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For a hamiltonian property P , Clark and Wormold introduced the problem of investigating 
the value P(a, b) = max{min{n : Ln(G) has property P}: κ ′(G) ≥ a and δ(G) ≥ b}, 
and proposed a few problems to determine P(a, b) with b ≥ a ≥ 4 when P is being 
hamiltonian, edge-hamiltonian and hamiltonian-connected. Zhan in 1986 proved that the 
line graph of a 4-edge-connected graph is Hamilton-connected, which implies a solution 
to the unsettled cases of above-mentioned problem. We consider an extended version of 
the problem. Let ess′(G) denote the essential edge-connectivity of a graph G , and define 
P ′(a, b) = max{min{n : Ln(G) has property P}: ess′(G) ≥ a and δ(G) ≥ b}. We investigate 
the values of P ′(a, b) when P is one of these hamiltonian properties. In particular, we 
show that for any values of b ≥ 1, P ′(4, b) ≤ 2 and P ′(4, b) = 1 if and only if Thomassen’s 
conjecture that every 4-connected line graph is hamiltonian is valid.

© 2021 Elsevier B.V. All rights reserved.

1. The problem

We study finite graphs with undefined terms and notation following those in [1]. Let L(G) denote the line graph of a 
graph G , which is a simple graph with vertex set E(G), where two vertices in L(G) are adjacent if and only if the corre-
sponding edges are adjacent in G . For an integer m > 0, define L0(G) = G , and the iterated line graph Lm(G) = L(Lm−1(G)). 
For discussional convenience, we in this paper denote G to be the family of all connected nontrivial graphs that are not 
isomorphic to a path, a cycle or a K1,3. To study iterated line graphs, we only consider graphs in G . The iterated line graph 
index problem is an intensively studied topic in graph theory. Chartrand and Wall in [3] initiated the study of the small-
est integer k ≥ 0, called the hamiltonian index of a graph G , such that the iterated line graph Lk(G) becomes hamiltonian. 
Other hamiltonian like indices were defined and studied by Clark and Wormald in [7]. More generally, we have the following 
definition.

Definition 1.1. ([17]) Let P denote a graphical property and G be a connected graph in G . We also use P to denote the 
family of graphs that has property P . Thus a graph G ∈P if and only if G has property P . Define P(G), the P-index of G , 
as follows:
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P(G) =
{

min{k : Lk(G) ∈ P} if for some integer j > 0, L j(G) has property P ,
∞ otherwise.

For vertices u, v ∈ V (G), a (u, v)-path is a path from u to v . A graph G is edge-hamiltonian if every edge of G lies 
in a Hamilton cycle of G; and is Hamilton-connected if for every pair of vertices u, v ∈ V (G), G has a spanning (u, v)-
path. Clark and Wormald in [7] initiated the study of the indices for the properties of being hamiltonian, being edge-
hamiltonian and being Hamilton-connected, together with several other hamiltonian properties. They proved the existences 
of the indices of the properties listed above. Additional studies of these indices can also be found in [17], which showed that 
the above-mentioned hamiltonian-like properties are closed under taking iterated line graphs. In [25], Ryjáček, Woeginger 
and Xiong indicated that determining the value of the hamiltonian index is a difficult problem. The index problem for 
graphical properties has been intensively studied, as seen in [3,4,6–8,16,17,22,26–28,25,32,35], among others. Define

H = {G ∈ G : G is hamiltonian},
Eh = {G ∈ G : G is edge-hamiltonian},
Hc = {G ∈ G : G is Hamilton-connected}.

For a hamiltonian property P and integers a > 0 and b > 0, Clark and Wormald in [7] define

P(a,b) =
{

max{min{n : Ln(G) ∈ P} : G ∈ G with κ ′(G) ≥ a, δ(G) ≥ b}, if such max exists,
∞ otherwise,

(1)

and investigate the values of P(a, b) when P represents the properties of being hamiltonian, edge-hamiltoning, pancyclic, 
edge-pancyclic, vertex-pancyclic, Hamilton-connected and pan-connected, among others. Clark and Wormald in [7] showed 
that for all the above mentioned properties P ,

P(1,1) = P(1,2) = P(2,2) = ∞. (2)

Clark and Wormald in [7] also proved that for other cases with b ≥ a ≥ 3, 1 ≤ P(a, b) ≤ 3 except when b ≥ a ≥ 4 and 
P ∈ {H, Eh, Hc}. The paper [7] ends with the following question: if P ∈ {H, Eh, Hc}, what is the value of P(a, b) when 
b ≥ a ≥ 4?

Zhan in [33] is the first addressing this question. He proved in [33] that the line graph of every 4-edge-connected graph 
is in Hc . This result implies that if b ≥ a ≥ 4, then H(a, b) = Hc(a, b) = 1. For an Hamilton-connected graph G and an 
arbitrary edge e = uv ∈ E(G), as G has a spanning (u, v)-path P , E(P ) ∪ {e} induces a Hamilton cycle that contains e. 
Therefore by definition, we have

Hc ⊆ Eh ⊆ H, and so for any positive integers a and b, Hc(a,b) ≥ Eh(a,b) ≥ H(a,b). (3)

Hence Zhan’s result gives rise to a complete answer to the question raised in [7], as follows.

Theorem 1.2. (Zhan [33]) If b ≥ a ≥ 4, then H(a, b) =Hc(a, b) = Eh(a, b) = 1.

We consider an extension of the problem. Let U , W ⊆ V (G) be vertex subsets. Define

(U , W )G = {uw ∈ E(G) : u ∈ U and w ∈ W }.
When Y = V (G) − X , then we define ∂G(U ) = (U , V (G) − U )G . An edge cut of G is an edge subset of the form ∂G (U ) for 
some proper nonempty set U . An edge subset X = ∂G(U ) of G is an essential edge cut if either each of the subgraphs 
G[U ] and G − U has at least one edge, or |X | ≥ |E(G)| − 1. The essential edge connectivity of G , denoted ess′(G), is the 
smallest size of an essential edge cut of G . A graph G is essentially k-edge-connected if G is connected and ess′(G) ≥ k. By 
definition, it is observed in [28] that the following holds for a connected graph G with |E(G)| ≥ 3:

κ(L(G)) = ess′(G). (4)

For a connected nontrivial graph G , every essential edge cut of G is also an edge-cut of G . Hence we have ess′(G) ≥ κ ′(G). 
For a graphical property P and positive integers a, b, define

P ′(a,b) =
{

max{min{n : Ln(G) ∈ P} : G ∈ G with ess′(G) ≥ a, δ(G) ≥ b}, if such max exists,
∞ otherwise.

(5)

By (1) and (5) and as ess′(G) ≥ κ ′(G), it is known that P ′(a, b) ≥ P(a, b) for any property P . By definition, if a graph G
satisfies both δ(G) ≥ k and ess′(G) ≥ k, then G does not have an edge cut whose size is less than ess′(G), and so we must 
have ess′(G) = κ ′(G) in this case. Thus
2
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for all b ≥ a ≥ 1, P ′(a,b) = P(a,b). (6)

As δ(G) ≥ κ ′(G) for any graph G , we observe that when a > b, P(a, b) does not exist. However, it is meaningful to discuss 
P ′(a, b) even when a > b. Unlike the behavior of P(a, b), the study of P ′(a, b) is related to the following fascinating 
conjecture of Thomassen:

Conjecture 1.3. (Thomassen [30]) Every 4-connected line graph is hamiltonian.

In this research, we shall investigate the values of P ′(a, b) when P ∈ {H, Eh, Hc}. As (6) has suggested some relationship 
between P ′(a, b) and P(a, b) when b ≥ a ≥ 1, we reformulate the results in [7] together with Theorem 1.2 as follows.

Theorem 1.4. (Clark and Wormald [7], Zhan [33]) For P ∈ {H, Eh, Hc}, we have the following.

P (a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if 1 ≤ a ≤ b ≤ 2,
3 if P ∈ {Eh,Hc} with a = 1 and b = 3,
2 if P = H and both a = 1 and b = 3,
2 if 2 ≤ a ≤ b ≤ 3, or if 1 ≤ a ≤ 3 < 4 ≤ b,
1 if b ≥ a ≥ 4.

(7)

The following is the main theorem of this research.

Theorem 1.5. If P ∈ {H, Eh, Hc}, then each of the following holds.
(i) If b ≥ a ≥ 1, then P ′(a, b) =P(a, b).
(ii) For a = 2, P ′(2, 1) = ∞.
(iii) For a = 3, P ′(3, 1) =P ′(3, 2) = 3.
(iv) If a ≥ 4 and b ≥ 1, then P ′(4, b) ≤ 2. Furthermore, P ′(4, b) = 1 if and only if Conjecture 1.3 is valid.
(v) If a ≥ 6 and b ≥ 1, or if a = 5 and b ≥ 4, then P ′(a, b) = 1.

In the next section, we summarize and develop former results and needed tools in our arguments to prove the main 
results. The main results will be validated in the last section.

2. Preliminaries

Given a trail T = v0e1 v1...en−1 vn−1en vn in a graph G , we often refer this trail as a (v0, vn)-trail to emphasize the end 
vertices, or as an (e1, en)-trail to emphasize the end edges. The vertices v1, v2, ..., vn−1 are the internal vertices of T . As 
a vertex may occur more than once in a trail, when either v0 or vn occurs in the trail as a vi with 0 < i < n, it is also an 
internal vertex by definition. A trail T of G is internally dominating if every edge of G is incident with an internal vertex 
of T , is spanning if T is internally dominating with V (T ) = V (G). A graph G is spanning trailable if for any pair of edges 
e′, e′′ ∈ E(G), G has a spanning (e′, e′′)-trail. If H is an eulerian subgraph (a closed trail) of G , then every vertex of H is 
an internal vertex. Thus H is dominating if E(G − V (H)) = ∅. Harary and Nash-Williams discovered a close relationship 
between dominating eulerian subgraphs and hamiltonian line graphs.

Theorem 2.1. (Harary and Nash-Williams, [10]) Let G be a connected graph with at least three edges. The line graph L(G) is hamilto-
nian if and only if G has a dominating eulerian subgraph.

Following the same idea of Theorem 2.1, the conclusions in the next proposition have been observed.

Proposition 2.2. Let G be a connected graph with at least three edges.
(i) The line graph L(G) has a Hamilton path if and only if G has an internally dominating trail.
(ii) (Shao [28], see also Theorem 1.5 of [20]) The line graph L(G) is Hamilton-connected if and only if for any edges e, e′ ∈ E(G), G has 
an internally dominating (e, e′)-trail. In particular, if G is spanning trailable, then L(G) is Hamilton-connected.

Let G be a graph, and define τ (G) to be the maximum number of edge-disjoint spanning trees in G . For each integer 
i ≥ 0, define

Di(G) = {v ∈ V (G) : dG (v) = i}.
Thus O (G) := ∪s≥0 D2s+1(G) is the set of all odd degree vertices of G . A graph G is eulerian if G is connected with 
O (G) = ∅; and is supereulerian if it contains a spanning eulerian subgraph. For a subset Y ⊆ E(G), the contraction G/Y is 
the graph obtained from G by identifying the two ends of each edge in Y and then by deleting the resulting loops. If H is a 
3
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subgraph of G , we often use G/H for G/E(H). For a vertex v ∈ V (G/X), we define P IG (v) to be the contraction preimage 
of v in G .

A graph G is called collapsible if for any R ⊆ V (G) with |R| is even, G has a spanning subgraph S R with O (S R) = R . 
The following theorem briefs some of the properties of collapsible graphs.

Theorem 2.3. Let k ≥ 1 be an integer and G be a graph. Each of the following holds.
(i) (Catlin [2]) (Corollary 1 of [2]) If G has a spanning tree of which every edge lies in a cycle of length 3 in G, then G is collapsible. In 
particular, cycles of length at most 3 are collapsible.
(ii) (Gusfield [9] and Kundu [15]) If κ ′(G) ≥ 2k, then τ (G) ≥ k.

Lemma 2.4. (Li et al., Proposition 2.3 of [21]) Let k ≥ 1 be an integer, and let Tk = {G : τ (G) ≥ k}. Then Tk satisfies each of the 
following.
(C1) K1 ∈ Tk.
(C2) If G ∈ Tk and e ∈ E(G), then G/e ∈ Tk.
(C3) Let H be a subgraph of G. If H, G/H ∈ Tk, then G ∈ Tk.

Definition 2.5. Let e = uv be an edge of G . Define G(e) to be the graph obtained from G by replacing e = uv with a path 
uve v , where ve is a new vertex not in V (G). We say that G(e) is formed by performing an elementary subdivision on 
e ∈ E(G). For an edge subset X ⊆ E(G), we use G(X) to denote the graph formed by performing an elementary subdivision 
on each edge in X . When X = {e1, e2}, we also use G(e1, e2) for G(X).

As defined in [23,19], a graph G is strongly spanning trailable if for any e, e′ ∈ E(G), G(e, e′) has a (ve, ve′)-trail T with 
V (G) = V (T ) − {ve, ve′ }. By definition, every strongly spanning trailable graph is spanning trailable. As observed in [24]
(also in Chapter 1 of [31]), there exist graphs that are spanning trailable but not strongly spanning trailable.

Lemma 2.6. Let G be a connected graph. Then each of the following holds.
(i) (Lei et al., Theorem 2.2 (iv) of [19]) Suppose that τ (G) ≥ 2. For any e′, e′′ ∈ E(G), G(e′, e′′) has a spanning (ve′ , ve′′)-trail if and 
only if {e′, e′′} is not an edge-cut of G. Moreover, if {e′, e′′} is an edge-cut of G and G1 , G2 are the two components of G −{e′, e′′}, then 
for any i ∈ {1, 2}, G has an (e′, e′′)-trail containing all vertices in V (Gi).
(ii) (Proposition 1.1 of [20]) If G(e′, e′′) has a spanning (ve′ , ve′′)-trail, then G has a spanning (e′, e′′)-trail.
(iii) If τ (G) ≥ 2 and ess′(G) ≥ 3, then L(G) is Hamilton-connected.

Proof. It remains to prove (iii). Suppose that τ (G) ≥ 2 and ess′(G) ≥ 3. By Proposition 2.2 (ii), we shall show that G is 
spanning trailable. Let e′, e′′ ∈ E(G). If {e′, e′′} is not an edge-cut of G , then Lemma 2.6 (i) and (ii) imply that G has a 
spanning (e′, e′′)-trail. If {e′, e′′} is an edge-cut of G , then as ess′(G) ≥ 3, there exists a vertex v of degree 2 in G incident 
with both e′ and e′′ , and so by Lemma 2.6 (i), G has a spanning (e′, e′′)-trail. �
3. Proof of Theorem 1.5

Theorem 1.5 will be justified in this section. The arguments will utilize the symmetric difference of two sets X and Y , 
which is defined as

X�Y = X ∪ Y − (X ∩ Y ).

We have the following observations.

Observation 3.1. Let G be a graph and let u, v ∈ V (G) be two distinct vertices.
(i) If {u, v} is a vertex cut of G, then G does not have a spanning (u, v)-path.
(ii) If e = uv ∈ E(G) and {u, v} is a vertex cut of G, then G does not have a Hamilton cycle containing e.
(iii) If G is Hamilton-connected, then κ(G) ≥ 3.

Shao [29] proves some useful properties for essential edge-connectivity of line graphs.

Theorem 3.2. (Shao, Theorem 1.3 of [29]) Let G ∈ G be a connected graph with |E(G)| ≥ 4. If D2(G) = ∅, then ess′(L(G)) ≥ 2ess′(G) −
2.

Lemma 3.3. Let G be a connected graph with |E(G)| ≥ 4, ess′(G) ≥ 1 and δ(G) ≥ 3. Then ess′(L(G)) ≥ min{ess′(G) + 1, 4}.

Proof. By Theorem 3.2, if ess′(G) ≥ 3, then ess′(L(G)) ≥ 2ess′(G) − 2 ≥ min{ess′(G) + 1, 4}. Hence we assume that ess′(G) ∈
{1, 2}. Since δ(G) ≥ 3, we have δ(L(G)) ≥ 4. As |V (L(G))| = |E(G)| ≥ 4, we have |E(L(G))| ≥ 8. Hence we may assume that 
4
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L(G) has two connected nontrivial components L1 and L2, with V (L(G)) = V (L1) ∪ V (L2) and V (L1) ∩ V (L2) = ∅, such that 
F = (V (L1), V (L2))L(G) is a minimum essential edge-cut of L(G).

Let c = |F | and denote F = { f1, f2, ..., fc}. Then 1 ≤ c ≤ 2. For each i ∈ {1, 2, ..., c}, denote f i = eie′
i for edges ei, e′

i ∈ E(G), 
with ei ∈ V (L1) and e′

i ∈ V (L2). Thus we may assume that there exist distinct vertices ui, vi, wi ∈ V (G) such that ei = ui vi
and e′

i = vi wi . Since δ(G) ≥ 3, there must be an edge e′′
i = zi vi ∈ E(G) − {ei, e′

i}. As F is an essential edge cut of L(G), it 
follows by definition that {e1, e2, ..., ec} is an essential edge cut of G . Thus ess′(G) ≤ c.

Suppose that c = 1. Then e1 is an essential cut edge of G . As e1, e′
1, e

′′
1 ∈ E(G), we by symmetry may assume that 

e′′
i ∈ V (L2), and so e1e′

1, e1e′′
1 ∈ (V (L1), V (L2))L(G) = F . It follows that ess′(L(G)) = c ≥ 2.

Suppose now that c = ess′(G) = 2. Then we may assume that e1 
= e2 and {e1, e2} is an essential edge cut of G . 
With the notation above, we have e1, e′

1, e
′′
1, e2, e′

2, e
′′
2 ∈ E(G) = V (L(G)) with e1, e2, e′

1, e
′′
1 being mutually distinct edges 

in G . If e′
1 
= e′

2, then F contains three distinct edges e1e′
1, e1e′′

1, e2e′
2, and so we have 2 = |F | ≥ |{e1e′

1, e1e′′
1, e2e′

2}| = 3, 
a contradiction. Assume that e′

1 = e′
2. If e′′

2 ∈ V (L1), then 2 = |F | ≥ |{e1e′
1, e1e′′

1, e1e′
2}| = 3, and if e′′

2 ∈ V (L2), then 
2 = |F | ≥ |{e1e′

1, e1e2, e2e′′
2}| = 3. A contradiction occurs in any case. Hence we must have c ≥ 3. This proves the lemma. �

As P ′(a, b) ≥P(a, b), it follows from (2) that

P ′(1,1) = P ′(1,2) = P ′(2,2) = ∞. (8)

The following lemma shows an upper bound of P ′(a, b) when a ≥ 3.

Lemma 3.4. Let G ∈ G be a connected graph with |E(G)| ≥ 4 and ess′(G) ≥ 3. Then L3(G) is Hamilton-connected. Thus for any a ≥ 3
and b ≥ 1, H′

c(a, b) ≤ 3.

Proof. As G ∈ G and by the definition of iterated line graphs, we have |E(Li(G))| ≥ 4 for i ≥ 1. As ess′(G) ≥ 3, we have 
ess′(L(G)) ≥ κ ′(L(G)) ≥ κ(L(G)) ≥ 3. Thus by Theorem 3.2 and δ(L(G)) ≥ κ(L(G)) ≥ 3, we have κ ′(L2(G)) = ess′(L2(G)) ≥ 4, 
and so by Theorem 2.3 (ii), τ (L2(G)) ≥ 2. It follows from Lemma 2.6 (iii) that L3(G) is Hamilton-connected. �
3.1. Justification of Theorem 1.5 (i), (ii) and (iii)

It is straightforward that Theorem 1.5 (i) is a consequence of (6). It suffices to prove Theorem 1.5 (ii) and (iii).

Proposition 3.5. For any integer k > 0, there exists an infinite family G1(k) of connected graphs such that every G ∈ G1(k) satisfies 
ess′(G) = 2, δ(G) = 1 and Lk(G) is not hamiltonian. Thus H′(2, 1) cannot be bounded above by a finite number.

Proof. Let s1, s2 be nonnegative integers, w1, w2 be two distinct vertices, and for i ∈ {1, 2}, Xi = {xi
1, x

i
2, ..., x

i
si
} be a set of 

vertices, and for j ∈ {1, 2, 3}, P j = v j
1...v

j
k+1 be a path of length k, such that the sets {w1, w2}, X1, X2 and V (P1), V (P2)

and V (P3) are mutually disjoint. Define G = G(k, s1, s2) to be the graph with

V (G) = {w1, w2} ∪ X1 ∪ X2 ∪ V (P1) ∪ V (P2) ∪ V (P3),

E(G) = E(P1) ∪ E(P2) ∪ E(P3) ∪ {w1 v j
1 : 1 ≤ j ≤ 3} ∪ {w2 v j

k+1 : 1 ≤ j ≤ 3}
∪{w1x1

s : 1 ≤ s ≤ s1} ∪ {w2x2
s : 1 ≤ s ≤ s2}.

Hence G − (X1 ∪ X2) can be viewed as a subdivision of K2,3. By the definition of iterated line graphs, we observe that 
Lk−1(G) can be contracted to a K2,3 in which every vertex in D2, K2,3 has a nontrivial contraction preimage. It follows by 
Theorem 2.1 that Lk(G) is not hamiltonian. �

By Proposition 3.5, we conclude that for any P ∈ {H, Eh, Hc}, P ′(2, 1) = ∞. This proves Theorem 1.5 (ii).
To prove Theorem 1.5 (iii), we start with a proposition showing the lower bounds.

Proposition 3.6. For any integer k > 0, each of the following holds.
(i) There exists an infinite family of connected graphs F1 such that for any G ∈F1 , ess′(G) = 3, δ(G) = 1 and L2(G) is not hamiltonian. 
Thus H′

c(3, 1) ≥ E ′
h(3, 1) ≥H′(3, 1) ≥ 3.

(ii) There exists an infinite family of connected graphs F2 such that for any G ∈F2 , ess′(G) = 3, δ(G) = 2 and L2(G) is not hamiltonian. 
Thus H′

c(3, 2) ≥ E ′
h(3, 2) ≥H′(3, 2) ≥ 3.

Proof. Let P (10) denote the Petersen graph with E = E(P (10)) and V (P (10)) = {vi : 1 ≤ i ≤ 10}. As in Definition 2.5, 
P (10)(E) is the graph formed from P (10) by performing an elementary subdivision on each edge in E .

(i) For each i with 1 ≤ i ≤ 10, let J i ∼= K1,di be a star with di ≥ 2 and with wi being the only vertex of degree di in J i . 
Obtain a graph G = P (10)(di : 1 ≤ i ≤ 10) from P (10)(E) by identifying vi with wi , for each i with 1 ≤ i ≤ 10. Define F1
5
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to be the graph family such that G ∈ F1 if and only if G = P (10)(di : 1 ≤ i ≤ 10) for some integers di ≥ 2. Thus for each 
G ∈ F1, ess′(G) = 3 and δ(G) = 1. As L(G) is contractible to the Petersen graph with every vertex in the contraction having 
a nontrivial contraction preimage, it follows by Theorem 2.1 that L2(G) is not hamiltonian. This, together with (3), implies 
that H′

c(3, 1) ≥ E ′
h(3, 1) ≥ H′(3, 1) ≥ 3.

(ii) For each i with 1 ≤ i ≤ 10, let J i ∼= K2,di be a star with di ≥ 3 and with wi being one of the two vertex of degree di
in J i . Obtain a graph G = P (10)′(di : 1 ≤ i ≤ 10) from P (10)(E) by identifying vi with wi , for each i with 1 ≤ i ≤ 10. Define 
F2 to be the graph family such that G ∈ F2 if and only if G = P (10)′(di : 1 ≤ i ≤ 10) for some integers di ≥ 3. Thus for each 
G ∈ F2, ess′(G) = 3 and δ(G) = 2. As L(G) is contractible to the Petersen graph with every vertex in the contraction having 
a nontrivial contraction preimage, it follows by Theorem 2.1 that L2(G) is not hamiltonian. This, together with (3), implies 
that H′

c(3, 2) ≥ E ′
h(3, 2) ≥ H′(3, 2) ≥ 3. �

By Lemma 3.4, for any positive integer b, we have H′(3, b) ≤ H′
c(3, b) ≤ 3. By Proposition 3.6 (ii) and (iii), we conclude 

that H′
c(3, 1) = E ′

h(3, 1) = H′(3, 1) = 3 and H′
c(3, 2) = E ′

h(3, 2) =H(′3, 2) = 3. This completes the proof for Theorem 1.5 (ii).

3.2. Justification of Theorem 1.5 (iv)

While Conjecture 1.3 remains open, there have been many researches done towards the conjecture. The following theo-
rem summarizes some efforts on the hamiltonian properties of 4-connected iterated line graphs.

Theorem 3.7. Let G be a connected graph. Each of the following holds.
(i) (Corollary 3.9 of [5]) If L2(G) is 4-connected, then L2(G) is hamiltonian.
(ii) (Kriesell, [13]) If L2(G) is 4-connected, then L2(G) is Hamilton-connected.
(iii) (Theorem 1.3 of [18]) Let G be a connected graph with |E(G)| ≥ 4 and ess′(G) ≥ 3. If every 3-edge-cut of G has at least one edge 
lying in a short cycle of G, then L(G) is Hamilton-connected.

In fact, Kriesell in [13] proved that every 4-connected line graph of a graph without an induced K1,3 is Hamilton-
connected, which apparently implies Theorem 3.7 (i) and (ii). As shown in Corollary 1.5 of [18], Theorem 3.7 (iii) is an 
extension of the above mentioned results in [5] and [13]. By Theorem 3.7 and (3), we observe that

for any integer b ≥ 1, H′(4,b) ≤ E ′
h(4,b) ≤ H′

c(4,b) ≤ 2. (9)

By (4) and (9), we are led to the conclusion that H′(4, b) = 1 if and only if Conjecture 1.3 holds. To complete the 
justification of Theorem 1.5 (iv), we need the following result of Kučzel and Xiong in [14].

Theorem 3.8. (Kučel and Xiong [14]) The following are equivalent.
(i) Every 4-connected line graph is hamiltonian.
(ii) Every 4-connected line graph is Hamilton-connected.

By (9), H′(4, b) ≤H′
c(4, b) ≤ 2. This, together with Theorem 3.8, has led us to the following observation.

Observation 3.9. The following statements are equivalent.
(i) For any positive integer b, H′(4, b) = 1.
(ii) Every 4-connected line graph is hamiltonian.
(iii) Every 4-connected line graph is Hamilton-connected.
(iv) For any positive integer b, H′

c(4, b) = 1.

In fact, assume that Observation 3.9 (i) holds, and so for any positive integer b, H′(4, b) = 1. Then the definition of 
H′(4, b) implies that every connected, essentially 4-edge-connected graph has a hamiltonian line graph. By (4), this is equiv-
alent to Observation 3.9 (ii). Next we assume that Observation 3.9 (ii) is valid. Then by Theorem 3.8, Observation 3.9 (iii) 
follows. By the definition of H′

c(4, b), we conclude that Observation 3.9 (iii) implies Observation 3.9 (iv). Finally, by (3), we 
observe that Observation 3.9 (iv) implies Observation 3.9 (i). This completes the justification of Observation 3.9. By (9), (3)
and Observation 3.9, Theorem 1.5 (iv) is now validated.

3.3. Justification of Theorem 1.5 (v)

The first result towards Conjecture 1.3 was done by Zhan in [34]. In 2012, Kaiser and Vrána made a breakthrough after 
Zhan’s first result. Later in 2014, Kaiser, Ryjáček and Vrána gave a further improvement, as presented below.

Theorem 3.10. A graph G is 1-Hamilton-connected if for any vertex subset S ⊆ V (G) with |S| ≤ 1, G − S is Hamilton-connected.
(i) (Zhan, Theorem 3 in [34]) If κ(L(G)) ≥ 7, then L(G) is Hamilton-connected.
6
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(ii) (Kaiser and Vrána [12]) Every 5-connected claw-free graph with minimum degree at least 6 is hamiltonian.
(iii) (Kaiser, Ryjáček and Vrána [11]) Every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-connected.

Theorem 3.10 has an immediate corollary, which implies Theorem 1.5 (v).

Corollary 3.11. Each of the following holds.
(i) For any a ≥ 6 and b ≥ 1, H′

c(a, b) = 1.
(ii) For any a ≥ 5 and b ≥ 4, H′

c(a, b) = 1.

4. Remark

The cases we cannot determine the values of P ′(a, b) are those when a = 4 and 1 ≤ b ≤ 5, or a = 5 and 1 ≤ b ≤ 3. 
Using the same arguments as in Subsection 3.2, it is clear that if Conjecture 1.3 holds, then P ′(a, b) = 1 for all these 
above-mentioned unsettled values of a and b.
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