Review for Chapter 17

1. A vector field is a vector function $\mathbf{F}=<P(x, y, z), Q(x, y, z), R(x, y, z)>$ or $\mathbf{F}=<$ $P(x, y), Q(x, y)>$.
2. The gradiant operator $\nabla=<\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}>$ is a linear operator.
3. $\operatorname{div} \mathbf{F}=\nabla \bullet \mathbf{F}$.
4. $\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}$.
5. Line integrals: If C is a curve with parametric equations $<x(t), y(t), z(t)>$ with $a \leq t \leq b$, then

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t . \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t . \\
& \int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t . \\
& \int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t .
\end{aligned}
$$

6. Convervative fields: A vector field $\mathbf{F}=<P, Q\rangle$ is conservative if and only if $P_{y}=Q_{x}$. In this case, one can find its potential function f such that $\nabla f=\mathbf{F}$ by the following steps: Find $f(x, y)=\int P d x+\phi(y)$.
(2) Set $Q=f_{y}$ to get a differential equation of $\phi^{\prime}(y)$.
(3) Solve the differential equation to find $\phi(y)$ and thereby getting f.
7. Important fact: If $\mathbf{F}=<P, Q, R>$ is a conservative field, and if \mathbf{T} is the unit tangent vector of the curve C, then $\int_{C} \mathbf{F} \bullet \mathbf{T} d s$ is independent of path. (Therefore, you can make use of it to simplify the integral).
8. Green's Theorem: Let C be the closed curve bounding the region R and suppose that P, Q are both continuous and have continuous first order of derivatives, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

