EXAM 4 - Math 251

1. (10%) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of of a solid that is bounded by $z=x^{2}+y^{2}, x+y=$ $1, x=0, y=0$ and $z=0$.

Solution: The top surface is $z=x^{2}+y^{2}$ and the bottom is $z=0$, over the region R on the $x y$-plane bounded by $x+y=1, x=0, y=0$. Therefore, using rectangular coordinates, the integral is

$$
\mathrm{Vol}=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x^{2}+y^{2}} d z d y d x
$$

2. (10%) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of of a solid that lies inside both $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}=1$.

Solution: Let us compute only the upper half solid. The top surface is $z=\sqrt{4-\left(x^{2}+y^{2}\right)}$ and the bottom is $z=0$, over the region R on the $x y$-plane bounded by $x^{2}+y^{2}=1$. Therefore, using cylindrical coordinates, the integral is

$$
\mathrm{Vol}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} r d z d r d \theta
$$

3. (10 \%) Find the integral (clearly indicates what coordinate system is used, and the bounds of the integration) that computes the volume of of a solid that lies inside both $x^{2}+y^{2}+z^{2}=16$ and $z=\sqrt{x^{2}+y^{2}}$.
Solution: The top surface is $z=\sqrt{16-\left(x^{2}+y^{2}\right)}$ and the bottom is $z=\sqrt{x^{2}+y^{2}}$. Therefore, it is more convenient to use spherical coordinates. The largest ϕ is when $z=\sqrt{x^{2}+y^{2}}=r$, which means $\tan \phi=\frac{r}{z}=1$, and so $\phi=\pi / 4$. In this case $-\pi \leq \theta \leq \pi, 0 \leq \phi \leq \pi / 4$ and $0 \leq \rho \leq 4$. Therefore, the integral is

$$
\mathrm{Vol}=\int_{-\pi}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{4} \rho^{2} \sin \phi d r h o d \phi d \theta
$$

One can also use cylindrical coordinates. For each fixed θ in the interval $[-\pi, \pi]$, the cross section can be viewed as a region R in the $r z$-plane, where R is bounded by $r=0$ on the left, $z=r$ below and $z=\sqrt{16-r^{2}}$ above. The maximum value of r can be found by solving $z=r$ and $z=\sqrt{16-r^{2}}$ for r. As $r^{2}=z^{2}=16-r^{2}$, we have $r=\sqrt{8}$ (note that $r>0$ and so we throw away $r=-\sqrt{8}$ in the solution). Therefore,

$$
\mathrm{Vol}=\int_{-\pi}^{\pi} \int_{0}^{\sqrt{8}} \int_{r}^{\sqrt{16-r^{2}}} r d z d r d \theta
$$

4. (10%) Compute the following integral by using the spherical coordinates.

$$
I=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

Solution: The upper surface of the integration solid is $z=\sqrt{4-x^{2}-y^{2}}$ and the bottom is $z=0$. The projection of this solid on the $x y$-plane is the region enclosed by $x^{2}+y^{2}=4$. In spherical coordinates, for each fixed θ_{0} in $[-\pi, \pi]$, the cross section (the intersection of the plane $\theta=\theta_{0}$ and the solid) will be a quarter of the circle $\rho^{2}=4$ (with θ being a constant). Therefore, $0 \leq \rho \leq 2$ and $0 \leq \phi \leq \pi / 2$. Thus the integral is

$$
\begin{aligned}
I & =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \\
& =\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{5} \cos ^{2} \phi \sin \phi d r h o d \phi d \theta \\
& =\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} \frac{32}{3} \cos ^{2} \phi \sin \phi d \phi d \theta \\
& =\frac{32}{3} \int_{-\pi}^{\pi}\left[-\frac{\cos ^{3} \phi}{3}\right]_{0}^{\pi / 2} d \theta=\frac{64 \pi}{9}
\end{aligned}
$$

5. (10%) Given a vector field $\mathbf{F}=(3 x,-2 y,-4 z)$, compute $\operatorname{div} \mathbf{F}$ and curlF.

Solution:

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =3+(-2)+(-4)=-3 \\
\operatorname{cur} \mathbf{F} & =(0-0,0-0,0-0)=(0,0,0)
\end{aligned}
$$

6. (15%) Given a function $f(x, y)=x y$, and a curve $C: x=3 t, y=t^{4}$ with $0 \leq t \leq 1$, find $\int_{C} f d s$ and $\int_{C} f d x$.
Solution: $x^{\prime}=3$ and $y^{\prime}=4 t^{3}$. Thus $d s=\sqrt{9+16 t^{6}} d t$.

$$
\begin{aligned}
\int_{C} f d s & =\int_{0}^{1} 3 t^{5} \sqrt{9+16 t^{6}} d t \quad \text { set } u=9+16 t^{6} \\
& =\frac{1}{32} \int_{9}^{25} u^{1 / 2} d u=\frac{1}{32}\left[\frac{2 u^{3 / 2}}{3}\right]_{9}^{25}=\frac{49}{24} \\
\int_{C} f d x & =\int_{0}^{1} 9 t^{5} d t=\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

7. (12%) Given a vector field $\mathbf{F}=\left(2 x y^{2}+3 x^{2}, 2 x^{2} y+4 y^{3}\right)$, do the following.
(7A) Verify that this is a conservative field.
(7B) Find a potential of \mathbf{F}.
Solution: (7A) Here $P=2 x y^{2}+3 x^{2}$ and $Q=2 x^{2} y+4 y^{3}$. As $P_{y}=4 x y=Q_{x}$, this is a conservative field.
(7B) Compute $f(x, y)=\int P d x=\int\left(2 x y^{2}+3 x^{2}\right) d x=x^{2} y^{2}+x^{3}+c(y)$. Then $2 x^{2} y+4 y^{3}=Q=$ $f_{y}=2 x^{2} y+c^{\prime}(y)$, and so $c^{\prime}(y)=4 y^{3}$. Therefore $c(y)=\int 4 y^{3} d y=y^{4}$ and so $f(x, y)=x^{2} y^{2}+x^{3}+y^{4}$.
8. (12%) Do both of the following.
(8A) Verify that $\mathbf{F}=(\cos y,-x \sin y)$ is a conservative field.
(8B) Compute the integral $\int_{C} \cos y d x-x \sin y d y$ for a curve C from $(0,0)$ to $(2, \pi)$.
Solution: (8A) Here $P=\cos y$ and $Q=-x \sin y$. As $P_{y}=-\sin y=Q_{x}$, this is a conservative field.
(8B) One solution is to find a potential function $f=x \cos y$, using a method similar to (7B). Therefore,

$$
\int_{C} \cos y d x-x \sin y d y=f(2, \pi)-(0,0)=2(-1)-0=-2
$$

Another solution is to choose a specific path such as $C_{1}: 0 \leq x \leq 2$ with $y=0$ followed by $C_{2}: 0 \leq y \leq \pi$ with $x=2$. In this case, $d y=0$ in C_{1} and $d x=0$ in C_{2}. As $\cos 0=1$ and $\int \sin y d y=-\cos y+C$, we have

$$
\int_{C} \cos y d x-x \sin y d y=\int_{C_{1}} \cos 0 d x-\int_{C_{2}} 2 \sin y d y=\int_{0}^{2} d x-2 \int_{0}^{\pi} \sin y d y=-2
$$

9. (10%) Find a potential function for the conservative field $\mathbf{F}=(y z, x z+y, x y+1)$.

Solution: Let C denote the straight line from $(0,0,0)$ to $\left(x_{0}, y_{0}, z_{0}\right)$. Then $C: x=x_{0} t, y=$ $y_{0} t, z=z_{0} t$ with $0 \leq t \leq 1$. Let f be a potential function of \mathbf{F} such that $f(0,0,0)=0$. Then

$$
f\left(x_{0}, y_{0}, z_{0}\right)=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{0}^{1}\left(3 x_{0} y_{0} z_{0} t^{2}+y_{0}^{2} t+z_{0}\right) d t=x_{0} y_{0} z_{0}+\frac{y_{0}^{2}}{2}+z_{0}
$$

Thus $f(x, y, z)=x y z+\frac{y^{2}}{2}+z$.

