1. A vector field is a vector function ${\bf F} = < P(x,y,z), Q(x,y,z), R(x,y,z) >$ or ${\bf F} = < P(x,y), Q(x,y) >.$

2. The gradiant operator $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle$ is a linear operator.

- 3. div $\mathbf{F} = \nabla \bullet \mathbf{F}$.
- 4. curl $\mathbf{F} = \nabla \times \mathbf{F}$.

5. Line integrals: If C is a curve with parametric equations $\langle x(t), y(t), z(t) \rangle$ with $a \leq t \leq b$, then

$$\begin{split} \int_{C} f(x, y, z) dx &= \int_{a}^{b} f(x(t), y(t), z(t)) x'(t) dt. \\ \int_{C} f(x, y, z) dy &= \int_{a}^{b} f(x(t), y(t), z(t)) y'(t) dt. \\ \int_{C} f(x, y, z) dz &= \int_{a}^{b} f(x(t), y(t), z(t)) z'(t) dt. \\ \end{split}$$

6. Convervative fields: A vector field $\mathbf{F} = \langle P, Q \rangle$ is conservative if and only if $P_y = Q_x$. In this case, one can find its potential function f such that $\nabla f = \mathbf{F}$ by the following steps: (1) Find $f(x, y) = \int P dx + \phi(y)$.

- (2) Set $Q = f_y$ to get a differential equation of $\phi'(y)$.
- (3) Solve the differential equation to find $\phi(y)$ and thereby getting f.

7. Important fact: If $\mathbf{F} = \langle P, Q, R \rangle$ is a conservative field, and if \mathbf{T} is the unit tangent vector of the curve C, then $\int_C \mathbf{F} \bullet \mathbf{T} ds$ is independent of path. (Therefore, you can make use of it to simplify the integral).

8. Green's Theorem: Let C be the closed curve bounding the region R and suppose that P, Q are both continuous and have continuous first order of derivatives, then

$$\oint_C Pdx + Qdy = \int \int_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA.$$