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Hamiltonian Graphs and

Hamilton-connected Graphs

a hamiltonian cycle of a graph G: a cycle containing all the

vertices of G

a hamiltonian graph: contains a hamiltonian cycle

a hamiltonian path is a path containing all the vertices of G.

a hamiltonian connected graph: if for any two vertices

u, v ∈ V (G), there exists a (u, v)-hamiltonian path.
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Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked by k edges if and

only if the corresponding edges in G share exactly k vertices

in common.

If G is simple, L(G) is also simple.

– p. 3/??



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked by k edges if and

only if the corresponding edges in G share exactly k vertices

in common.

If G is simple, L(G) is also simple.

t

t

t t

t

t

G

– p. 3/??



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked by k edges if and

only if the corresponding edges in G share exactly k vertices

in common.

If G is simple, L(G) is also simple.

t

t

t t

t

t

d

d

d

d

d

– p. 3/??



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked by k edges if and

only if the corresponding edges in G share exactly k vertices

in common.

If G is simple, L(G) is also simple.

t

t

t t

t

t

d

d

d

d

d

– p. 3/??



Line Graphs
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Connectivity of a line graph

An essential edge cut: each side of G − X has an edge.

G is essentially k-edge-connected: any essential edge cut

of G has size at least k.

Every essential edge cut in G corresponds to a vertex cut in

L(G); and vice versa when L(G) is not complete.

If L(G) is k-connected, then G is essentially

k-edge-connected. Moreover, when L(G) is not complete, G

is essentially k-edge-connected if and only if L(G) is

k-connected.
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Claw-free Graphs

a claw: an induced K1,3
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Figure 1.3

claw free graph G: G does not contain an induced K1,3
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Questions and Conjectures

When does a line graph have a Hamilton cycle?

When does a claw-free graph have a Hamilton cycle?

Conjecture (Thomassen) Every 4-connected line
graph is hamiltonian.

Conjecture (Matthews and Sumner) Every
4-connected claw-free graph is hamiltonian.

Theorem (Ryjác̆ek) These two conjectures are
equivalent.
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Known Results

Theorem (Zhan) Every 7-connected line graph is
hamiltonian-connected.

Theorem (Ryjác̆ek) Every 7-connected claw-free
graph is hamiltonian.
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Locally connected and N2-locally connected

A graph G is locally connected if for every vertex of G

G[NG(v)] is connected.

A graph G is N2-locally connected if for every vertex v in G,

the edges not incident with v but having at least one end

adjacent to v in G induce a connected graph.

A locally connected graph is N2-locally connected. Not vice

versa.
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A Settled Conjecture

Conjecture (Ryjác̆ek 1990 JGT) Every 3-connected
N2-locally connected claw-free graph is hamiltonian.

Theorem (Lai, Shao and Zhan, 2005) This conjecture
is a theorem.

– p. 9/??
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Main Ideas in the Proof

Step 1 Apply Ryjác̆ek’s closure to convert the problem
into a line graph problem: It suffices to show that every
3-connected, N2-locally connected line graph L(G) is
hamiltonian.

Step 2 Further reduce the graph so that G is
3-edge-connected and every edge of it lies in a cycle
of length at most 4.

Step 3 Apply a theorem of Lai (1991 DM) to show that
all such graphs has a spanning eulerian subgraph.

Step 4 Apply the Harary and Nash-Williams’ Theorem
to show that L(G) is hamiltonian.

– p. 10/??
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Hamiltonian Line Graphs with High Essential

Connectivity

A vertex cut X of G is essential if G − X has at least
two nontrivial components (containing at least one
edge each).

Theorem (Lai, Shao, Wu, and Zhou, 2006) Every
3-connected, essentially 11-connected line graph is
hamiltonian.

Corollary Every 3-connected, essentially
11-connected claw-free graph is hamiltonian.

Problem What is the smallest positive integer k such
that every 3-connected, essentially k-connected line
graph (or claw-free graph) is hamiltonian?

– p. 11/??
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Hamiltonian Cycles in 3-connected Claw-free

Graphs

Conjecture (Kuipers and Veldman 1998) Every
3-connected claw-free simple graph G with order n and

minimum degree δ(G) ≥
n + 6

10
is Hamiltonian for

sufficiently large n.

Theorem (Kuipers and Veldman, 1998) If G is a
3-connected claw-free simple graph with sufficiently

large order n, and if δ(G) ≥
n + 29

8
, then G is

hamiltonian.

Theorem (Favaron and Fraisse, 2001, JCT(B)) If G is
a 3-connected claw-free simple graph with order n, and

if δ(G) ≥
n + 37

10
, then G is hamiltonian.

– p. 12/??
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Hamiltonian Cycles in 3-connected Claw-free

Graphs

Theorem (Lai, Shao and Zhan, 2006) if G is a
3-connected claw-free simple graph with sufficiently

large order n, and if δ(G) ≥
n + 5

10
, then either G is

hamiltonian, or δ(G) =
n + 5

10
and the Ryjác̆ek’s closure

cl(G) of G is the line graph of a graph obtained from

the Petersen graph P10 by adding
n − 15

10
pendant

edges at each vertex of P10.

Idea of Proof Use Ryjác̆ek’s closure, to find a
hamiltonian cycle of G, it suffices to find a dominating
eulerian subgraph in H, where L(H) = cl(G).
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Hamiltonian Cycles in 3-connected Claw-free

Graphs

Pk = a path of order k

Zk = identifying one end vertex of Pk+1 with one vertex
of a K3.

Theorem (Brousek, Ryjác̆ek and Favaron, 1999 JGT)
Every 3-connected {K1,3, Z4}-free graph is
hamiltonian.

Theorem (Lai, Xiong and Yan 2006) Every 3-connected
{K1,3, Z8}-free graph is hamiltonian. Moreover, there
exists a non hamiltonian 3-connected {K1,3, Z9}-free
graph.

– p. 14/??
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Idea of Proof

Step 1 Use Ryjác̆ek’s line graph closure to convert the
problem into a line graph problem.

Step 2 Show that the corresponding line graph has
circumference at most 11.

Step 3 Show that if G be a 3-edge-connected graph
and if the circumference of G is less than or equal to 8,
then G is supereulerian (graphs with a spanning
eulerian subgraph).

Step 4 Discuss the cases when the circumference is
9, 10 and 11.

– p. 15/??
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Hamiltonian Cycles in 3-connected Claw-free

Graphs

The same steps also prove the following: if G is a
connected simple graph without subgraphs isomorphic
to P12, and if κ(L(G)) ≥ 3, then L(G) is hamiltonian.

This gives another proof of the following theorem.

Theorem (Luczak and Pfender, 2004 JGT) Every
3-connected {K1,3, P11}-free graph is hamiltonian.

– p. 16/??
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s-hamiltonian Line Graphs

Definition A graph G is s-hamiltonian if the removal of
at most s vertices from G results in a hamiltonian
graph.

Fact If G is s-hamiltonian, then G must be
(s+2)-connected.

Fact There exist arbitrarily high connected non
hamiltonian graphs (Kn,n+1 for example).
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s-hamiltonian Line Graphs

Definition For an integer k > 0, a graph G is
k-triangular if every edge of G lies in at least k distinct
3-cycles of G.

Problem In [J. Graph Theory, 11 (1987), 399-407],
Broersma and Veldman proposed an open problem:
For a given positive integer k, determine the value s for
which the following statement is valid.

Let G be a k-triangular graph. Then L(G), the line
graph of G, is s-hamiltonian if and only L(G) is
(s + 2)-connected.

– p. 18/??
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s-hamiltonian Line Graphs

Theorem (Broersma and Veldman, 1987 JGT) Let
k ≥ s ≥ 0 be integers and let G be a k-triangular
simple graph. Then L(G) is s-hamiltonian if and only
L(G) is (s + 2)-connected.

Problem (Broersma and Veldman, 1987 JGT) Is the
statement above remains valid if s = 2k?

Theorem (Chen, Lai, Li, and Siu) Let k and s be
positive integers such that 0 ≤ s ≤ max{2k, 6k − 16},
and let G be a k-triangular simple graph. Then L(G) is
s-hamiltonian if and only L(G) is (s + 2)-connected.

– p. 19/??
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positive integers such that 0 ≤ s ≤ max{2k, 6k − 16},
and let G be a k-triangular simple graph. Then L(G) is
s-hamiltonian if and only L(G) is (s + 2)-connected.
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Thank You
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