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1. Introduction

We follow the notation and terms in Bondy and Murty [3], unless otherwise stated, and consider only simple graphs. Let
N denote the set of all natural numbers. For any vertex v € V(G), the neighborhood of v in G, is N;(v) ={u eV(G) : u is
adjacent to v in G}, Ng[v] = Ng(v) U {v}. The degree of a vertex v in a graph G, denoted by dg(v), is the number of edges of
G incident with v. For notational simplicity, we also write dg(v) = d(v).

There have been many different coloring of graphs under studies, such as edge coloring in Dailly et al. [6], strong edge-
coloring in Debski and Sleszyska-Nowak [7], diagonal coloring in Huang et al. [10], total coloring in Zhang [16], among
others. We mainly focus our study on list r-hued colorings of graphs. Let k and r be positive integers. A proper k-coloring
of a graph G is a mapping ¢ : V(G) — {1.2,3....,k} such that for any uv € E(G), c(u) # c(v). An (k, r)-coloring of graph G
is a proper k-coloring ¢ of G such that every vertex v € V(G) satisfies the following local (k, r)-coloring condition:

(LC-1) [c(N(¥))] = min{d(v), T}.
The r-hued chromatic number x,.(G) of G is the smallest integer k such that G has an (k,r)-coloring. Let L be a
mapping which assigns to each vertex v € V(G) a list L(v) of available colors. A proper coloring ¢ of G is an L-coloring
if ¢ satisfies the following list coloring condition:

(LC-2) c(v) € L(v), for any vertex v € V(G).
If ke N, then a list L of a graph G is a k-list if |L(v)| =k for any v € V(G). The list chromatic number y;(G) of G is
the smallest integer k such that for any k-list L, G has an L-coloring. As in the classical graph coloring problems, the
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r-hued coloring of graphs also has a list coloring counterpart. For a given list L of a graph G, a proper coloring ¢ is
an (L, r)-coloring of G if c¢ satisfies both (LC-1) and (LC-2). The list r-hued chromatic number, denoted by x; ,(G),
which is also denoted by ch,(G) in the literature, is the smallest integer k such that for any k-list L of G, G has an
(L, r)-coloring. The study of r-hued coloring of graphs was initiated in Lai et al. [12], in which only the case when
r =2 was investigated. In the early studies, 2-hued coloring is under the name of dynamic coloring, and the 2-hued
chromatic number was called dynamic chromatic number of a graph, denoted by x,(G). Likewise, the list 2-hued
chromatic number of G was also denoted as chy(G).

There have been many studies on r-hued coloring and r-hued list coloring of graphs, as can be found in a recent survey
[5]. One of the heavily studied area is to investigate best possible upper bounds for the r-hued chromatic number and list
r-hued chromatic number of planar graphs and graphs that are structurally closed to be planar graphs. In [9], the author
proved that x; 3(G) <6 if G is a planar graph which is a near-triangulation, where a near-triangulation is a planar graph
whose bounded faces are all 3-cycles. Extending a conjecture of Wegner, Song et al. proposed the following conjecture.

Conjecture 1.1 (Song et al. [13]). Let r be a positive integer. If G is a planar graph, then xr(G) < f(r), where

r+3, if 1<sr=2;
fr)y={r+5, if 3=r=7,
[3r/2] +1, if r=8.

It is believed that a list r-hued coloring version of Conjecture 1.1 with a similar upper bound would also be likely
[4,13,14]. Utilizing the 4-color-theorem, Kim, Lee and Park, prove the following.
Theorem 1.2 (Kim et al. [11]). Let G be a planar graph. Then x;,(G) < 5.

In [8], Eggleton introduced outer-1-planar graphs. A graph G is an outer-1-planar graph if G can be drawn on the plane
in such a way that all vertices of V(G) are located on the outer face (the exterior face) of the drawing and every edge of G
can cross at most one other edge in the drawing. As indicated in Corollary 1 of [2],

outer-1-planar graphs form a proper subset of all planar graphs. (1)
When r = 3, upper bounds of the list r-hued chromatic numbers for outer-1-planar graphs have been studied.
Theorem 1.3 (Zhang and Li [15]). If G is an outer-1-planar graph, then x;3(G) < 6.

The current research is being motivated by the theorems mentioned above. To the best of our knowledge, there has been
little former studies on the list r-hued chromatic numbers for outer-1-planar graphs when r > 4. The purpose of this study
is to investigate upper bounds of the list r-hued chromatic numbers of outer-1-planar graphs. The following are the main
results obtained in this research.

Theorem 1.4. Let r be an integer with r = 2 and let G be an outer-1-planar graph.
(i) If r = 3, then
2r, if 3<r<6;
xLr(G) = {r+7, if r=7.
(ii) If r =2, then x13(G) < 5. Moreover, this upper bound is sharp.

The case when r = 3 is obtained by Theorem 1.3. The case when 1 =2 can be derived from former results. We include
them here for the sake of completeness.

Tools to be used in our arguments to prove Theorem 1.4 will be presented in the next section. The proof of the main
result will be shown in Section 3.

2. Preliminaries
We in this section provide some former results and structural properties of outer-1-planar graphs, to be applied in our
arguments for justifying the main results of the paper.

Lemma 2.1 (Akbari et al. [1]). Let G, be a cycle of order n, n > 3. Then

3, if n=0(mod 3);
XL2 (Cn) - 5! If n= 5:
4, otherwise.

In the rest of the discussion, we call a graph H to be a configuration of a graph G if H is a subgraph of G and there
exists a set V' CV(H) such that for any v e V/, either dy(v) = dg(v) or dg(v) is bounded by prescribed bounds. In [15],
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Fig. 1. Local structures of an outer-1-planar graph G with minimum degree at least 2.
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Zhang and Li investigated the local structure of outer-1-planar graphs. They discovered 17 graphs, which are depicted in
Fig. 1, and showed that these 17 configurations are unavoidable local structures for an outer-1-planar graph. As indicated in
Theorem 2.2 below, if G is an outer-1-planar graph, then G must contain one of these 17 configurations as a subgraph. For
each graph H in the configurations presented in Figs. 1-3, as a subgraph of an outer-1-planar graph G, a black vertex in an
H; indicates that the degree of this vertex in H; is exactly the degree of this vertex in G; a gray vertex in an H indicates the
degree of this vertex in G has an upper bounded as given in the caption under H in Fig. 1; and a hollow vertex indicates
that the degree of the vertex is not restricted in G.

Theorem 2.2 (Zhang and Li [15]). Let G be a connected outer-1-planar graph. Then using the notation in Fig. 1, one of the
following must hold.

(a) G has a vertex of degree 1.

(b) G contains two adjacent vertices of degree 2, as illustrated in Hy of Fig. 1.

(c) G contains a triangle with a vertex of degree 2, and so G contains one of Hy, Hs, Hs, Hyy, Hi3, Hy4, Hys, Hig and Hyy in Fig.
1 as a configuration.

(d) G contains one of Hs, Hg, H7, Hg, Ho, H1g, Hy1 in Fig. 1 as a configuration.

Theorem 2.2 is a classification of the local structures of outer-1-planar graphs in Fig. 1. It reveals local structures an
outer-1-planar graphs must have, which suggests possible ways for an inductive arguments.

Observation 2.3. Using the notation of the graphs as depicted in Fig. 1, we have the following observations.

(i) Each of the configurations in {H,, Hy, Hs. Hia, Hi3, Hia, His, Hig, Hi7} contains the structure Sy (as seen in Fig. 2) with
3 <dg(b) <5.
(ii) Each of H; and Hyp contains a structure S, (as seen in Fig. 3).
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Fig. 4. G in the proof of Claim 3.1.

3. Proofs of Theorem 1.4

Throughout this section, if H is a graph and e is an edge with end vertices in V(H), then we use H + e to denote the
graph with vertex set V(H) and edge set E(H) U {e}. Let G be an outer-1-planar graph. By (1), every outer-1-planar graph is
also a planar graph. It follows by Theorem 1.2 that x; »(G) = chy(G) = 5. Since Cs is an outer-1-planar graph, by Theorem 2.1,
X1.2(Cs) = 5. Therefore, the bound x;(G) <5 cannot be relaxed. This justifies Theorem 1.4(ii). By Theorem 1.3, it suffices
to validate Theorem 1.4(i) for the cases when 1 > 4.

Throughout the section, we assume that r > 4 is an integer and let

2r, if 3<r<6;
¢(r)_{r+7, if r=7.

For a graph G and an integer i € N, define
Di(G) = {veV(G) : dg(v) =1i}.
By the definition of outer-1-planar graphs, we observe the following:
any subgraph of an outer-1-planar is outer-1-planar. (3)

If G is not connected, we may argue on each of its components. Therefore, in the rest of this section, we always assume
that the graph G under consideration is a connected graph. By Lemma 2.1, Theorem 1.4(i) holds for cycles. In particular,
Theorem 1.4(i) holds for all outer-1-planar graphs with at most 4 vertices. To prove Theorem 1.4(i), we argue by contradic-
tion and assume that Theorem 1.4(i) has a counterexample. Therefore there exists an outer-1-planar graph G with |V(G)| = 5
such that

X1.(G) = ¢(r)+1 with |V(G)| + |E(G)| being minimized. (4)
By (2.3) and (4), we observe that

xL.-(G) = ¢(r) +1,and for any proper subgraph G'of G, y.-(G) < ¢(r). (5)
To prove Theorem 1.4(i), we shall make the following claims.
Claim 3.1. If 6(G) = 1, then x (G) < ¢(1).

Since §(G) =1, there exists a vertex a € V(G) with dg(a) = 1. Let b denote the only vertex in Ng(a). Hence ab € E(G).
(See Fig. 4 for an illustration.) By (5), there exists a ¢ (r)-list of G, such that G does not exist an (L,r)-coloring.

Let G’ = G — {a} and define L’ to be the restriction of L to V(G'). By (5) and as |V(G')| < [V(G)|, we conclude that G’ has
an (L', r)-coloring c. In the following, we shall extend the domain of ¢ from V(G") to V(G) by choosing the color c(a) and
assigning it to the vertex a so that the extended ¢ would be an (L, 1)-coloring of G. This would lead to a contradiction to
(4).

Suppose that dg(b) = r+ 1. Then dg(b) =r. As c is an (L', r)-coloring of G/, we have [c(Ng (h))| = min{dg (b),r} =,
and so every vertex v € V(G) — {a} already satisfies the local (r + 1, r)-coloring condition (LC-1). Since |L(a)| = ¢ (1) > 2, we
choose c(a) € L(a)\{c(b)} and color a with c(a). Thus the extended c is a proper coloring satisfying (LC-2), with every vertex
of G fulfilling the requirement of (LC-1). Hence the extended c is an (L, r)-coloring of G.

Therefore, we assume that dg(b) <r. As ¢ is an (L, r)-coloring of G/, we have [c(Ng(b))| = min{dg (b),r} =dg (b),
and for any vertex v e V(G)— {a,b}, (LC-1) is satisfied. As |[L(a)| =¢(r) > 1+ 1= [c(Ng (b)) u{c(b)}|, we choose c(a) e
L(a)\{c(b), c(N (b))}, and color a with c(a). Hence both a and b will also satisfy (LC-1) and (LC-2). Thus the extended
c is an (L, r)-coloring of G. This justifies Claim 3.1.

Claim 3.2. If G contains two vertices a, b € D,(G) with ab € E(G) and Ng(a) — {b} # Ng(b) — {a}, then x; ,(G) < ¢(r).

As a, b € Dy(G) with ab € E(G), we denaote Ng(a) = {b, x} and Ng(b) = {a. y}. By the assumption of Claim 3.2, we conclude
that x # y. By (5), there exists a ¢ (r)-list of G, such that G does not have an (L, r)-coloring.

Let G’ =G — {a, b} and define L’ to be the restriction of L to V(G’). By (5), G’ have an (L', r)-coloring c. To find a contra-
diction to (4), we are to extend c by choosing colors c(a) € L(a) and c(b) € L(b) which would make the extended ¢ be an
(L, r)-coloring.
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Suppose first that min{dg(x), dg(y)} = r + 1. Then every vertex in G — {a, b} satisfies both (CL-1) and (CL-2). As |L(a)| =
[L(b)| = ¢(r) = 8, it is possible for us to choose

c(a) € L(a) \ {c(x). c(y)}. and c(b) € L(b) \ {c(x), c(y). c(a)}.

Then we extend c by coloring a and b with c(a) and c(b), respectively. As a,b € D5(G), under the extended coloring c, both
a and b also satisfy (CL-1) and (CL-2). Thus in this case, we obtain an (L, r)-coloring of G.

Next we assume that both max{dg(x).dg(y)} =r+1 and min{dg(x),dg(y)} =r. By symmetry, we may assume that
dg(x) =r+1 and dg(y) <r. This implies that every vertex in G — {a, b,y} satisfies both (CL-1) and (CL-2), and y satisfies
(CL-2). As |L(a)\{c(x),c(¥)}| = ¢p(r) —2>8 -2 =6 = 0, we can choose

c(a) e L(a) \ {c(x), c(y)}.

As dg(y) =dg(y) —1 <r—1, we conclude that |c(No(¥)|=dg(y) —1=<r—1 and [{c(x),c(¥).c(a),c(Ng Y} =3 +T1—
1=r+2,s0 |L(W)\{c(x), c(¥),c(a),c(Ng ¥} = ¢(r) — (r +2) > 0. Thus we can choose

c(b) € L(b) \ {c(x). c(y). c(a), c(Ng (¥))}.

By the choice of c¢(b), the vertex y satisfies (CL-1) under the extended coloring c. As a, b € D5(G), under the extended color-
ing ¢, both a and b also satisfy (CL-1) and (CL-2). Thus in this case, we also obtain an (L, r)-coloring of G.

Finally, we assume that max{dg(x),dg(y)} <r. Thus every vertex in G—{a, b.x,y} satisfies both (CL-1) and (CL-
2), and both x and y satisfy (CL-2). Since dg(x) =dg(x)—1<r—1 and |c(Ng(x))}| =7 —1, then we conclude that
Hex). c(¥).c(Ng(x)} <24r—1=r+1, and |[L(a)\{c(x).c(¥).c(Ng (x))}| = ¢(r) — (r + 1) > 0. Thus we can choose

c(a) e L(a) \ {c(x), c(¥), c(Ng (x))}.

Similarly, we conclude that [{c(x),c(¥),c(a),c(Ng (Y} <3 +r—1=r+2, and [L(b)\{c(X),c(y), c(a), c(Ng W)} = d(r) —
(r+2) > 0. Thus we can choose

c(b) € L(b) \ {c(x), c(¥), c(a), c(Ne () }.

By the choices of c(a) and c(b), the vertices x and y satisfy (CL-1) under the extended coloring c. As a, b € D;(G), under the
extended coloring ¢, both a and b also satisfy (CL-1) and (CL-2). Thus in this case, we also obtain an (L, r)-coloring of G.
This completes the proof for Claim 3.2.

In Claim 3.3 below, we follow the notation in Observation 2.3(i) for S; (see Fig. 2) in our arguments. Thus the vertices in
§; are labeled as in Fig. 2.

Claim 3.3. Suppose that G containing Sy as a configuration with 3 < dg(b) < 5. Then y; .(G) < ¢(r).

Denote Ng(b) = {by,...,b;,a,x}(1 <l <3), let G =G—{a} and let L’ denote the restriction of L to V(G'). By (4), G’ has
an (L', r)-coloring c.

Case 1. r=4.

For | =3, we have Ng(b) = {by,bs.b3,a,x}, dg(b) =5, and dg (b)) =4 =1, so [c(Ngy(b))| =r = min{dy (b), r}. Thus every
vertex in G — {a, x} satisfies both (CL-1) and (CL-2), while the vertex x satisfies (CL-2) under the current coloring c. If dg(x) >
5 =r+1, then x also satisfies (CL-1). In this case, as |L(a)\{c(x),c(b)}| = ¢(r) —2 = 0, we can choose

c(a) e L(a) \ {c(x), c(b)}.
Thus the extended ¢ becomes an (L, r)-coloring of G. If dg(x) <4 =r, then |c(Ng (x))| =dg(x) —1 <r—1=3. In this case,
as [L(a)\{c(x)Uc(Ng (x)} = ¢p(r) — 4 = 0, we can select

c(a) e L(a) \ {c(x) Uc(Ng (x)}.

As c(b) € c(Ng (x)), c(a) # c(b), which implies that the extended c is a proper coloring, satisfying both (CL-1) and (CL-2) for
all vertices in G. Thus the extended c is an (L, r)-coloring of G in this case.

For 1<l=2, |Ng[b]|=dg(b)=1+2<4=r. If dg(x) =r+1, then x also satisfies (CL-1). In this case, as |L(a)\
{c(Ng[BD}| = ¢ (r) — 4 > 0, we can choose

c(a) € L(a) \ {c(Ne/[bD},
to extend c. Thus ¢ also is an (L, r)-coloring of G in this case. If dg(x) <4 =7, then |Ng (b) UNg (x)| < 6. In this case, as
[L(a)\{c(Ng (b)) Uc(Ng (x))}| = ¢(r) — 6 > 0, we can select

c(a) € L(a) \ {c(Ng: (b)) Ue(Ne (x)},

to extend c. Thus ¢ also is an (L, r)-coloring of G in this case.

Case 2.1 > 5.

Since dg(b) =1+2 <5 <1r(1 <l < 3), we have [c(Ng (b))| = dg(b) — 1 =1 — 1. Thus every vertex in G — {a, b, x} satisfies
both (CL-1) and (CL-2) under the current coloring ¢, while the vertices b and x satisfy (CL-2).

If dg(x) = r+ 1, then [c(Ng ()| = min{dg(x) — 1,1} =1, and so x satisfies (CL-1). Since |L(a)\{c(Ng/[bD}| = ¢(r) =5 =0,
we can choose

c(a) e L(a) \ {c(Ng'[b])},



L. Liang, F. Liu and H.-]. Lai Applied Mathematics and Computation 440 (2023) 127658

 —]

b b

Fig. 5. S; —a+bd in G'.

to extend c. The choice of c(a) makes both the vertices a and b satisfy (CL-1) and (CL-2) under the extended coloring ¢, and
so the extended c is an (L, r)-coloring of G.

If dg(x) =1, we have |c(Ng (x))| =dg(x) =dg(x) — 1 <71 —1, and every vertex in V(G) — {a, b, x} satisfy (CL-1) and (CL-
2), and both b and x satisfy (CL-2). We have [L(a)\{c(Ng (x)) Uc(Ng (b))} = ¢(r) — (r—1+4) > 0. Hence we can assign to
vertex a the color

c(a) € L(a) \ {c(Ng (x)) U c(Ng (b))}

Since a € Ng(x) UNg(b), the choice of c(a) makes the vertices a, b and x all satisfy (CL-1) and (CL-2). Once again the ex-
tended c is an (L, r)-coloring of G. This proves Claim 3.3.

In Claim 3.3 below, we follow the notation in Observation 2.3(ii) for Sy (see Fig. 3) in our arguments. Thus the vertices
in S, are labeled as in Fig. 3.

Claim 3.4. Suppose that G containing S, as a configuration. Then xp .(G) < ¢(r).

Let G’ =G — {a} + bd and let L’ be the restriction of L to V(G’). Since G is outer-1-planar, there is a drawing of G on the
plane on which the vertices in V(G) are all located on the outer face of the drawing, in such way that every edge can cross
at most one other edge. We call such a drawing of G an outer-1-planar drawing of G. Since G’ can be viewed as the graph
obtained from G by contracting the edge e = ab, this outer-1-planar drawing of G yields an outer-1-planar drawing of ¢,
and so G’ is also outer-1-planar. (See Fig. 5 for an illustration.)

By (5), x1.r(G") = ¢(r), and so G’ has an (L, r)-coloring c. Thus every vertex in G — {a. b, d} satisfies both (CL-1) and (CL-
2), and both vertices b and d satisfy (CL-2). Since |L(a)\{c(D), c(b1),c(d), c(dy),c(x)}| =¢(r) —5>8 —5 > 0, we can choose
a color

c(a) € L@)\{c(b). c(by), c(d), c(dy), c(x)},

By the choice of c(a), all the vertices in {a. b.d} also satisfy (CL-1) and (CL-2) under the extended coloring c. Hence ¢ can
be extended to an (L, r)-coloring of G. This show that Claim 3.4 must hold.

By Theorem 2.2 and Observation 2.3, as an outer-1-planar graph G must have the configurations as shown in
Theorem 2.2 and Observation 2.3. By Claims 3.1-3.4, we may assume that G must have one of the graphs in {H;:ie
{3,6,8,9,11}} as defined in Fig. 1 as a configuration of G. We shall show when any of these graphs occurs in G as a con-
figuration, G always have an (L, r)-coloring, which leads to a contradiction. In the claims below, whenever we discuss an H
in {H;:ie{3,6.8,9,11}} as a configuration of G, we shall use the notation and vertex labels in Fig. 1 for the corresponding
configuration.

Claim 3.5. Suppose that G containing either an Hy or an Hg as a configuration. Then x; ,(G) < ¢(r).

Let G’ = G — {a} and let L’ denote the restriction of L to V(G’). By (5), G’ has an (L', r)-coloring ¢. Thus under this coloring
¢, every vertex in G — {a, x, y} satisfies both (CL-1) and (CL-2), while the vertices x and y satisfy (CL-2).

Case 1.4 <r<7.

If min{dg(x),dg(y)} =r+1, then both vertices x and y also satisfy (CL-1); As |L(a)| =¢(r) =8, if G contains
Hz as a configuration, then |L(a)\{c(x),c(y)}| = 0; and if G contains Hg as a configuration, then we always have
[L(a)\{c(x),c(y),c(b)}| = 0. Thus we can choose

c(a) L(a) \ {c(x),c(y)}, if G containsH; as a configuration,
L(a) \ {c(x),c(y),c(b)}, if Gecontains Hgas a configuration.

to color the vertex a. The choice of c(a) makes a satisfy (CL-1) and (CL-2), and all other vertices satisfy (CL-1). Hence the
extended ¢ becomes an (L, r)-coloring of G.

Next we assume that max{dg(x),d;(¥)} =1+ 1 and min{d;(x),d;(y)} <r. we may further assume that dg;(x) =1+ 1
and d;(y) <1, as the proof for the case when dg(y) =1+ 1 and dg(x) < r is similar. Thus x satisfies (CL-1) and [c(Ng (¥))| =
de(¥) =dg(y) =1 <r—1. As [L(a)| = ¢(r) = 2r and 1 = 4, we always have |L(a)\({c(x),c(y).c(b)} uc(Ng(¥)))| > 0. Hence
we can find an color

cla) e L(a) \ (fc(x),c(y). c(b)} Uc(Ne (¥))),
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to color the vertex a. By the choice of c¢(a) and as dg(x) = r+1, and as b € Ny, (y) when G contains Hg as a configuration,
we conclude that the vertices a, X, y and b (when G contains Hg as a configuration) all satisfy (CL-1) and (CL-2), and so the
extended c is an (L, r)-coloring of G.

Finally we assume that max{dg(x),dg(y)} <, and so max{|c(Ng (x))|, |[c(Ne ()|} <r— 1. Since in H; or in Hg, we have
b e Ng (x) UNg (v). Hence |c(Ng (X)) Uc(Ng (W) < [c(Ng(x))| + [c(Ner(¥))| —1=2r—3. As 4 <1 <7, we have ¢(r) =2r
and so

IL(@\({c(x), c¥)} Uc(Ng: (x)) Uc(Ng ()] = ¢(r) — (2r =3 +2) =2r — (2r—1) > 0.

Hence we can pick a color c(a) € L(a)\({c(x), c(y)} Uc(Ng (x)) Uc(Ng (¥))) to color a. The choice of c(a) makes the vertices
a, b, x and y all satisfy (CL-1) and (CL-2) under the extended coloring c¢. Therefore, in Case 1, we can always extend ¢ to an
(L, r)-coloring of G.

Case 2.1 > 8.

Since H; or Hg is a configuration of G, we have dg(y) < 7. Note that in either H3 or Hg, b € N (¥). Assume first that
dg(x) = 1+ 1. Then x also satisfies (CL-1). As [L(a)\({c(x),c(¥)}Uc(Ng(¥))| =¢(r) —(2+1—1) > 0, we can extend ¢ by
coloring a with a color c(a) e L(a) \ ({c(x),c(¥)} Uc(Ng (¥))). Thus under the extended coloring c, the vertices a, b and y
satisfy (CL-1) and (CL-2), and so we find an (L, r)-coloring of G. Hence we may assume that dg(x) <1, and so [c(Ng (x))| =
dg(x) — 1. As |c(Ngy(¥)| =dg (y) =dg(y) — 1 <6 and as b is in the configuration H3 or Hg in G, we have b € Ng; (x) UNg (),
implying that

le(Ng (x)) Uc(Ne ()] = [c(Ne: ) [+ [c(Ng (¥))| =1 =17—-14+6—-1=r+4,
and so |L(a)\({c(x),c(y)} Uc(Ng (x)) Uc(Ng (¥)))| = ¢(r) — (r+6) = (r+7) — (r+6) > 0. Hence

c(a) e L(@) \ ({c(x), c(y)} U c(Ng (x)) Uc(Ng (¥))).
By this choice of c(a), each of the vertices a, x and y satisfies (CL-1) and (CL-2) under the extended c. Hence ¢ can be
extended to an (L, r)-coloring of G. This proves Claim 3.5.

Claim 3.6. Suppose that G containing an Hg as a configuration. Then i .(G) < ¢ (r).

We adopt the notation in Fig. 1 for the configuration Hg. Let G’ = G — {b, e} and let L’ denote the restriction of L to V(G").
By (5), G’ has an (L’,r)-coloring ¢. Thus under this coloring ¢, every vertex in G — {a, b, e, x,y} satisfies both (CL-1) and
(CL-2), and every vertex in G — {b, e} satisfies (CL-2).

Again we start the discussion by assuming min{dg(x).dg(y)} = r + 1. Then x and y satisfy (CL-1) also. As |[L(b)| = |L(e)| =
¢ (r) > max{3, 4} = 4, we choose the colors

c(e) e L(e) \ {c(x).c(y).c(@)}, and c(b) € L(b) \ {c(x), c(y), c(a), c(e)},

for the vertices e and b, respectively, to extend c. These choices of c(b) and c(e) make all the vertices a, b, e, x,y satisfy
(CL-1) and (CL-2), and so the extended c is an (L, r)-coloring of G.

Next we assume that max{dg(x).dg(y)} =1+ 1 and min{dg(x).dg(v)} <r. We may further assume that dg(x) > 1+ 1
and dg(y) <1, as the arguments for the case when dg(y) =r+1 and dg(x) <r are similar. Thus x satisfies (CL-1) and
[c(Ng (W) =7 —1.As |[L(b)| = |L(e)| = ¢(r) > max{r+ 1,4} =r+ 1, we can select

C(b) € L(b) \ {C(X)s C(y)v C(NG' (.y))}ﬂ and C(e) € L(e) \ {C(X), C(V)‘ C(a), C(b)}’

as the colors for the vertices b and e, respectively. Under the extended c, all vertices in G satisfy both (CL-1) and (CL-2), and
so the extended ¢ becomes an (L, r)-coloring of G.

Finally we assume that max{d¢(x).dc(y)} <1, and so max{|c(Ng (x))|. |[c(Ng (¥} <17 —1. As [L(b)| = |[L(e)| = (1) >
max{r+1,r+2} =1+ 2, we can select

cle) eLie) \ ({c(x), c(¥)}uc(Ng(x))), and c(b) € L(b) \ ({c(x). c(y). c(e)} Uc(Ng(¥))),

to color vertices e and b, respectively. By these choices of ¢(b) and c(e), the extended c is an (L, r)-coloring of G, which
completes the proof for Claim 3.6.

Claim 3.7. Suppose that G containing an Hg as a configuration. Then xp .(G) < ¢(1).

We again use the notation in Fig. 1 for the configuration Hg. Let G’ = G — {a, b} and let L’ denote the restriction of L to
V(G"). By (5), G’ has an (L', r)-coloring ¢. Thus under this coloring ¢, every vertex in G — {a, b, e, x, y} satisfies both (CL-1)
and (CL-2), and every vertex in G — {a, b} satisfies (CL-2).

Assume first that min{dg(x), dg(y)} = r + 1. Then both x and y satisfy (CL-1). As |L(a)| = |[L(b)| = ¢(r) > 4, we can choose

c(b) e L(b) \ {c(x), c(y). c(g). c(e)}, and c(a) € L(a) \ {c(x).c(y), c(b), c(e)},

to color the vertices b and @, respectively. Thus the choices of c(a) and c(b) make the extended ¢ an (L, r)-coloring of G.
Next we assume that max{d;(x),d¢(¥)} = r+1 and min{dg(x),dg(y)} <. If dg(x) = r+1 and dg(y) <, then x satisfies
(CL-1) and [c(Ng (V)| =dg(y) —1 <1 —1. As |L(a)| = |L(D)| = ¢ (r) > max{r + 2, 4}, we choose

c(b) e L(b) \ ({c(x). c(y), c(e)}Uc(Ng (¥))). and c(a) € L(a) \ {c(x), c(y).c(b), c(e)},
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to color the vertices b and q, respectively, to extend the coloring c. If dg(x) <r and dg(y) = + 1, then y satisfies (CL-1) and
lc(Ny (x)| =dg(x) —1 <r—1. As |L(a)| = [L(D)| = ¢ (1) > max{r + 2,4} =1 + 2, we choose

c(b) e L(b) \ {c(x),c(y).c(g).c(e)}, and c(a) € L(a) \ ({c(x),c(y),c(b)} Uc(Ng(x))),

to color the vertices b and a, respectively, to extend the coloring c. It follows that in either case, under the extended c, all
vertices in G satisfy (CL-1) and (CL-2), and so it is an (L, r)-coloring of G.

We then may assume that max{dg(x), dg(y¥)} =1, and so max{[c(Ng (x))|, |[c(Ne (W)} =7 —1. As [L(b)| = [L(a)| = ¢(T) >
r+2, we can select

c(b) e L(b) \ ({c(x), c(¥),c(g)}Uc(Ng(¥)))}, and c(a) € L(a) \ ({c(x), c(¥),c(e)} Uc(Ng(x))),

to color vertices b and a, respectively. By these choices of ¢(h) and c(a), the extended c is an (L, r)-coloring of G, which
completes the proof for Claim 3.7.

Claim 3.8. Suppose that G containing an Hy; as a configuration. Then i -(G) < ¢(r).

We continue adopting the notation in Fig. 1 for the configuration Hyy. Let G’ = G — {e, g, h} and let L’ denote the restriction
of L to V(G). By (5), G’ has an (L', r)-coloring c. Thus under this coloring c, every vertex in G — {b, e, g h,x,y} satisfies both
(CL-1) and (CL-2), and every vertex in G — {e, g, h} satisfies (CL-2).

Assume first that min{ds(x),dc(y)} = r+ 1. Then both x and y satisfy (CL-1). As |L(e)| = |L(g)| = |L(h)| =¢(r) = 8, it
is possible to extend ¢ by choosing c(g) € L(g) \ {c(x).c(y).c(a),c(b)}, c(h) e L(h) \ {c(x),c(y).c(b),c(2)} and then c(e)
L(e) \ {c(x).c(y), c(g),c(h)}. By these choices, the extended ¢ becomes an (L, r)-coloring of G.

Next we assume that max{ds;(x),dg(y)} =r+1 and min{dg(x).dz(y)} <r. If dg(x) =r+1 and dg(y) <r, then x
satisfies (CL-1) and |c(Ng(¥))|=dg(y) —1<r—1. In this case, as [L(h)|=|L(e)| =|L(2)| = ¢(r) > max{r+2,4,5} =
r+2, we choose c(g)eL(g)\{cx).c(y),c(b),ca)}, cle)eLe)\ ({c(x),c(y),c(g)}uc(Ng(y))) and then c(h)eL(h)\
{c(x),c(y), c(g), c(b),c(e)}. Since in Hyy, we have b e Ny (y), and so in this case the extended c will be an (L, r)-coloring
of G.

If dg(x) <1 and dg(y) = r+ 1, then y satisfies (CL-1) and |c(Ng (x))| =dg(y) — 1 <1 — 1. In this case, as |L(h)| = |L(e)| =
IL(g)| = ¢(r) > max{r+2,6,3} =r+2, we choose c(h) e L(h) \ ({c(x),c(y),c(b)}Uc(Ng(x))), c(e) eL(e)\ {c(x),c(y),c(h)}
and then c(g) e L(g) \ {c(x), c(y), c(a),c(b),c(h),c(e)}. Since in Hy;, we have a € Nz (x), and so in this case the extended ¢
will ne an (L, r)-coloring of G.

Therefore, we may assume that max{d¢(x), dc(y)} <1, and so max{|c(Ng (x))|, [c(Ng$y)|} =<r—1. As |L(h)| = |L(e)| =
[L(g)| = ¢(r) > max{r + 2,6} =1+ 2, we can extend c by selecting c(l) € L(h) \ ({c(x),c(y),c(b)} Uc(Ng(x))), c(e) e L(e) \
({c(x), c(y),c(M}Uc(Ny (¥))) and then c(g) € L(g) \ {c(x),c(y),c(a), c(b),c(h),c(e)}. Since in Hy;, we have a € Ny (x) and
b e Ng (v), these choices of c(h), c(e) and c(g) make the extended ¢ an (L, r)-coloring of G, which completes the proof for
Claim 3.8.

By the choice of L and (5), G does not have an (L, r)-coloring. By Observation 2.3 and Claims 3.1-3.4, we may assume
that §(G) = 2 and G does not have a member in {H,, Hy, Hs, H7, Ho} U{H; : 12 < i < 17} as a configuration. This, together
with Theorem 2.2, implies that G must have an H € {H; : i € {3,6, 8,9, 11}} as a configuration. By Claims 3.5-3.8, when G
contains an H < {H; : i< {3,6,8,9,11}}, then G must have an (L, r)-coloring, contrary to (5). This completes the proof of
Theorem 1.4(i).

4. Concluding remarks

By the analysis of unavoidable configurations of outer-1-planar graphs as stated in Theorem 2.2, we utilize an inductive
argument to prove that any outer-1-planar graph G has a list r-hued chromatic number at most ¢ (r). However, it is not
straight forward to find examples to show that for sufficiently large r, ¢(r) would be the best possible. In general, it is of
interest to investigating the best possible upper bounds of the r-hued chromatic numbers and the list r-hued chromatic
numbers for an bigger graph family that properly contain all outer-1-planar graphs. Let ¢ > 1 be an integer. Define a graph
G to be an outer-¢-planar graph if G can be drawn on the plane in such a way that all vertices of V(G) are located on the
outer face (the exterior face) of the drawing and every edge of G can cross at most ¢ other edges in the drawing. Thus it is
of interest to determine two functions f;(r) and [ ,(r) such that f;(r) (or f; ,(r), respectively) is the smallest integer such
that every outer-¢-planar graph G satisfies x.(G) < f,(r) (or x;,(G) < fr¢(r), respectively). In this paper, it is known that
fr1(r) = @(r). Future researches are needed to be conducted to better understand these functions f¢(r) and fi ().
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