Review for Exam 3

1. How to find tangent planes at a point $P(a, b, c)$? (For a surface with equation $z=f(x, y)$, use normal vector $\vec{n}(a, b)=<f_{x}(a, b), f_{y}(a, b),-1>$. For surface with equation $F(x, y, z)=0$, the gradient $\nabla F(a, b, c)$ is a normal.
2. How to classify the critical points (if they are local extrema and what kind)? (Use $\left.\Delta(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}.\right)$
3. Differentials and its applications.

$$
d f(x, y, z)=\nabla f(x, y, z) \bullet<d x, d y, d z>
$$

One can use $d f$ as an approximation to $f(x+d x, y+d y, z+d z)-f(x, y, z)$.
4. Chain rules: (Go check them on pages 736 and 739).
5. Implicit partial differentiations. An equation $F(x, y, z)=$ constant, defines one variable (z, say) as a function of the other variables (x, y, say). Then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

6. The gradient and the directional derivatives:

$$
\nabla f(x, y, z)=<f_{x}, f_{y}, f_{z}>\text { and } D_{\vec{n}} f(x, y, z)=\nabla f(x, y, z) \bullet \vec{n}, \text { if }|\vec{n}|=1 .
$$

7. Evaluation of double integrals: (x, y coordinates)

$$
\begin{aligned}
& \iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x, \text { if } R \text { is } a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x) . \\
& \iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d y d x, \text { if } R \text { is } c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y) .
\end{aligned}
$$

When you can evaluate the integral by either way, you may want to choose a simpler way.
8. Evaluation of double integrals: (Polar coordinates)

$$
\begin{aligned}
& \iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(r)}^{g_{2}(r)} f(r \cos \theta, r \sin \theta) r d \theta d r, \text { if } R \text { is } a \leq r \leq b, g_{1}(r) \leq \theta \leq g_{2}(r) . \\
& \iint_{R} f(x, y) d A=\int_{a}^{b} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta, \text { if } R \text { is } a \leq \theta \leq b, h_{1}(\theta) \leq r \leq h_{2}(\theta) .
\end{aligned}
$$

A useful fact: $d A=r d r d \theta=d x d y$.
9. Some applications of double integrals.

9a. Area of region R is $\iint_{R} d A$.
9b. The volume beween $z=f(x, y)$ and $z=g(x, y)$ when (x, y) are in R is $\iint_{R}(f(x, y)-$ $g(x, y)) d A$.

