(8B) One solution is to find a potential function $f = x \cos y$, using a method similar to (7B). Therefore,

$$\int_C \cos y dx - x \sin y dy = f(2,\pi) - (0,0) = 2(-1) - 0 = -2.$$

Another solution is to choose a specific path such as $C_1 : 0 \le x \le 2$ with y = 0 followed by $C_2 : 0 \le y \le \pi$ with x = 2. In this case, dy = 0 in C_1 and dx = 0 in C_2 . As $\cos 0 = 1$ and $\int \sin y \, dy = -\cos y + C$, we have

$$\int_C \cos y \, dx - x \sin y \, dy = \int_{C_1} \cos 0 \, dx - \int_{C_2} 2 \sin y \, dy = \int_0^2 dx - 2 \int_0^\pi \sin y \, dy = -2.$$

9. (10 %) Find a potential function for the conservative field $\mathbf{F} = (yz, xz + y, xy + 1)$.

Solution: Let C denote the straight line from (0,0,0) to (x_0, y_0, z_0) . Then $C : x = x_0 t, y = y_0 t, z = z_0 t$ with $0 \le t \le 1$. Let f be a potential function of **F** such that f(0,0,0) = 0. Then

$$f(x_0, y_0, z_0) = \int_C \mathbf{F} \cdot \mathbf{T} ds = \int_0^1 (3x_0 y_0 z_0 t^2 + y_0^2 t + z_0) dt = x_0 y_0 z_0 + \frac{y_0^2}{2} + z_0.$$

Thus $f(x, y, z) = xyz + \frac{y^2}{2} + z$.