EXAM 3 - Math 251

1. (20%) Let $f(x, y, z)=3 x^{2}+y^{2}+4 z^{2}$ and let $P(1,5,-2)$ be a point.
(1A) Compute the gradient vector ∇f at P.
(1B) Compute the directional derivative of $f(x, y, z)$ at P along the direction $\mathbf{v}=(1,1,2)$.
(1C) Find an equation of the plane tangent to the surface $3 x^{2}+y^{2}+4 z^{2}=0$ at the point P.
Solution Compute $\nabla f=(6 x, 2 y, 8 z)$. (1A) $\nabla f(P)=(6,10,-16)$.
(1B) Compute $|\mathbf{v}|=\sqrt{1+1+4}=\sqrt{6}$. Thus

$$
D_{\mathbf{v}} f(P)=\frac{(6,8,-16) \cdot(1,1,2)}{\sqrt{6}}=\frac{6+10-32}{\sqrt{6}}=\frac{-16}{\sqrt{6}} .
$$

(1C) Use $\nabla f(P)=(6,10,-16)$ as a normal vector. The answer is $6(x-1)+10(y-5)-16(z+2)=$ 0.
2. (10%) Find and classify the critical points of the function $f(x, y)=x^{3}+6 x y+3 y^{2}$.

Solution $f_{x}=3 x^{2}+6 y$ and $f_{y}=6 x+6 y$. From $f_{y}=0$, we have $y=-x$. Substitute $y=-x$ into $f_{x}=0$ to get $x^{2}-2 x=0$, and so $x=0$ or $x=2$. Accordingly, $(0,0)$ and $(2,-2)$ are the only two critical points.
$f_{x x}=6 x, f_{y y}=6$ and $f_{x y}=6$. At $(0,0,0), \Delta<0$ and so this is a saddle point. At $(2,-2,-4), \Delta=72-36>0$ and $f_{x x}=12>0$, and so this is a local minimum.
3. (10 \%) Compute the double integral

$$
\int_{0}^{1} \int_{y}^{1}(x+y) d x d y
$$

Solution

$$
\int_{0}^{1} \int_{y}^{1}(x+y) d x d y=\int_{0}^{1}\left[\frac{x^{2}}{2}+y x\right]_{y}^{1} d y=\int_{0}^{1}\left(\frac{1}{2}+y-\frac{3}{2} y^{2}\right) d y=\left[\frac{y}{2}+\frac{y^{2}}{2}-\frac{y^{3}}{2}\right]_{0}^{1}=\frac{1}{2}
$$

4. (6% for setting up the integral with correct bounds and 6% for accuracy) Compute the double integral of the function $f(x, y)=x^{2}$ over the region bounded by the parabola $y=2-x^{2}$ and the line $y=-7$.

Solution Solve $y=2-x^{2}$ and $y=2-x^{2}$ for x to get $x^{3}=9$, and so the (vertically simple) x-bounds are $a=-3$ and $b=3$. Accordingly, $-7 \leq y \leq 2-x^{2}$, and so the integral is

$$
\int_{-3}^{3} \int_{-7}^{2-x^{2}} x^{2} d y d x=\int_{-3}^{3}\left[\left(2 x^{2}-x^{4}\right)-\left(-7 x^{2}\right)\right] d x=\int_{-3}^{3}\left(9 x^{2}-x^{4}\right) d x=\left[3 x^{3}-\frac{x^{5}}{5}\right]_{-3}^{3}
$$

$$
=81\left(1-\frac{3}{5}\right)-81\left(-1-\frac{-3}{5}\right)=\frac{324}{5}
$$

5. (6% for setting up the integral with correct bounds and 7% for accuracy) Find the volume of the solid that lies below $z=3 x+2 y$ and above the region R on the $z=0$ plane, where R is bounded by $x=0, y=0$ and $x+2 y=4$.

Solution View the region as a horizontally simple one. Then $0 \leq y \leq 2$ and $0 \leq x \leq 4-2 y$. The volume is

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{4-2 y}(3 x+2 y) d x d y & =\int_{0}^{2}\left[\frac{3 x^{2}}{2}+2 x y\right]_{0}^{4-2 y} d y=\int_{0}^{2}\left(\frac{3\left(16-16 y+4 y^{2}\right)}{2}+2 y(4-2 y)\right) d y \\
& =\left[24 y-8 y^{2}+\frac{2 y^{3}}{3}\right]_{0}^{2}=48-32+\frac{16}{3}=\frac{64}{3}
\end{aligned}
$$

For the vertically simple view, we have

$$
\begin{aligned}
\int_{0}^{4} \int_{0}^{2-\frac{x}{2}}(3 x+2 y) d y d x & =\int_{0}^{4}\left[3 x\left(2-\frac{x}{2}\right)+\left(2-\frac{x}{2}\right)^{2}\right] d x=\int_{0}^{4}\left[6 x-\frac{3 x^{2}}{2}+4-2 x+\frac{x^{2}}{4}\right] d x \\
& =\int_{0}^{4}\left[4+4 x-\frac{5 x^{2}}{4}\right] d x=\left[4 x+2 x^{2}-\frac{5 x^{3}}{12}\right]_{0}^{4}=\frac{256}{12}=\frac{64}{3}
\end{aligned}
$$

6. (6 \% for setting up the integral with correct bounds and 6% for accuracy) Find the volume of the solid that is under $z=x y$ and above the triangle R on the $z=0$ plane, with vertices $(2,1),(4,1)$ and $(3,0)$.

Solution Compute to find that an equation of the line connecting $(2,1)$ and $(3,0)$ is $x=3-y$ and an equation of the line connecting $(4,1)$ and $(3,0)$ is $x=3+y$. With the horizontal simple view, the volume is

$$
\int_{0}^{1} \int_{3-y}^{3+y} x y d x d y=\int_{0}^{1}\left[\frac{y x^{2}}{2}\right]_{3-y}^{3+y} d y=\int_{0}^{1} 6 y^{2} d y=2
$$

Another way of computing this is

$$
\begin{aligned}
& \int_{2}^{3} \int_{3-x}^{1} x y d y d x+\int_{3}^{4} \int_{x-3}^{1} x y d y d x \\
= & \int_{2}^{3}\left[\frac{x}{2}\left(1-(3-x)^{2}\right)\right] d x+\int_{3}^{4}\left[\frac{x}{2}\left(1-(x-3)^{2}\right)\right] d x \\
= & \int_{2}^{4} \frac{x}{2}\left(6 x-8-x^{2}\right) d x=\left[x^{3}-2 x^{2}-\frac{x^{4}}{8}\right]_{2}^{4} \\
= & 64-32-32-(8-8-2)=2 .
\end{aligned}
$$

