SOLUTIONS TO EXAM 1 (Math 251)

1. Let $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$. Compute each of the following.
$(1 \mathrm{~A})(3 \%) 2 \mathbf{a}-3 \mathbf{b}=(2(2,3,-4)-3(1,-1,2)=(4,6,-8)-(3,-3,6)=(1,9,-14)$.
$(1 \mathrm{~B})(3 \%)(2 \mathbf{a}) \cdot(3 \mathbf{b})=(4,6,-8) \cdot(3,-3,6)=(4)(3)+(6)(-3)+(-8)(6)=12-18-48=-54$.
$(1 \mathrm{C})(3 \%)|2 \mathbf{a}-3 \mathbf{b}|=|(1,12,-14)|=\sqrt{1^{2}+9^{2}+(-14)^{2}}=\sqrt{1+81+196}=\sqrt{278}$.
(1D) $(3 \%) \mathbf{a} \times \mathbf{b}=(6-4,-(4-(-4)),-2-3)=(2,-8,-5)$.
(1E) (3%) Find two unit vectors perpendicular to both \mathbf{a} and \mathbf{b}.
First compute $|\mathbf{a} \times \mathbf{b}|=\sqrt{2^{2}+(-8)^{2}+(-5)^{2}}=\sqrt{4+64+25}=\sqrt{93}$. Thus the following vectors are the desired ones:

$$
\mathbf{u}_{1}=\left(\frac{2}{\sqrt{93}}, \frac{-8}{\sqrt{93}}, \frac{-5}{\sqrt{93}}\right) \text { and } \mathbf{u}_{2}=\left(\frac{-2}{\sqrt{93}}, \frac{8}{\sqrt{93}}, \frac{5}{\sqrt{93}}\right)
$$

(1F) (3 \%) Find $C_{o m p} \mathbf{a}$ b.

$$
\operatorname{Comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}=\frac{2-3-8}{\sqrt{4+9+16}}=\frac{-9}{\sqrt{29}}
$$

(1G) (3%) Determine the value of x so that the vector $\mathbf{u}=(1,1, x)$ is perpendicular to \mathbf{a}. This amounts to find x such that $\mathbf{u} \cdot \mathbf{a}=0$. Thus from $\mathbf{u} \cdot \mathbf{a}=2+3-4 x=0$, we have $x=\frac{5}{4}$.
$(1 \mathrm{H})(3 \%)$ Let $\mathbf{c}=(1,1,1)$. Compute $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.
One can use the determinant of a 3 by 3 array as indicated in the text book. A better solution here is to use your correct answer in (1D).

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=(2,-8,-5) \cdot(1,1,1)=2-8-5=-11
$$

2. (10%) Write an equation of the sphere with the line segment joining $(1,2,1)$ and $(3,2,-3)$ as a diameter.

Solution The center of the sphere is $x_{0}=\frac{1+3}{2}=2, y_{0}=\frac{2+2}{2}=2$ and $z_{0}=\frac{-3+1}{2}=-1$. The square of radius is the square of the distance from the point $(1,2,1)$ to the center $(2,2,-1)$, which is equal to $(2-1)^{2}+(2-2)^{2}+(-1-1)^{2}=5$. Thus the answer is

$$
(x-2)^{2}+(y-2)^{2}+(z+1)^{2}=5
$$

3. (10%) Find the area of the triangle whose vertices are $P(1,1,1), Q(2,3,4)$ and $R(3,4,5)$.

Solution Set $\mathbf{a}=\overline{P Q}=(1,2,3), \mathbf{b}=\overline{Q R}=(1,1,1)$. Compute $\mathbf{a} \times \mathbf{b}=(3-2,-(3-1), 2-1)=$ $(1,-2,1)$. Thus the answer is

$$
\text { area }=\frac{1}{2}|\mathbf{a} \times \mathbf{b}|=\frac{\sqrt{1+4+1}}{2}=\frac{\sqrt{6}}{2} .
$$

4. (10%) Given four points $A(0,0,0), B(1,1,0), C(1,0,1)$ and $D(0,1,1)$ in the space, find the volume of the parallelepiped with $\overline{A B}, \overline{A C}$ and $\overline{A D}$ as three adjacent edges.

Solution Let $\mathbf{a}=\overline{A B}=(1,1,0), \mathbf{b}=\overline{A C}=(1,0,1)$ and $\mathbf{c}=\overline{A D}=(0,1,1)$. Compute the mix product

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=0-1-1=-2
$$

Thus the answer is $|-2|=2$.
5. (16 \%) Write an equation of the plane \mathcal{P} through the point $P(1,1,1)$ and parallel to the plane $3 x+4 y=z+10$; also write the equations (both in parametric form and in symmetric form) of the line L that passes through $P(1,1,1)$ and is perpendicular to the plane \mathcal{P}.

Solution Note that a normal vector of the plane $3 x+4 y=z+10$ is $\mathbf{n}=(3,4,-1)$. As the two planes are parallel, \mathbf{n} is perpendicular to both of them and so \mathbf{n} can serve as a normal vector of \mathcal{P}. Noting also that $P(1,1,1)$ is a point on the plane, we obtain an equation of \mathcal{P} as

$$
3(x-1)+4(y-1)-(z-1)=0
$$

Now observe that L is parallel to \mathbf{n}, and so the equations of L are

$$
\left\{\begin{array}{l}
x=1+3 t \\
y=1+4 t \quad \text { and } \frac{x-1}{3}=\frac{y-1}{4}=\frac{z-1}{-1} \\
z=1-t
\end{array}\right.
$$

6. (10%) Find an equation of a plane \mathcal{P} that passes through the point $O(0,0,0)$ and contains the line of intersection of the planes $x-y+z=1$ and $x+y-z=1$.

Solution We need first to find the intersection line L. Note that $\mathbf{n}_{1}=(1,-1,1)$ and $\mathbf{n}_{2}=$ $(1,1,-1)$ are normal vectors of the two planes $x-y+z=1$ and $x+y-z=1$, respectively, the line L is parallel to the vector $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=(1-1,-(-1-1), 1-(-1))=(0,2,2)$. Solve the system of equations

$$
\left\{\begin{array}{l}
x-y+z=1 \\
x+y-z=1
\end{array}\right.
$$

by setting $z=0$, we can find that $P(1,0,0)$ is a point on L. Thus the equations of L is $x=1, y=2 t, z=2 t$.

Note that $P(1,0,0)$ is also a point on the plane \mathcal{P}. Let $\mathbf{a}=\overline{O P}=(1,0,0)$. Then both \mathbf{a} and \mathbf{v} are parallel to \mathcal{P}. Thus a normal vector of \mathcal{P} can be $\mathbf{n}^{\prime}=\mathbf{a} \times \mathbf{n}=(0,-2,2)$. Hence the equation of the plane \mathcal{P} is

$$
-2(y-0)+2(z-0)=0, \text { or simply } y=z
$$

7. (10 \%) Given the position vector $\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}-4 t \mathbf{k}$, find the velocity and acceleration vectors, and the speed at time t.

Solution

$$
\begin{aligned}
\text { velocity } & =(-3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}-4 \mathbf{k} \\
\text { acceleration } & =(-3 \cos t) \mathbf{i}-(3 \sin t) \mathbf{j} \\
\text { speed } & =\sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}+4^{2}}=\sqrt{25}=5
\end{aligned}
$$

8. (10%) Given the acceleration vector $\mathbf{a}(t)=(9 \sin 3 t) \mathbf{i}+(9 \cos 3 t) \mathbf{j}+4 \mathbf{k}$, initial velocity $\mathbf{v}_{0}=\mathbf{v}(0)=2 \mathbf{i}-7 \mathbf{j}$, and initial position $\mathbf{r}_{0}=\mathbf{r}(0)=3 \mathbf{i}+4 \mathbf{j}$, find the position vector $\mathbf{r}(t)$ at time t.

Solution We first find the velocity
$\mathbf{v}(t)=\int_{0}^{t} \mathbf{a}(t) d t+\mathbf{v}_{0}=\left(\int_{0}^{t} 9 \sin 3 t d t+2, \int_{0}^{t} 9 \cos 3 t d t-7, \int_{0}^{t} 4 d t\right)=(-3 \cos 3 t+2,3 \sin 3 t-7,4 t)$.
Then we find the position vector

$$
\begin{aligned}
\mathbf{r}(t) & =\int_{0}^{t} \mathbf{v}(t) d t+\mathbf{r}_{0}=\left(\int_{0}^{t}(-3 \cos 3 t+2) d t+3, \int_{0}^{t}(3 \sin 3 t-7) d t+4, \int_{0}^{t} 4 t d t\right) \\
& =\left(-\sin 3 t+2 t+3,-\cos 3 t-7 t+4,2 t^{2}\right)
\end{aligned}
$$

