INSTRUCTOR:	OFFICE:
PHONE: EMAIL: OFFICE Hours:	PREREQUISITES: Two units of algebra, one unit of geometry, and satisfactory performance on departmental placement examination or successful completion of the pre-college algebra workshop or its equivalent.
TEXT: Sullivan: College Algebra and Trigonometry: Enhanced with Graphing Utilities, 4th edition. Upper Saddle River, NJ, Prentice -Hall.	LAB MANUAL: Interactive Computer Laboratories for College Algebra: Pyzdrowski, available through WVU Bookstore STUDY GUIDE: Butler, available through WVU Bookstore
FINAL: Monday, December 8, 2008 * All Final Exams for this class will be given on Monday, December 8 in 213/215 Armstrong Hall. Students will sign up for final exam times during the last regular test. The assigned times will then be posted on eCampus during the last week of classes. Either a scientific or graphing calculator is required for the course. Only those calculators permitted for use on the ACT test are permitted. Please see your instructor if you have questions.	Your grades are determined by your instructor. All course and grade questions should be first directed to your instructor. If for some reason, you or your instructor feel that it is necessary, you may wish to schedule an appointment with the M126 Course Coordinator to discuss this course. Course Coordinator: Dr. Laura J. Pyzdrowski 411-B Armstrong Hall 304.293.2011
Students must register for both lecture and one attached laboratory. 87045 LEC 001 WF 3 0830-0920 458 BUE-D Cole 87046 LAB 002 M 0930-1020 215 ARM-D 87047 LAB 003 M 0830-0920 215 ARM-D 87048 LAB 004 M 1230-1320 215 ARM-D 87049 LEC 005 WF 1130-1220 458 BUE-D Waibogha 87050 LAB 006 M 1030-1120 215 ARM-D 87051 LAB 007 M 1130-1220 215 ARM-D 87052 LAB 008 M 1230-1320 215 ARM-D 87053 LEC 009 WF 3 1330-1420 458 BUE-D Waibogha 87054 LAB 010 M 1430-1520 215 ARM-D 87055 LAB 011 M 1330-1420 215 ARM-D 87633 LEC 012 WF 3 0930-1020 458 BUE-D Cole 87634 LAB 013 M 1630-1720 215 ARM-D 87635 LAB 014 M 1530-1620 215 ARM-D	All extreme case situations are reviewed and decided upon by the Math 126 instructional team during finals week. Such cases require written documentation from the student outlining the request and circumstances surrounding the request. Please contact your instructor for more information.

- You must attend a laboratory section that is attached to your lecture section and you must work with a laboratory partner from your lecture section in order to receive participation points on a lab.
- Labs must be turned in only to YOUR instructor and are due IN YOUR CLASS on the Wednesday following the lab day. As a courtesy to students, labs will be accepted on Friday IN YOUR CLASS with no penalty. After that, NO LATE LABS WILL BE ACCEPTED.
- Each student should complete his/her own copy of the laboratory sheets. Be prepared to turn in your copy of the lab if your partner is absent the day that it is due. Only one lab per team ($2-3$ students) will be graded; if more than one lab is turned in, only one will be graded and returned.
- Only labs turned in to your instructor during regularly scheduled class time will be accepted. Make plans to get your lab turned in if you must miss class.

This course is a part of WVU's General Education Curriculum and focuses on Basic Mathematics and has been certified as part of WVU's Liberal Studies Program, Math and Natural Sciences (cluster C). The course will focus in part on developing your ability to communicate effectively, understand alternative views and cultures, and use quantitative and scientific knowledge accurately.

Objectives: The general goals of this course are common to all the courses in the Institute for Math Learning at WVU:

- CONCEPTUAL UNDERSTANDING: rather than just rote memorization of algorithms
- MULTIPLE APPROACHES: to examine problems from analytical, geometric and numerical perspectives, to make judgements about the appropriateness of the choice of formal or approximate methods of solution
- TECHNOLOGY AS A TOOL: use technology as an integral part of the process of formulation, solution, and communication, to gain experience in selecting the proper tool for a given problem
- ACTIVE STUDENT LEARNING: to engage in the exploration and discovery of concepts and to learn to work cooperatively to solve problems
- COMMUNICATION OF IDEAS: to demonstrate understanding by explaining in written or oral form the meanings and applications of concepts
- APPLICATIONS: use mathematics to model and solve problems
- PROBLEM SOLVING: gain experience as a problem solver, to analyze problems in an organized manner

The specific goals of the college algebra course will be to stress algebraical, graphical, and numerical approaches to the study of:

- understanding and using the concept of function
- mathematical application problems
- solving equations and inequalities in one variable using multiple representations
- graphing equations and functions
- lines, parabolas, and circles
- higher order polynomial, rational, radical, absolute value, exponential and logarithmic functions
- systems of equations and matrices

To accomplish course goals, the class incorporates interactive laboratories which use technology and student activities that emphasize writing and student collaboration. Students will work in pairs or triads on the laboratories and in class exercises in order to develop mathematical communication skills. The development of your communication skills is an integral part of the course.

Evaluation: Multiple forms of assessment will be used to measure your understanding of algebra concepts and problem solving. The point distribution of these assessments is:

Assessment	Number	Max Points
Awarded		

West Virginia University is committed to social justice. I concur with that commitment and expect to foster a nurturing learning environment based upon open communication, mutual respect, and non-discrimination. Our University does not discriminate on the basis of race, sex, age, disability, veteran status, religion, sexual orientation, color or national origin. Any suggestions as to how to further such a positive and open environment in this class will be appreciated and given serious consideration. If you are a person with a disability and anticipate needing any type of accommodation in order to participate in this class, please advise me and make appropriate arrangements with Disability Services (293-6700).

TENTATIVE SCHEDULE

| Week | Text Sections | Laboratory/Quiz/Exam |
| :--- | :--- | :--- |$|$| R.1-R.5 \& R.7 - R.8 |
| :--- |
| (BRUSH-UP/REVIEW) |
| 1 |

Math 126 course link: https://ecampus.wvu.edu

Help: On an average, you should expect to study two to three hours outside of class for each one hour in class. If you are spending more, then you may need to seek help! There are several excellent sources for such help. First, seek help from your classmates; often they can explain the problem since they have been working on it. You may also seek assistance during open lab times in the IML laboratory, from the Math Learning Center in 301 Armstrong Hall, a residence hall study session, or you may seek help from your instructor during office hours.

Academic Integrity Statement: "The integrity of the classes offered by any academic institution solidifies the foundation of its mission and cannot be sacrificed to expediency, ignorance, or blatant fraud. Therefore, I will enforce rigorous standards of academic integrity in all aspects and assignments of this course. For the detailed policy of West Virginia University regarding the definitions of acts considered to fall under academic dishonesty and possible ensuing sanctions, please see the Student Conduct Code at http://www.arc.wvu.edu/rightsa.html Should you have any questions about possibly improper research citations or references, or any other activity that may be interpreted as an attempt at academic dishonesty, please see me before the assignment is due to discuss the matter."

Homework Assignments for College Algebra 2008-2009

Sectio	Name	Problem Numbers
R. 1	Real Numbers	1, 9, 11, 13, 15, 27, 29, 33, 35, 39, 45, 47, 53, 63, 69, 71, 75
R. 2	Algebra Review	4, 11, 15, 23, 24, 31, 37, 41, 45, 47, 49, 57, 59, 61, 65, 73, 74, 75, 76, 77, 87, 89, 93, 95, 141
R. 3	Geometry Review	7, 17, 21, 23, 25, 27, 33, 35
R. 4	Polynomials	7, 9, 17, 21, 29, 31, 34, 39, 47, 55, 69, 93, 97
R. 5	Factoring Polynomials	5, 13, 17, 25, 33, 39, 45, 51, 57, 61, 65, 85, 91, 95, 105, 107, 121
R. 6	Synthetic Division	5,9,17
R. 7	Rational Expressions	5, 13, 19, 25, 31, 47, 53, 63, 73
R. 8	$\boldsymbol{n t h}$ Roots; Rational Exponents	1, 2, 7, 15, 17, 21, 23, 31, 43, 47, 55, 63, 71, 75
1.1	Rectangular Coordinates; Graphing	5, 7, 9, 13, 33, 39, 49, 57, 64, 75, 77, 79, 83, 95, 105
1.2	Solving Equations Using a Graphing	77, 41, 43, 45, 51, 53, 55, 61, 71, 89, 95, 99, 101, 105, 107, 109
1.3	Quadratic Equations	5, 6, 13, 15, 17, 25, 35, 37, 39, 43, 47, 49, 61, 69, 73, 75, 85, 87, 93
1.4	Complex Numbers; Quadratic Equations	9, 13, 19, 26, 27, 31, 33, 35, 49, 51, 53, 59, 73, 79
1.5	Radical Equations; Equations in	13, 17, 25, 29, 35, 39, 59, 65, 71, 81, 83, 100, 103, 107
1.7	Solving Inequalities	11, 13, 14, 25, 29, 33, 37, 51, 53, 65, 73, 77, 83, 89, 91, 95, 97, 107, 109
1.8	Lines	9, 13, 23, 25, 27, 37, 39, 41, 53, 59, 71, 77, 79, 91, 111, 115
1.9	Circles	4, 7, 9, 15, 21, 25, 29, 33, 35, 37
2.1	Symmetry; Graphing Key Equations	7, 13, 17, 25, 27, 31, 37, 39, 43, 49
2.2	Functions	15, 19, 27, 33, 39, 41, 53, 57, 55, 61, 65, 73, 75, 89, 98
2.3	The Graph of a Function	9, 13, 15, 23, 25, 37
2.4	Properties of Functions	11, 13, 15, 17, 19, 21, 29, 33, 53, 63, 64
2.6	Library of Functions; Piece-wise Defined	9, 10, 11, 12, 13, 14, 15, 16, 25, 29, 35, 41, 43
2.7	Graphing Techniques: Transformations	7, 9, 11, 13, 15, 17, 19, 27, 31, 41, 59, 65
2.8	Math Models: Construction Functions	3, 7, 8, 9, 11, 13, $14,15,29,31$
3.1	Quadratic Functions and Models	11, 13, 15, 17, 27, 45, 51, 53, 59, 71, 79, 81, 85
3.2	Polynomial Functions and Models	11, 15, 23, 25, 32, 37, 43, 55, 65, 75 79, 91
3.3	Properties of Rational Functions	13, 23, 25, 31, 41, 45, 49
3.4	Graphs of Rational Functions	7, 15, 27, 33, 35, 51, 61
3.6	The Real Zeros of a Polynomial Functions	11, 13, 21, 27, 39, 43, 63, 73
3.7	Complex Zeros	7,9,17, 23, 33
4.1	Composite Functions	7, 9, 11, 19, 47, 53,69, 63
4.2	One-to-one functions; Inverse functions	11, 15, 19, 21, 33, 41, 50, 63, 65, 80
4.3	Exponential Functions	15, 21, 23, 25, 27, 29, 31, 33, 35, 39, 45, 53, 63, 67, 71, 77, 101
4.4	Logarithmic Functions	15, 19, 23, 31, 39, 45, 61, 67-74, 77, 85, 89, 91, 101, 111
4.5	Properties of Logarithmic Functions	2, 13, 15, 23, 27, 41, 49, 51, 53, 61, 63, 65, 69, 75, 76, 83
4.6	Logarithmic and Exponential Equations	7,11, 15, 19, 23, 27, 31, 45
4.7	Compound Interest	7, 15, 29, 31, 35, 39, 49
4.8	Exponential Growth and Decay	1, 3, 7, 9,11
5.1	Systems of Linear Equations:	7,11, 19, 23, 25, 29, 41, 55
5.2	Systems of Linear Equations: Matrices	5, 11, 17, 39, 41, 51

