# Hamiltonian Line Graphs and Related Problems 

Hong-Jian Lai

Department of Mathematics, West Virginia University

## Hamiltonian Graphs and

## Hamilton-connected Graphs

■ a hamiltonian cycle of a graph $G$ : a cycle containing all the vertices of $G$
a hamiltonian graph: contains a hamiltonian cycle

## Hamiltonian Graphs and

## Hamilton-connected Graphs

■ a hamiltonian cycle of a graph $G$ : a cycle containing all the vertices of $G$
a hamiltonian graph: contains a hamiltonian cycle
■ a hamiltonian path is a path containing all the vertices of $G$. a hamiltonian connected graph: if for any two vertices $u, v \in V(G)$, there exists a $(u, v)$-hamiltonian path.

## Hamiltonian Graphs and

## Hamilton-connected Graphs

$\square$ a hamiltonian cycle of a graph $G$ : a cycle containing all the vertices of $G$
a hamiltonian graph: contains a hamiltonian cycle
■ a hamiltonian path is a path containing all the vertices of $G$. a hamiltonian connected graph: if for any two vertices $u, v \in V(G)$, there exists a $(u, v)$-hamiltonian path.

■ Examples


Hamiltonian, not Hamiltonian Connected


Hamiltonian Connected

## Line Graphs

$\square L(G)$ : the line graph of a graph $G$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked by $k$ edges if and only if the corresponding edges in $G$ share exactly $k$ vertices in common.

## Line Graphs

■ $L(G)$ : the line graph of a graph $G$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked by $k$ edges if and only if the corresponding edges in $G$ share exactly $k$ vertices in common.
$\square$ If $G$ is simple, $L(G)$ is also simple.


G

## Line Graphs

■ $L(G)$ : the line graph of a graph $G$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked by $k$ edges if and only if the corresponding edges in $G$ share exactly $k$ vertices in common.

■ If $G$ is simple, $L(G)$ is also simple.


## Line Graphs

■ $L(G)$ : the line graph of a graph $G$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked by $k$ edges if and only if the corresponding edges in $G$ share exactly $k$ vertices in common.

■ If $G$ is simple, $L(G)$ is also simple.


## Line Graphs

$\square L(G)$ : the line graph of a graph $G$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked by $k$ edges if and only if the corresponding edges in $G$ share exactly $k$ vertices in common.

■ If $G$ is simple, $L(G)$ is also simple.

$G$ : solid lines and closed circles
$L(G)$ : dash lines and open circles

## Connectivity of a line graph

$\square$ An essential edge cut: each side of $G-X$ has an edge.

## Connectivity of a line graph

$\square$ An essential edge cut: each side of $G-X$ has an edge.
■ $G$ is essentially $k$-edge-connected: any essential edge cut of $G$ has size at least $k$.

## Connectivity of a line graph

■ An essential edge cut: each side of $G-X$ has an edge.
$\square G$ is essentially $k$-edge-connected: any essential edge cut of $G$ has size at least $k$.

■ Every essential edge cut in $G$ corresponds to a vertex cut in $L(G)$; and vice versa when $L(G)$ is not complete.

## Connectivity of a line graph

■ An essential edge cut: each side of $G-X$ has an edge.
$\square G$ is essentially $k$-edge-connected: any essential edge cut of $G$ has size at least $k$.
$\square$ Every essential edge cut in $G$ corresponds to a vertex cut in $L(G)$; and vice versa when $L(G)$ is not complete.

■ If $L(G)$ is $k$-connected, then $G$ is essentially $k$-edge-connected. Moreover, when $L(G)$ is not complete, $G$ is essentially $k$-edge-connected if and only if $L(G)$ is $k$-connected.

## Claw-free Graphs

■ a claw: an induced $K_{1,3}$


Figure 1.3

## Claw-free Graphs

■ a claw: an induced $K_{1,3}$


Figure 1.3
■ claw free graph $G$ : $G$ does not contain an induced $K_{1,3}$

claw-free

## Questions and Conjectures

$■$ When does a line graph have a Hamilton cycle?

## Questions and Conjectures

$■$ When does a line graph have a Hamilton cycle?
■ When does a claw-free graph have a Hamilton cycle?

## Questions and Conjectures

$■$ When does a line graph have a Hamilton cycle?
■ When does a claw-free graph have a Hamilton cycle?
■ Conjecture (Thomassen) Every 4-connected line graph is hamiltonian.

## Questions and Conjectures

$■$ When does a line graph have a Hamilton cycle?
■ When does a claw-free graph have a Hamilton cycle?
■ Conjecture (Thomassen) Every 4-connected line graph is hamiltonian.
$\square$ Conjecture (Matthews and Sumner) Every 4-connected claw-free graph is hamiltonian.

## Questions and Conjectures

$■$ When does a line graph have a Hamilton cycle?

- When does a claw-free graph have a Hamilton cycle?

■ Conjecture (Thomassen) Every 4-connected line graph is hamiltonian.

■ Conjecture (Matthews and Sumner) Every 4-connected claw-free graph is hamiltonian.

■ Theorem (Ryjáček) These two conjectures are equivalent.

## Known Results

■ Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

## Known Results

■ Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

■ Theorem (Ryjáček) Every 7-connected claw-free graph is hamiltonian.

## Locally connected and $N_{2}$-locally connected

■ A graph $G$ is locally connected if for every vertex of $G$ $G\left[N_{G}(v)\right]$ is connected.

## Locally connected and $N_{2}$-locally connected

■ A graph $G$ is locally connected if for every vertex of $G$ $G\left[N_{G}(v)\right]$ is connected.

■ A graph $G$ is $N_{2}$-locally connected if for every vertex $v$ in $G$, the edges not incident with $v$ but having at least one end adjacent to $v$ in $G$ induce a connected graph.

## Locally connected and $N_{2}$-locally connected

■ A graph $G$ is locally connected if for every vertex of $G$ $G\left[N_{G}(v)\right]$ is connected.

- A graph $G$ is $N_{2}$-locally connected if for every vertex $v$ in $G$, the edges not incident with $v$ but having at least one end adjacent to $v$ in $G$ induce a connected graph.

■ A locally connected graph is $N_{2}$-locally connected. Not vice versa.


## A Settled Conjecture

■ Conjecture (Ryjáček 1990 JGT) Every 3-connected $N_{2}$-locally connected claw-free graph is hamiltonian.

## A Settled Conjecture

■ Conjecture (Ryjáček 1990 JGT) Every 3-connected $N_{2}$-locally connected claw-free graph is hamiltonian.

■ Theorem (Lai, Shao and Zhan, 2005) This conjecture is a theorem.

## Main Ideas in the Proof

■ Step 1 Apply Ryjáček's closure to convert the problem into a line graph problem: It suffices to show that every 3-connected, $N_{2}$-locally connected line graph $L(G)$ is hamiltonian.

## Main Ideas in the Proof

- Step 1 Apply Ryjáček's closure to convert the problem into a line graph problem: It suffices to show that every 3 -connected, $N_{2}$-locally connected line graph $L(G)$ is hamiltonian.
- Step 2 Further reduce the graph so that $G$ is 3 -edge-connected and every edge of it lies in a cycle of length at most 4.


## Main Ideas in the Proof

■ Step 1 Apply Ryjáček's closure to convert the problem into a line graph problem: It suffices to show that every 3 -connected, $N_{2}$-locally connected line graph $L(G)$ is hamiltonian.

- Step 2 Further reduce the graph so that $G$ is 3 -edge-connected and every edge of it lies in a cycle of length at most 4.
- Step 3 Apply a theorem of Lai (1991 DM) to show that all such graphs has a spanning eulerian subgraph.


## Main Ideas in the Proof

- Step 1 Apply Ryjáček's closure to convert the problem into a line graph problem: It suffices to show that every 3 -connected, $N_{2}$-locally connected line graph $L(G)$ is hamiltonian.
- Step 2 Further reduce the graph so that $G$ is 3 -edge-connected and every edge of it lies in a cycle of length at most 4.
- Step 3 Apply a theorem of Lai (1991 DM) to show that all such graphs has a spanning eulerian subgraph.
- Step 4 Apply the Harary and Nash-Williams' Theorem to show that $L(G)$ is hamiltonian.


## Hamiltonian Line Graphs with High Essential

## Connectivity

■ A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components (containing at least one edge each).

## Hamiltonian Line Graphs with High Essential

## Connectivity

■ A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components (containing at least one edge each).

■ Theorem (Lai, Shao, Wu, and Zhou, 2006) Every 3 -connected, essentially 11-connected line graph is hamiltonian.

## Hamiltonian Line Graphs with High Essential

## Connectivity

■ A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components (containing at least one edge each).

■ Theorem (Lai, Shao, Wu, and Zhou, 2006) Every 3 -connected, essentially 11-connected line graph is hamiltonian.

- Corollary Every 3-connected, essentially 11-connected claw-free graph is hamiltonian.


## Hamiltonian Line Graphs with High Essential

## Connectivity

■ A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components (containing at least one edge each).

■ Theorem (Lai, Shao, Wu, and Zhou, 2006) Every 3 -connected, essentially 11-connected line graph is hamiltonian.

■ Corollary Every 3-connected, essentially 11-connected claw-free graph is hamiltonian.

- Problem What is the smallest positive integer $k$ such that every 3-connected, essentially $k$-connected line graph (or claw-free graph) is hamiltonian?


## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

- Conjecture (Kuipers and Veldman 1998) Every 3-connected claw-free simple graph $G$ with order $n$ and minimum degree $\delta(G) \geq \frac{n+6}{10}$ is Hamiltonian for sufficiently large $n$.


## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

■ Conjecture (Kuipers and Veldman 1998) Every 3-connected claw-free simple graph $G$ with order $n$ and minimum degree $\delta(G) \geq \frac{n+6}{10}$ is Hamiltonian for sufficiently large $n$.

- Theorem (Kuipers and Veldman, 1998) If $G$ is a 3-connected claw-free simple graph with sufficiently large order $n$, and if $\delta(G) \geq \frac{n+29}{8}$, then $G$ is hamiltonian.


## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

- Conjecture (Kuipers and Veldman 1998) Every 3-connected claw-free simple graph $G$ with order $n$ and minimum degree $\delta(G) \geq \frac{n+6}{10}$ is Hamiltonian for sufficiently large $n$.
- Theorem (Kuipers and Veldman, 1998) If $G$ is a 3 -connected claw-free simple graph with sufficiently large order $n$, and if $\delta(G) \geq \frac{n+29}{8}$, then $G$ is hamiltonian.
- Theorem (Favaron and Fraisse, 2001, JCT(B)) If $G$ is a 3-connected claw-free simple graph with order $n$, and if $\delta(G) \geq \frac{n+37}{10}$, then $G$ is hamiltonian.


## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

- Theorem (Lai, Shao and Zhan, 2006) if $G$ is a 3 -connected claw-free simple graph with sufficiently large order $n$, and if $\delta(G) \geq \frac{n+5}{10}$, then either $G$ is hamiltonian, or $\delta(G)=\frac{n+5}{10}$ and the Ryjáček's closure $c l(G)$ of $G$ is the line graph of a graph obtained from the Petersen graph $P_{10}$ by adding $\frac{n-15}{10}$ pendant edges at each vertex of $P_{10}$.


## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

$\square$ Theorem (Lai, Shao and Zhan, 2006) if $G$ is a 3 -connected claw-free simple graph with sufficiently large order $n$, and if $\delta(G) \geq \frac{n+5}{10}$, then either $G$ is hamiltonian, or $\delta(G)=\frac{n+5}{10}$ and the Ryjáček's closure $c l(G)$ of $G$ is the line graph of a graph obtained from the Petersen graph $P_{10}$ by adding $\frac{n-15}{10}$ pendant edges at each vertex of $P_{10}$.

- Idea of Proof Use Ryjáček's closure, to find a hamiltonian cycle of $G$, it suffices to find a dominating eulerian subgraph in $H$, where $L(H)=\operatorname{cl}(G)$.


## Hamiltonian Cycles in 3-connected Claw-free Graphs

■ $P_{k}=$ a path of order $k$

## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

■ $P_{k}=$ a path of order $k$
$\square Z_{k}=$ identifying one end vertex of $P_{k+1}$ with one vertex of a $K_{3}$.

## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

- $P_{k}=$ a path of order $k$
$\square Z_{k}=$ identifying one end vertex of $P_{k+1}$ with one vertex of a $K_{3}$.

■ Theorem (Brousek, Ryjáček and Favaron, 1999 JGT) Every 3-connected $\left\{K_{1,3}, Z_{4}\right\}$-free graph is hamiltonian.

## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

■ $P_{k}=$ a path of order $k$
$\square Z_{k}=$ identifying one end vertex of $P_{k+1}$ with one vertex of a $K_{3}$.
■ Theorem (Brousek, Ryjáček and Favaron, 1999 JGT) Every 3-connected $\left\{K_{1,3}, Z_{4}\right\}$-free graph is hamiltonian.

■ Theorem (Lai, Xiong and Yan 2006) Every 3-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph is hamiltonian. Moreover, there exists a non hamiltonian 3-connected $\left\{K_{1,3}, Z_{9}\right\}$-free graph.

## Idea of Proof

■ Step 1 Use Ryjáček's line graph closure to convert the problem into a line graph problem.

## Idea of Proof

■ Step 1 Use Ryjáček's line graph closure to convert the problem into a line graph problem.

■ Step 2 Show that the corresponding line graph has circumference at most 11.

## Idea of Proof

■ Step 1 Use Ryjáček's line graph closure to convert the problem into a line graph problem.

- Step 2 Show that the corresponding line graph has circumference at most 11.
- Step 3 Show that if $G$ be a 3-edge-connected graph and if the circumference of $G$ is less than or equal to 8 , then $G$ is supereulerian (graphs with a spanning eulerian subgraph).


## Idea of Proof

■ Step 1 Use Ryjáček's line graph closure to convert the problem into a line graph problem.

- Step 2 Show that the corresponding line graph has circumference at most 11.
- Step 3 Show that if $G$ be a 3-edge-connected graph and if the circumference of $G$ is less than or equal to 8 , then $G$ is supereulerian (graphs with a spanning eulerian subgraph).

■ Step 4 Discuss the cases when the circumference is 9, 10 and 11.

## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

■ The same steps also prove the following: if $G$ is a connected simple graph without subgraphs isomorphic to $P_{12}$, and if $\kappa(L(G)) \geq 3$, then $L(G)$ is hamiltonian.

This gives another proof of the following theorem.

## Hamiltonian Cycles in 3-connected Claw-free

## Graphs

- The same steps also prove the following: if $G$ is a connected simple graph without subgraphs isomorphic to $P_{12}$, and if $\kappa(L(G)) \geq 3$, then $L(G)$ is hamiltonian.

This gives another proof of the following theorem.
■ Theorem (Luczak and Pfender, 2004 JGT) Every 3 -connected $\left\{K_{1,3}, P_{11}\right\}$-free graph is hamiltonian.

## $s$-hamiltonian Line Graphs

- Definition A graph $G$ is $s$-hamiltonian if the removal of at most $s$ vertices from $G$ results in a hamiltonian graph.


## $s$-hamiltonian Line Graphs

- Definition A graph $G$ is $s$-hamiltonian if the removal of at most $s$ vertices from $G$ results in a hamiltonian graph.
$\square$ Fact If $G$ is $s$-hamiltonian, then $G$ must be $(s+2)$-connected.


## $s$-hamiltonian Line Graphs

■ Definition A graph $G$ is $s$-hamiltonian if the removal of at most $s$ vertices from $G$ results in a hamiltonian graph.
$\square$ Fact If $G$ is $s$-hamiltonian, then $G$ must be $(s+2)$-connected.
$■$ Fact There exist arbitrarily high connected non hamiltonian graphs ( $K_{n, n+1}$ for example).

## $s$-hamiltonian Line Graphs

■ Definition For an integer $k>0$, a graph $G$ is $k$-triangular if every edge of $G$ lies in at least $k$ distinct 3-cycles of $G$.

## $s$-hamiltonian Line Graphs

$\square$ Definition For an integer $k>0$, a graph $G$ is $k$-triangular if every edge of $G$ lies in at least $k$ distinct 3-cycles of $G$.

■ Problem In [J. Graph Theory, 11 (1987), 399-407], Broersma and Veldman proposed an open problem: For a given positive integer $k$, determine the value $s$ for which the following statement is valid.

## $s$-hamiltonian Line Graphs

$\square$ Definition For an integer $k>0$, a graph $G$ is $k$-triangular if every edge of $G$ lies in at least $k$ distinct 3-cycles of $G$.

■ Problem In [J. Graph Theory, 11 (1987), 399-407], Broersma and Veldman proposed an open problem: For a given positive integer $k$, determine the value $s$ for which the following statement is valid.

■ Let $G$ be a $k$-triangular graph. Then $L(G)$, the line graph of $G$, is $s$-hamiltonian if and only $L(G)$ is $(s+2)$-connected.

## $s$-hamiltonian Line Graphs

■ Theorem (Broersma and Veldman, 1987 JGT) Let $k \geq s \geq 0$ be integers and let $G$ be a $k$-triangular simple graph. Then $L(G)$ is $s$-hamiltonian if and only $L(G)$ is $(s+2)$-connected.

## $s$-hamiltonian Line Graphs

■ Theorem (Broersma and Veldman, 1987 JGT) Let $k \geq s \geq 0$ be integers and let $G$ be a $k$-triangular simple graph. Then $L(G)$ is $s$-hamiltonian if and only $L(G)$ is $(s+2)$-connected.
■ Problem (Broersma and Veldman, 1987 JGT) Is the statement above remains valid if $s=2 k$ ?

## $s$-hamiltonian Line Graphs

■ Theorem (Broersma and Veldman, 1987 JGT) Let $k \geq s \geq 0$ be integers and let $G$ be a $k$-triangular simple graph. Then $L(G)$ is $s$-hamiltonian if and only $L(G)$ is $(s+2)$-connected.
■ Problem (Broersma and Veldman, 1987 JGT) Is the statement above remains valid if $s=2 k$ ?

- Theorem (Chen, Lai, Li, and Siu) Let $k$ and $s$ be positive integers such that $0 \leq s \leq \max \{2 k, 6 k-16\}$, and let $G$ be a $k$-triangular simple graph. Then $L(G)$ is $s$-hamiltonian if and only $L(G)$ is $(s+2)$-connected.


## Thank You

