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a b s t r a c t

For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge
sets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t , G has a spanning closed trail that contains
X and avoids Y . Pulleyblank (1979) showed that determining whether a graph is (0, 0)-
supereulerian, even when restricted to planar graphs, is NP-complete. Settling an open
problem of Bauer, Catlin in (Catlin, 1988) showed that every simple graph G on n vertices
with δ(G) ≥

n
5 − 1, when n is sufficiently large, is (0, 0)-supereulerian or is contractible

to K2,3. A function j0(s, t) has been found that every (s, t)-supereulerian graph must have
edge connectivity at least j0(s, t).

For any nonnegative integers s and t , we obtain best possible Ore conditions to assure
a simple graph on n vertices to be (s, t)-supereulerian as stated in the following.
(i) For any real numbers α and β with 0 < α < 1, there exists a family of finitely
many graphs F(α, β; s, t) such that if κ ′(G) ≥ j0(s, t) and if for any nonadjacent vertices
u, v ∈ V (G), dG(u) + dG(v) ≥ αn + β , then either G is (s, t)-supereulerian, or G is
contractible to a member in F(α, β; s, t).
(ii) If κ ′(G) ≥ j0(s, t) and if for any nonadjacent vertices u, v ∈ V (G), dG(u)+dG(v) ≥ n−1,
then when n is sufficiently large, either G is (s, t)-supereulerian, or G is contractible to
one of the six well specified graphs.
(iii) Suppose that δ(G) ≥ 5. If

for any vertices u, v, w ∈ V (G) with E(G[{u, v, w}]) = ∅, dG(u)

+ dG(v) + dG(w) > n − 3. (1)

then G is (s, t)-supereulerian if and only if κ ′(G) ≥ j0(s, t).
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs that may have parallel edges and follow [2] for undefined terms and notation. For a
ertex subset or an edge subset X of a graph G, G[X] denotes the subgraph induced by X . As in [2], we use δ(G), ∆(G), κ(G)

and κ ′(G) to denote the minimum degree, the maximum degree, the connectivity and the edge-connectivity of a graph G,
respectively. For a vertex v ∈ V (G), define NG(v) to be the set of neighbors of v in G and NG[v] = NG(v) ∪ {v}.
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A graph G is supereulerian if G has a spanning closed trail. Boesch, Suffel and Tindell in [1] initiated the study of the
supereulerian problem, seeking characterizations of supereulerian graphs. Pulleyblank in [19] showed determining if a
graph is supereulerian, even within planar graphs, is NP complete. In [15], the notion of (s, t)-supereulerian was formally
brought in as a generalization of supereulerian graphs. For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for
any disjoint edge sets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t , G has a spanning closed trail that contains X and avoids Y . Thus
supereulerian graphs are precisely (0, 0)-supereulerian graphs. A number of research results on the (s, t)-supereulerian
problem and similar topics have been obtained, as seen in [7,10,11,13–16,20,24], among others.

Let G be a graph, define σ2(G) = min{dG(u) + dG(v) : u, v ∈ V (G) and uv /∈ E(G)}. Sufficient conditions in terms of σ2
re commonly known as Ore conditions, due the well known result of Ore [18] on hamiltonian graphs. There have been
any researches using Ore conditions to study supereulerian graphs, as can be found in Catlin’s resourceful survey [4],
s well as its later updates in [8,12].
As supereulerian graphs are (0, 0)-supereulerian graphs, it is natural to investigate (s, t)-supereulerian graphs for all

ossible values of s and t using Ore conditions. By definition, if a graph G is (s, t)-supereulerian, then κ ′(G) ≥ t + 2. This
bservation leads Xiong et al. in [23] to find a necessary condition for (s, t)-supereulerian graphs, as presented in the
ollowing proposition.

roposition 1.1 (Xiong et al. [23]). Let s, t be nonnegative integers. Define

j0(s, t) =

{
s + t +

1−(−1)s
2 if s ≥ 1 and s + t ≥ 3,

t + 2 otherwise.
(2)

If a graph G is (s, t)-supereulerian, then κ ′(G) ≥ j0(s, t).

For given nonnegative integers s and t , we shall use (2) as the definition of j0 := j0(s, t) throughout the rest of this
aper.
Motivated by the studies in hamiltonian graphs and supereulerian graphs, it is natural to seek best possible Ore

ondition to warrant a simple graph G to be (s, t)-supereulerian. To aim at a better result, we define a strengthened
Ore type degree condition of a graph G as follows.

m2(G) = min{max{dG(u), dG(v)} : u, v ∈ V (G) and uv /∈ E(G)}. (3)

s 2m2(G) ≥ σ2(G), the quantity m2(G) may be considered as a strengthened form of the Ore condition, and so both
heorem 1.1 and Theorem 1.2 can also be stated using Ore conditions in a straightforward way by replacing the condition
2(G) ≥ f (n) with σ2(G) ≥ 2f (n), for each of the lower bounds f (n) stated in these theorems.
Theorem 1.1 involves a graph family F(a, b; s, t), for given integers s and t and real numbers a and b with 0 < a < 1.

efore we state Theorem 1.1, we shall describe this family F(a, b; s, t) and explain its finiteness. N is a finite number
efined by a function of the given values a, b, s and t , and F(a, b; s, t) consists of all (s, t)-reduced graphs of order at
ost N . The (s, t)-reduced graphs will be introduced in Section 2.2, where it is shown that every (s, t)-reduced graph has

it edge multiplicity bounded by max{s + t, t + 1, 3}. Thus every graph G ∈ F(a, b; s, t) has order at most N and has its
edge multiplicity bounded by a function of s and t , and so F(a, b; s, t) contains only finitely many graphs.

Theorem 1.1. For any nonnegative integers s and t and any real numbers a and b with 0 < a < 1, there exists a family of
finitely many graphs F(a, b; s, t) such that if G is a simple graph on n vertices with κ ′(G) ≥ j0(s, t) and

m2(G) ≥ an + b, (4)

then one of the following must hold.
(i) G is (s, t)-supereulerian.
(ii) G is contractible to a member in F(a, b; s, t).

Example 1.1. For some given values s and t , there exist graphs with edge connectivity at least j0(s, t) but not
(s, t)-supereulerian.

(i) Let e1, e2 be a matching in the graph K4. Then K4 − e1 does not have a spanning eulerian subgraph containing e2,
and so K4 is not (1, 1)-supereulerian with κ ′(K4) = 3 = j0(1, 1).

(ii) Define 2K3 to be the graph with V (2K3) = {v1, v2, v3} and E(2K3) = {e1, e′

1, e2, e
′

2, e3, e
′

3} such that e1 and e′

1
are parallel edges joining v1 and v3, e2 and e′

2 are parallel edges joining v2 and v3, and e3 and e′

3 are parallel edges
joining v1 and v2. Define 2K−−

3 = 2K3 − {e′

1, e
′

2} and 2K−

3 = 2K3 − {e′

1}. Then 2K−−

3 does not have a spanning
eulerian subgraph containing e3 and e′

3, 2K
−

3 − {e′

2} does not have a spanning eulerian subgraph containing e3 and e′

3 and
2K3−{e′

1, e
′

2} does not have a spanning eulerian subgraph containing e3 and e′

3. Hence 2K−−

3 is not (2, 0)-supereulerian with
κ ′(2K−−

3 ) = 2 = j0(2, 0), 2K−

3 is not (2, 1)-supereulerian with κ ′(2K−

3 ) = 3 = j0(2, 1), and 2K3 is not (2, 2)-supereulerian
with κ ′(2K3) = 4 = j0(2, 2).

(iii) For any integer h ≥ 1, the graph K2,2h+1 is not (0,0)-supereulerian, and κ ′(K2,2h+1) = 2 = j0(0, 0).
(iv) Let p, q be integers with p ≥ 2 and q ≥ 1. Let u1, u2 be two nonadjacent vertices of degree p in K2,p. Form a graph

K p from K by adding q (parallel, if q ≥ 2) edges e , . . . , e joining u and u . Then K 1 does not have a spanning
2,p 2,p 1 q 1 2 2,2
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Fig. 1. Some special graphs.

eulerian subgraph containing e1 and so K 1
2,2 is not (1,0)-supereulerian with κ ′(K 1

2,2) = 2 = j0(1, 0); and K 2
2,3 does not have

spanning eulerian subgraph containing e1 and e2, and so K 2
2,3 is not (2,0)-supereulerian with κ ′(K 2

2,3) = 2 = j0(2, 0).

heorem 1.2. Let s and t be two nonnegative integers. If G is a simple graph on n ≥ 51 vertices with κ ′(G) ≥ j0(s, t) and

m2(G) ≥
n
2

− 2, (5)

hen one of the following must hold.
(i) G is (s, t)-supereulerian.
(ii) G is contractible to a member in {2K−−

3 , 2K−

3 , 2K3, K4, K 1
2,2, K2,3}.

In Fig. 1, we depict the graphs in Example 1.1 and Theorem 1.2 (ii).
An immediate consequence of Theorem 1.2 is the following corollary, using Ore condition to describe the property of

being (s, t)-supereulerian.

Corollary 1.1. Let s and t be two nonnegative integers. Suppose that G is a simple graph on n ≥ 51 vertices and with δ(G) ≥ 5
uch that

for any vertices u, v ∈ V (G) with uv /∈ E(G), dG(u) + dG(v) ≥ n − 4. (6)

Then G is (s, t)-supereulerian if and only if κ ′(G) ≥ j0(s, t).

Corollary 1.1 motivates another way to investigate different versions of a generalized form of the Ore condition. We
also obtain the following result.

Theorem 1.3. Let s and t be two nonnegative integers. Suppose that G is a simple graph on n vertices and with δ(G) ≥ 5. If

for any vertices u, v, w ∈ V (G) with E(G[{u, v, w}]) = ∅, dG(u) + dG(v) + dG(w) > n − 3. (7)

then G is (s, t)-supereulerian if and only if κ ′(G) ≥ j0(s, t).

In the next section, we summarize former results and needed tools in our arguments to prove the main results. The
main results will be validated in the last three sections.

2. Preliminaries

Throughout this paper, we use Zm to denote the set of all integers modulo m, for a given integer m > 1. We often use
m instead of 0 to denote the additive identity in the group Zm when Zm is used as an index set. We use H ⊆ G to mean
that H is a subgraph of G. For vertex subsets X, Y ⊆ V (G), define

EG[X, Y ] = {xy ∈ E(G) : x ∈ X, y ∈ Y } and ∂G(X) = EG[X, V (G) − X],

and use ∂G(v) for ∂G({v}). If X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends
of each edge in X and then deleting the resulting loops. We define G/∅ = G. If H is a subgraph of G, we write G/H for
G/E(H). If H is a connected subgraph of G and vH is the vertex in G/H onto which H is contracted, then H is the preimage
of v in G. A vertex v in the contraction G/X is nontrivial if its preimage in G has at least two vertices.
H
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.1. Reducing collapsible subgraphs

Collapsible graphs are introduced by Catlin in [3] as a useful tool to study eulerian subgraphs. Let O(G) be the set of
ll odd degree vertices of G. A graph G is collapsible if for any subset R of V (G) with |R| ≡ 0 (mod 2), G has a spanning
onnected subgraph H with O(H) = R. By definition, the singleton graph K1 is collapsible. As when R = ∅, a spanning
onnected subgraph H with O(H) = R is a spanning closed trail of G, it follows that collapsible graphs are supereulerian
raphs. Let H1,H2, . . . ,Hc denote the list of all maximal collapsible subgraphs. The graph G′

= G/(∪c
i=1Hi) is the collapsible

reduction of G, or simply the reduction of G in short. A graph equaling its own reduction is a collapsible reduced graph,
or simply a reduced graph in short. Theorem 2.1 presents useful properties related to collapsible graphs.

Theorem 2.1. Let G be a graph and let H be a collapsible subgraph of G. Let vH denote the vertex onto which H is contracted
in G/H. Let K−

3,3 be the graph obtained from K3,3 by deleting an edge. Each of the following holds.
(i) (Catlin, Theorem 3 of [3]) G is collapsible (or supereulerian, respectively) if and only if G/H is collapsible (or supereulerian,

respectively). In particular, G is collapsible if and only if the reduction of G is K1.
(ii) (Catlin, Theorem 5 of [3]) A graph is reduced if and only if it does not have a nontrivial collapsible subgraph.
(iii) (Lei et al. Theorem 2.1(v) of [16]) Let X ⊆ E(G) be an edge subset of G. If G − X is collapsible, then G has a spanning

eulerian subgraph H with X ⊆ E(H).
(iv) Collapsible graphs include all complete graphs with order at least 3, cycles of length at most 3, K−

3,3 and K3,3.

While part of Theorem 2.1(iv) are implicitly implied in [3], these statements can also be straightforwardly justified by
applying Theorem 2.2(i). Following [5], let F (G) be the minimum number of additional edges that must be added to G to
result in a graph with two edge-disjoint spanning trees. Theorem 2.2(ii) can be obtained by applying Theorem 1.4 of [5]
to maximal 2-connected subgraph of G.

Theorem 2.2. Let G be a connected graph. Each of the following holds.
(i) (Catlin et al. Theorem 1.3 of [5]) Suppose that F (G) ≤ 2. Then G is collapsible if and only if its reduction is not a member

in {K2, K2,t : t ≥ 1}; and G is supereulerian if and only if its reduction is not a member in {K2, K2,2t+1 : t ≥ 1}.
(ii) (Catlin et al. Theorem 1.4 of [5]) If F (G) ≤ 2 and κ ′(G) ≥ 3, then G is collapsible.
(iii) (Catlin et al. Lemma 2.3 of [5]) If G is a reduced graph with |V (G)| ≥ 2, then F (G) = 2|V (G)| − |E(G)| − 2.
(iv) (Theorem 2.4 of [9]) Let C = v1v2v3v4v5v6v1 be a 6-cycle and let v0 /∈ V (C) be a vertex. Define K1,3(1, 1, 1) to be

the graph with vertex set V (C) ∪ {v0} and edge set E(C) ∪ {v0v1, v0v3, v0v5}. If G is a 2-edge-connected reduced graph with
F (G) ≤ 3, |V (G)| ≤ 7 and at most 3 vertices of degree 2, then G ∈ {K2,3, K1,3(1, 1, 1)}.

Extending Theorems 1.1 and 1.3 of [6] by Catlin et al. the following lemma utilizes the spanning tree packing theorem
of Nash-Williams [21] and Tutte [22], and indicates a relationship between edge connectivity and number of edge disjoint
spanning trees.

Lemma 2.1 (Catlin et al. [6] and Xiong et al. [23]). Let G be a connected graph, and ϵ, k, ℓ be integers with ϵ ∈ {0, 1}, ℓ ≥ 2
and 2 ≤ k ≤ ℓ. The following are equivalent.

(i) κ ′(G) ⩾ 2ℓ + ϵ.
(ii) For any X ⊆ E(G) with |X | ≤ 2ℓ − k + ϵ, G − X has k edge-disjoint spanning trees.

2.2. Reducing (s, t)-contractible subgraphs

For a graph G and an integer i, we define

Di(G) = {v ∈ V (G) : dG(v) = i}.

Let Ls,t denote the family of all (s, t)-supereulerian graphs. By definition, K1 ∈ Ls,t . A graph H is a contractible
configuration of Ls,t (or (s, t)-contractible, in short), if for any graph G containing H as a subgraph, the following always
holds:

G ∈ Ls,t if and only if G/H ∈ Ls,t .

An elementary subdivision of an edge e = uv ∈ E(G) is a new graph G(e) from G − e by adding a path uvev with ve
being a new vertex in G(e). If X ⊆ E(G) is an edge subset, then G(X) denotes the resulting graph formed by elementarily
subdividing each edge in X . With this definition, we have the following observations.

Observation 2.1. For an edge subset X ⊆ E(G), let VX = {ve : e ∈ X}, EX = {uve, vev : e = uv ∈ X} and
E ′

X = {vev : e = uv ∈ X}, and let Y ⊆ E(G) − X be an edge subset disjoint from X. Each of the following holds.
(i) VX = V (G(X)) − V (G) and EX = E(G(X)) − E(G).
(ii) There exists a bijection between X and {v u : e ∈ X} and so G(X)/E ′ ∼ G.
e X =
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(iii) For any 2-edge-connected subgraph H ′ of G(X) with |E(H ′)| > 0, and for any e = uv ∈ X, if ve ∈ V (H ′),
hen both veu, vev ∈ E(H ′); and if {uve, vve} ∩ E(H ′) ̸= ∅, then {uve, vve} ⊂ E(H ′). Thus in view of Observation 2.1(ii),

= H ′/(E ′

X ∩ E(H ′)) is a subgraph of G, called the restoration of H ′ in G.
(iv) G has a spanning eulerian subgraph H with X ⊆ E(H) and Y ∩ E(H) = ∅ if and only if (G − Y )(X) is supereulerian.
(v) Let J = (G − Y )(X) and J ′ be the reduction of J . If J is not supereulerian, then J ′ is also not supereulerian.

Observation 2.1(iii) defines the concept of restoration for a nontrivial subgraph H ′ of G(X). To make this definition a
omplete one, we further define that, if H ′ contains a single vertex v, then the restoration of H ′ in G is the singleton graph
[{v}] if v /∈ VX , or is an empty graph (a graph with no vertices nor edges) if v ∈ VX . Observation 2.1(v) follows from
heorem 2.1(i). Using the notation in Observation 2.1, we define

h = |D2(J ′)| and h1 = |D2(J ′) ∩ VX |. (8)

e define a relation ‘‘∼’’ on the edge set E(G) of a graph G such that e1 ∼ e2 if e1 = e2, or if e1 and e2 form a cycle in G.
t is routine to check that ∼ is an equivalence relation and edges in the same equivalence class are parallel edges with
he same end vertices. We use [uv] to denote the set of all edges between u and v in a graph, and shorten |[uv]| to |uv|.
f G is a graph, then µ(G) = max{|uv| : uv ∈ E(G)} is the multiplicity of G. Thus for each edge e ∈ E(G), the edges parallel
o e in G induces a subgraph isomorphic to |e|K2.

Chen, Chen and Luo prove an edge-connectivity sufficient condition for (s, t)-supereulerianicity, which is extended
ecently when the edge-connectivity is sufficiently large in Theorem 2.3(ii-2).

heorem 2.3. Let s, t be nonnegative integers and let G be a graph.
(i) (Chen, Chen and Luo, Theorem 4.1 of [7]) If κ ′(G) ≥ 4, t ≤

κ ′(G)
2 and s + t + 1 ≤ κ ′(G), then G is (s, t)-supereulerian.

(ii) (Proposition 2.6 of [16]) Each of the following holds.
(ii-1) If G is (s, t)-supereulerian, then any contraction of G is also (s, t)-supereulerian.
(ii-2) Suppose that H is a graph with κ ′(H) ≥ max{s + t + 1, t + 2, 5}. Then H is (s, t)-supereulerian.
(ii-3) If H = ℓK2 with ℓ ≥ max{s + t + 1, t + 2, 4}, then G is (s, t)-supereulerian if and only if G/H is (s, t)-supereulerian.

Theorem 2.3(ii-1) indicates that Ls,t is closed under taking contraction, and, if ℓ ≥ max{s + t + 1, t + 2, 4}, then ℓK2
is a contractible configuration of Ls,t . A graph Γ is (s, t)-reduced if Γ does not contain any nontrivial subgraph that is a
contractible configuration of Ls,t . For a graph G, the (s, t)-reduction of G, is the graph Γ formed from G by contracting all
maximal (s, t)-contractible subgraphs of G. By definition, if Γ is the (s, t)-reduction of G, then

G ∈ Ls,t if and only if Γ ∈ Ls,t . (9)

Using the definitions for the graphs in Example 1.1 (ii), it is routine to verify that

K4 is (1, 1)-reduced, 2K−−

3 is (2, 0)-reduced, 2K−

3 is (2, 1)-reduced and 2K3 is (2, 2)-reduced. (10)

Definition 2.1. Let s and t be nonnegative integers, G be a graph, X and Y be disjoint edge subsets of G with |X | ≤ s and
|Y | ≤ t , and let J = (G − Y )(X) and J ′ be the reduction of J . For any vertex z ∈ V (J ′), let H ′

z denote the preimages of z in
J , and let Hz be the restorations of H ′

z in G − Y . Define

M = G[

⋃
z∈V (J ′)

E(Hz)],

M ′
= J[

⋃
z∈V (J ′)

E(H ′

z)],

X ′
= X ∩ E(M ′) and J ′′ = (G − Y )(X ′)/M ′.

Define Y ′
= {uv ∈ Y : there exists a graph L ∈ {Hz : z ∈ V (J ′)} such that u, v ∈ V (L)}, and Y ′′

= Y − Y ′.

Lemma 2.2 describes a relationship between the (collapsible) reduction of G and the (s, t)-reduction of G. Thus for a
graph G, the (collapsible) reduction of G and the (s, t)-reduction of G may not be the same. The following lemmas are
useful.

Lemma 2.2 (Lemma 2.8 of [16]). We adopt the notation in Definition 2.1 and let X ′′
= X − X ′. Each of the following holds.

(i) X ′′
⊆ E(J ′′) and J ′′ = (G − Y )(X ′)/M ′

= (G − Y ′′)(X ′)/M ′.
(ii) J ′ = J ′′(X ′′) = ((G − Y ′′)/M)(X ′′).
(iii) If J is not supereulerian, then G can be contracted to an (s, t)-reduced and non (s, t)-supereulerian graph with order at

most |V (J ′)|.

Lemma 2.3. Let s and t be nonnegative integers.
(i) Let Kn0 denote a complete graph of order n0 ≥ max{s+ t+3, 5}. Then for any disjoint edge subsets X and Y with |X | ≤ s

and |Y | ≤ t, both
G − (X ∪ Y ) and (G − Y )(X) are collapsible.
(ii) Every complete graph K with n ≥ max{s + t + 3, 5}, is (s, t)-contractible.
n0 0
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roof. (i) Let K = Kn0 . Define K 1
= (K −Y )(X) and K 2

= K − (X ∪Y ). As |X ∪ Y | ≤ s+ t , and since n0 ≥ max{s+ t +3, 5},
ither n0 = 5 and s + t ≤ 2, or n0 ≥ s + t + 3. If n0 = 5 and |X | + |Y | ≤ 2, then as K 2 is obtained from K5 by removing
t most 2 edges, every edge in K 2 lies in a cycle of length 3. By the fact that K3 is collapsible, we conclude that K 2 is also
ollapsible. Now assume that n0 − 1 ≥ s + t + 2. Let ℓ = ⌊

n0−1
2 ⌋. Then |X ∪ Y | ≤ s + t ≤ n0 − 3 ≤ 2ℓ − 2. By Lemma 2.1

ith k = 2 we conclude that K 2 has 2-edge-disjoint spanning trees, and so by Theorem 2.3(i), K 2 is collapsible. Since K 2 is
collapsible subgraph of K 1, and K 1/K 2 is a graph with |X | 2-cycles, it follows Theorem 2.1(iv) that K 1/K 2 is collapsible.
y Theorem 2.1(i), K 1 is collapsible. This proves Lemma 2.3(i).
To prove (ii), we let G be a graph and K ∼= Kn0 be a subgraph of G such that n0 ≥ max{s + t + 3, 5}. In the rest of the

roof, we view that K is an induced subgraph of G, and so K = G[V (Kn0 )]. By Theorem 2.3(ii-1), it suffices to assume that
/K ∈ L(s, t) to prove that G ∈ L(s, t).
If G /∈ L(s, t), then there exist disjoint subsets X, Y of E(G) with |X | ≤ s and |Y | ≤ t such that G − Y does not

ave a spanning eulerian subgraph containing edges in X . By Observation 2.1(iv), (G − Y )(X) is not supereulerian. Define
1 = X ∩ E(K ), Y1 = Y ∩ E(K ), X2 = X − X1 and Y2 = Y − Y1. Let vK be the vertex in G/K onto which K is contracted.
hus by definition, X2, Y2 are disjoint edge subsets of G/K . Since G/K ∈ L(s, t), by Observation 2.1(iv), G/K − Y2 has a
panning eulerian subgraph containing all edges in X2. Thus (G/K − Y2)(X2) is supereulerian. Let G1

= (G − Y )(X) and
K 1

= (K −Y1)(X1). Then K 1 is a subgraph of G1. By (i), K 1 is a collapsible subgraph of G1, and as G1/K 1
= (G/K −Y2)(X2) is

supereulerian, it follows by Theorem 2.1(i) that G1
= (G − Y )(X) is supereulerian. This contradiction justifies the lemma.

■

Lemma 2.4 (Liu et al. Lemma 3.1 of [17]). Let G be a simple graph and W ⊆ V (G) be a subset with δW = min{dG(w) : w ∈ W }.
If |∂G(W )| < δW , then |W | ≥ δW + 1.

Lemma 2.5. Let c0 > 0 be a constant, G be a simple graph with m2 = m2(G), and W1 and W2 be two vertex subsets of G
with W1 ∩ W2 = ∅ satisfying that for i ∈ {1, 2}, |∂G(Wi)| ≤ c0. Each of the following holds.

(i) If for some W ∈ {W1,W2}, G[W ] is not spanned by a complete graph, then |W | ≥ m2 + 1 − c0.
(ii) If for some w1 ∈ W1 and w2 ∈ W2, w1w2 /∈ E(G), then max{|W1|, |W2|} ≥ m2 + 1 − c0.

Proof. Suppose that G[W ] is not spanned by a complete graph. Then there exist vertices w′

1, w
′

2 ∈ W such that
w′

1w
′

2 /∈ E(G). Suppose that dG(w′

1) ≥ dG(w′

2) and let V1 = NG[w
′

1] ∩ W and V2 = NG[w
′

1] − W . Then |W | ≥ |V1| =

|NG[w
′

1]| − |V2| ≥ m2 + 1 − |∂G(W )| ≥ m2 + 1 − c0. This proves (i).
Now assume that for some w1 ∈ W1 and w2 ∈ W2, w1w2 /∈ E(G). By symmetry, we may assume that dG(w1) ≥ dG(w2).

Then |W1| ≥ |NG[w1]| − |∂G(W1)| ≥ m2 + 1 − c0. This proves (ii). ■

3. Proof of Theorem 1.1

Throughout this section, a and b denote real numbers with 0 < a < 1, and s and t denote two given nonnegative
integers, and j0 = j0(s, t). Unless otherwise stated, let G be a simple graph on n vertices with κ ′(G) ≥ j0(s, t) such that (4)
holds. When disjoint edge subsets X and Y in a graph G are given, we let J = (G − Y )(X), and let J ′ be the reduction of J ,
and adopt the notation in Observation 2.1 for the definition of VX and EX , and define h and h1 as in (8). Let

V ′

X = {v ∈ VX : v ∈ V (J ′)} (11)

denote the set of trivial vertices in J ′ each of whose preimage is a single vertex in VX . For each vertex z ∈ V (J ′) − V ′

X , let
H ′

z be the preimage of z in J and Hz be the restoration of H ′
z in G.

Lemma 3.1. Suppose that s, t are non-negative integers, G is a simple graph with m2 = m2(G) and κ ′(G) ≥ j0. Let
m0 = max{s + t + 3, 5}, X, Y ⊆ E(G) be disjoint edge subsets with |X | ≤ s and |Y | ≤ t, and let J ′ be the reduction of
(G − Y )(X) such that J ′ is not supereulerian. Then each of the following holds.

(i) Suppose that m2 satisfies (4). Define

Za,b = Za,b(G) = {v ∈ V (G) : dG(v) < an + b}. (12)

Then G[Za,b] is a complete subgraph of G.
(ii) Suppose that m2 satisfies (4) and Zab is defined in (12). If Z ′ is the vertex subset in J ′ such that the preimage of each

vertex in Z ′ contains a vertex in Za,b, then |Z ′
| < m0.

(iii) If J ′ = K2,h for some odd integer h ≥ 3, with h − h1 ≤ 1, then G can be contracted to a member in {2K−−

3 , 2K−

3 , 2K3}.
(iv) If J ′ = K2,h for some integer h ≥ 3 with h − h1 ≥ 2, then either t ∈ {1, 2}, h − h1 = 2 and edges in Y are joining

vertices in the preimages of the two vertices in D2(J ′) − V ′

X , or t = 0 and 0 ≤ s ≤ 2.

Proof. If there exist distinct vertices z1, z2 ∈ Za,b with z1z2 /∈ E(G), then by the definition of Za,b and by (4), we have
an + b > max{dG(z1), dG(z1)} ≥ m2 ≥ an + b, a contradiction. This proves (i).

Suppose that |Z ′
| ≥ m0. Then by Lemma 3.1(i), G[Za,b] is a complete graph. As |X ∪ Y | ≤ s+t , it follows from Lemma 2.3

that G[Z ] − (X ∪ Y ) is a collapsible subgraph of J . Hence each collapsible subgraph of J that contains a vertex in Z
a,b a,b
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ust be contracted into one vertex in J ′, and so |Z ′
| = 1. This leads to a contradiction that 1 = |Z ′

| ≥ m0, and so (ii) must
hold.

Assume that J ′ = K2,h for some odd integer h ≥ 3 with Dh(J ′) = {u1, u2}. Let k = |Y ∩ EG[V (Hu1 ), V (Hu2 )]|.
Then k ≤ |Y | ≤ t . Suppose first that h = h1. Then by (8), 3 ≤ h = h1 ≤ |VX | = |X | ≤ s, and so we have
j0 ≤ κ ′(G) ≤ |EG[V (Hu1 ), V (Hu2 )]| = h + k ≤ s + t . Since either h < s or s = h is odd, it follows by (2) that
0 ≤ κ ′(G) ≤ h+k ≤ j0 −1, a contradiction. Therefore we assume that h−h1 = 1. Let z ∈ D2(J ′)−V ′

X . Then by (8), 3 ≤ h =

1 + (h − h1) = |V ′

X | + 1 ≤ |X | + 1 ≤ s + 1, and so s ≥ 2. If t = 0, then by (2), we have s ≤ j0 ≤ κ ′(G) ≤ |∂G(V (Hz))| = 2.
Hence we must have s = 2 and h = 3. It follows that G/(Hu1 ∪Hu2 ∪Hz) ∼= 2K−−

3 , and so Lemma 3.1(iii) holds in this case.
Thus we may assume that t > 0. Then t + 2 ≤ κ ′(G) ≤ |∂G(V (Hz)) − Y | + |∂G(V (Hz)) ∩ Y | ≤ dJ ′ (z)+ t = 2+ t , and so both
∂G(V (Hz)) ∩ Y = Y and κ ′(G) = j0(s, t) = t + 2. This implies, by (2) and s ≥ 2, that s = 2 and t ∈ {1, 2}. If t = 1, then by
symmetry, we assume that the only edge in Y is incident with a vertex in V (Hu1 ) in G. Thus G/(Hu1 ∪ Hu2 ∪ Hz) ∼= 2K−

3 .
Assume that t = 2. Let t1 = |∂G(V (Hz)) ∩ ∂G(V (Hu1 )) ∩ Y | and t2 = |∂G(V (Hz)) ∩ ∂G(V (Hu2 )) ∩ Y |. Then we have t = t1 + t2.
Moreover, ∂G(V (Hu1 )) = ∂G(V (Hz)) ∩ ∂G(V (Hu1 )) ∪ X ∪ {e′

}, and so t1 + 2 + 1 = |∂G(V (Hu1 ))| ≥ κ ′(G) ≥ 2 + t . Hence
t1 ≥ t − 1. Similarly, t2 ≥ t − 1 and so t = t1 + t2 ≥ 2t − 2. Thus we must have t = 2 with t1 = t2 = 1. It follows that
G/(Hu1 ∪ Hu2 ∪ Hz) ∼= 2K3, once again, Lemma 3.1(iii) holds in this case as well.

We now prove (iv) and assume that D2(J ′)−V ′

X = {z1, z2, . . . , zh−h1}. By definition of J ′, we have ∂G(V (Hzi )) ⊆ ∂J ′ (zi)∪Y ,
and so t+2 ≤ κ ′(G) ≤ |∂G(V (Hzi ))| ≤ dJ ′ (zi)+t = 2+t , for each i with 1 ≤ i ≤ h−h1. It follows that ∂G(V (Hzi )) = ∂J ′ (zi)∪Y .
As zi, zj ∈ D2(J ′) for 1 ≤ i ≤ j ≤ h − h1, we have ∂G(V (Hzi )) ∩ ∂G(V (Hzj )) = ∅, and so either t = 0 or both t > 0 and
h−h1 = 2. Assume first that t > 0. Then t+2 ≤ κ ′(G) ≤ |∂G(V (Hz1 ) ∪ V (Hz2 ))| = dJ ′ (z1)+dJ ′ (z2) = 4, leading to t ∈ {1, 2}.
This, together with |∂G(V (Hzi ))| = dJ ′ (zi) + |Y | for i ∈ {1, 2}, implies that Y = EG[V (Hz1 ), V (Hz2 )], and so Lemma 3.1(iv)
holds in this case. Hence we may assume that t = 0 and so 2 ≤ j0 ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = dJ ′ (z1) = 2. This implies that,
by (2), s ∈ {0, 1, 2}. This completes the proof of the lemma. ■

Proof of Theorem 1.1. Choose an integer c = c(a, s, t) such that

c ≥ max
{

10a
1 + a(2s + t + 6)

+ 1, 4
}

, (13)

nd define N = N(a, b, s, t) to be an integer satisfying

N ≥ max
{
(1 + a)(1 + |b|)

a2
,
c + t + |b| + 1

a
,
1 + a(2s + t + 6)

a
,
(c + 1)[a(2s + t) + 1] + 2a(3c − 2)

a(c − 3)

}
. (14)

e use F = F(a, b; s, t) to denote the family of all (s, t)-reduced and non (s, t)-supereulerian graphs of order at most N .
y Theorem 2.3(ii-3), every graph G in F has multiplicity at most max{s+t, t+1, 3}. As there are only finitely many graphs
ith order N and with edge multiplicity bounded by max{s + t, t + 1, 3}, F is a family of finitely many graphs. To prove
heorem 1.1, we argue by contradiction, and assume that there exists a counterexample graph G to Theorem 1.1 with
= |V (G)| minimized among all counterexample to the theorem. As G is a minimum counterexample, and by Lemma 2.2,
e have the following observations.

bservation 3.1. Each of the following holds for this graph G.
(i) κ ′(G) ≥ j0(s, t).
(ii) G is not (s, t)-supereulerian and cannot be contracted to a member in F , and so n ≥ N + 1.
(iii) There exist disjoint edge subsets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t such that G−Y does not have a spanning closed

rail that contains all edges in X.

As G is a counterexample, G is not (s, t)-supereulerian and cannot be contracted to a member in F . In order to justify
bservation 3.1(ii), assume that n ≤ N . Then let G′ be an (s, t)-reduction of G. As G is not (s, t)-supereulerian, it follows
y Theorem 2.3(ii) that G′ is also not (s, t)-supereulerian with |V (G′)| ≤ |V (G)| ≤ N . As an (s, t)-reduction of G, G′ is
s, t)-reduced, and so G′

∈ F . This is a contradiction to the fact that G cannot be contracted to a member in F . Hence we
ust have Observation 3.1(ii). Observation 3.1(iii) follows from the definition as G is not (s, t)-supereulerian.
In the following, we let X and Y be the edge subsets defined in Observation 3.1(iii), J = (G− Y )(X), J ′ be the reduction

f J , and adopt the notation in Observation 2.1 for the definition of VX and EX ; define h and h1 as in (8), and V ′

X as in (11).
s κ ′(G) ≥ j0(s, t), it follows by Observation 2.1(iv) and (v) that,

κ ′(J ′) ≥ κ ′(J) ≥ 2, J ′ is not supereulerian, and F (J ′) ≥ 2. (15)

Claim 3.1. F (J ′) ≥ 3.

Suppose by contradiction that F (J ′) = 2. By Theorem 2.2(i), we have J ′ = K2,h. By Observation 3.1(iii) and
Observation 2.1(iv), J is not supereulerian. By Theorem 2.1(i), J ′ is not supereulerian. Thus h must be an odd integer
and so h ≥ 3. By (10), Lemma 3.1(iii), (iv) and Observation 3.1(ii), we may assume that either t ∈ {1, 2} and h − h1 = 2,
or t = 0 and 0 ≤ s ≤ 2. Let Dh(J ′) = {u1, u2}, and let H ′

u1 ,H
′
u2 be the preimages of u1 and u2 in J , respectively; and let Hu1

and H be the restorations of H ′ and H ′ in G − Y , respectively. Define k = |Y ∩ E [V (H ), V (H )]|. Then k ≤ |Y | ≤ t .
u2 u1 u2 G u1 u2
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Suppose first that both t ∈ {1, 2} and h − h1 = 2. Let z1, z2 be the vertices in D2(J ′) − V ′

X . By symmetry, we assume
that |V (Hz1 )| ≥ |V (Hz2 )|. By Lemma 3.1(iv), Y = EG[V (Hz1 ), V (Hz2 )]. If t = 1, then 3 ≤ j0(s, 2) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 3,
and so by (2), s ∈ {1, 2}. If s = 1, then as h is odd, we must have h1 = s = 1, and so G can be contracted to K4
ith vertices z1, z2, u1, u2, contrary to Observation 3.1(ii) with s = t = 1. Therefore we must have t = 2, and so
≤ j0(s, 1) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 4, forcing κ ′(G) = 4 and s ∈ {1, 2}. As h ≥ 3 is odd, we must have s = 1,

and so κ ′(G) ≤ |∂G(V (Hz1 ))| = 3, contrary to the fact that κ ′(G) = 4.
Hence we may assume that t = 0 and 0 ≤ s ≤ 2. As t = 0, Y = ∅, and for any i with 1 ≤ i ≤ h−h1 and any vi ∈ V (Hzi ),

the set {v1, v2, . . . , vh−h1} is a stable set in G. We may assume that the labeling of these vertices satisfies

|V (Hz1 )| ≤ |V (Hz2 )| ≤ ... ≤ |V (Hzh−h1
)|.

As |∂G(Hzi )| = 2, it follows from Lemma 2.5 with c0 = 2 that

h−h1∑
i=2

|V (Hzi )| ≥ (h − h1 − 1)(an + b − 1). (16)

This leads to n − 3 ≥ n − (|V (Hu1 )| + |V (Hu2 )| + |V (Hz1 )|) ≥
∑h−h1

i=2 |V (Hzi )| ≥ (h − h1 − 1)(an + b − 1). Thus

h − h1 ≤
n − 3

an + b − 1
+ 1 ≤

n
an + b − 1

+ 1 =
1
a

+
1 − b

a(an + b − 1)
+ 1. (17)

y (14), we have n > N ≥
(1+a)(1+|b|)

a2
≥

1−b
a and so an + b − 1 > 0, and n > N ≥

(1+a)(1+|b|)
a2

≥
(1+a)(1−b)

a2
, and so

1−b
a(an+b−1) < 1. Hence by (17),

h − h1 ≤
1
a

+
1 − b

a(an + b − 1)
+ 1 <

1
a

+ 2.

t follows by h1 ≤ |X | ≤ s and (14) that |V (J ′)| = 2+ h = 2+ h1 + (h− h1) < 2+ s+ 1
a + 2 =

1
a + s+ 4 ≤

1+a(2s+t+6)
a ≤ N .

y Lemma 2.2, G can be contracted to an (s, t)-reduced graph with at most N vertices, which is in F , contrary to
Observation 3.1(ii). This contraction proves the claim.

Let n′
= |V (J ′)|. By Claim 3.1, F (J ′) ≥ 3 and so by Theorem 2.2(iii), we have

4n′
− 2|E(J ′)| ≥ 10. (18)

In the arguments below, we are to use the following notation and terms. For each vertex v ∈ V (J ′) − V ′

X , let H
′
v be the

maximal collapsible subgraph in J which is the contraction preimage of v, and let Hv be the restoration of H ′
v . Thus Hv is

a subgraph of G. Define n′
= |V (J ′)|, Za,b as in (12) and

Zc = {v ∈ V (J ′) : dJ ′ (v) ≤ c}, Z ′
= {v ∈ Zc : V (Hz) ∩ Za,b ̸= ∅}, and Z ′′

= Zc − (Z ′
∪ V ′

X ). (19)

Claim 3.2. Each of the following holds.
(i) |Z ′

| ≤ s + t + 5 and |Zc ∩ V ′

X | ≤ s.
(ii) Suppose that n′′

= |Z ′′
| > 0 and denote Z ′′

= {z1, z2, . . . , zn′′}. Then there exist vertices v1, v2, . . . , vn′′ such that for
each i with 1 ≤ i ≤ n′′, vi ∈ V (Hzi ) such that NG[vi] ⊆ V (Hzi ).

(iii) |Z ′′
| ≤

1
a + 1, and |Zc | ≤

1+a(2s+t+6)
a .

(iv) n′
≤ N.

By Lemma 3.1(ii), we have |Z ′
| ≤ m0 ≤ s + t + 5. By definition, |Zc ∩ V ′

X | ≤ |VX | = |X | ≤ s. Hence Claim 3.2(i) follows.
Denote Z ′′

= {z1, z2, . . . , zn′′} with n′′
= |Z ′′

|. For each zi ∈ Z ′′, by (19), V (Hzi ) ∩ Za,b = ∅. Thus for each v′

i ∈ V (Hzi ),
we have dG(v′

i ) ≥ an + b. By (14), n ≥ N ≥
c+t+|b|

a ≥
c+t−b

a , and so dG(v′

i ) ≥ an + b > c + t ≥ |∂G(Hzi )|, It follows by
emma 2.4 that |V (Hzi )| ≥ c + t + 1. It follows that there must be a vertex vi ∈ V (Hzi ) such that NG[vi] ⊆ V (Hzi ). This
roves (ii).
We may assume that n′′

= |Z ′′
| > 1. Let v1, . . . , vn′′ be the vertices as defined in (ii). For each i ∈ {1, 2, . . . , n′′

}, as
i /∈ Za,b, |V (Hzi )| ≥ |NG[vi]| ≥ an + b + 1, and so

n ≥

n′′∑
i=1

|V (Hzi )| ≥ n′′(an + b + 1), or n′′
≤

n
an + b + 1

.

y (14), n > N ≥
(1+|b|)(1+a)

a2
, and so −

b+1
a(an+b+1) ≤

|b|+1
(an+b+1) < 1. It follows that

n′′
≤

n
an + b + 1

=
an + b + 1 − (b + 1)

a(an + b + 1)
=

1
a

−
b + 1

a(an + b + 1)
≤

1
a

+ 1. (20)

y (20) and by Claim 3.2(ii), we have |Z | = |Z ′
| + |Z ′′

| + |Z ∩ V ′
| ≤ s + t + 5 +

1
+ 1 + s =

1+a(2s+t+6) . This proves (iii).
c c X a a
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To prove (iv), we observe that for any vertex z ∈ V (J ′) − Zc , dJ ′ (z) ≥ c + 1, and so by (18),

(c + 1)|V (J ′) − Zc | ≤

∑
v∈V (J ′)

dJ ′ (v) = 2|E(J ′)| ≤ 4n′
− 10.

t follows that |V (J ′) − Zc | ≤
4n′

−10
c+1 , and so by Claim 3.2(iii),

1 + a(2s + t + 6)
a

≥ |Zc | = n′
− |V (J ′) − Zc | ≥ n′

−
4n′

− 10
c + 1

= n′

(
1 −

4
c + 1

)
+

10
c + 1

. (21)

y algebraic manipulations and by (21), (13) and (14), we have

n′
≤

(
1 + a(2s + t + 6)

a
−

10
c + 1

)(
1 −

4
c + 1

)−1

=
(c + 1)[a(2s + t) + 1] + 2a(3c − 2)

a(c − 3)
≤ N.

hus (iv) holds, and so the claim is justified.
By Claim 3.2(iv), and by Lemma 2.2, the (s, t)-reduction of G is a member in F , contrary to Observation 3.1(ii). This

ompletes the proof of Theorem 1.1. ■

. Proof of Theorem 1.2

Throughout this section, let s and t be given nonnegative integers, and let n = |V (G)| ≥ 51. Assume that G is a
ounterexample to Theorem 1.2. As G is a counterexample, we have the following observation.

bservation 4.1. Each of the following holds for this graph G.
(i) G satisfies (5) and κ ′(G) ≥ j0(s, t).
(ii) G is not contractible to a member in {2K−−

3 , 2K−

3 , 2K3, K4, K 1
2,2, K2,3}.

(iii) There exist disjoint edge subsets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t such that G−Y does not have a spanning closed
rail that contains all edges in X. By Observation 2.1(iv), (G − Y )(X) is not supereulerian.

For the edge subsets X and Y defined in Observation 4.1(ii), let J = (G−Y )(X), J ′ be the reduction of J . In the following,
we continue adopting the notation in Observation 2.1 for the definition of VX and EX , and define h and h1 as in (8), and

′

X as in (11). By Observation 4.1(iii) and Theorem 2.1(i),

J ′ is not supereulerian, and so J ′ ̸= K1. (22)

ince κ ′(G) ≥ t + 2, we conclude that J ′ is a 2-edge-connected nontrivial reduced graph. As before, for each z ∈ V (J ′), we
et H ′

z denote the preimage of z in J and Hz denote the restoration of H ′
z in G. Define h and h1 as in (8), and set

Z0 = Z0(G) = {v ∈ V (G) : |NG(v)| <
n
2

− 2}, (23)

Z ′
= {v ∈ V (J ′) : ∂G(V (Hv)) ≤ s + 5, V (Hv) ∩ Z0 = ∅},

e shall justify the following claims.

laim 4.1. Each of the following holds.
(i) |V ′

X | ≤ s and |Z ′
− V ′

X | ≤ 2.
(ii) If J ′ − V ′

X has at least 3 vertices z1, z2, z3 of degree 2 such that for each i ∈ {1, 2, 3}, ∂G(Hzi ) ∩ Y = ∅ and there exist a
vertex vi ∈ V (Hzi ) with v1, v2, v3 being a stable set of G, then |V (J ′ − V ′

X )| ≤ 4.

By the definition of V ′

X , |V
′

X | ≤ |X | ≤ s. By (23), for any z ∈ Z ′
− VX and for any v ∈ Hz , we have dG(v) ≥

n
2 − 2. Hence

by Lemma 2.4, |V (Hz)| ≥
n
2 − 2. It follows that |Z ′

|( n2 − 2) ≤
∑

z∈Z ′ |V (Hz)| ≤ n, and so as n > 12, we have

|Z ′
− V ′

X | ≤
2n

n − 4
= 2 +

8
n − 4

< 3.

hus |Z ′
− V ′

X | ≤ 2, which proves Claim 4.1(i).
Assume that J ′ − V ′

X has 3 vertices z1, z2, z3 of degree 2 such that for each i ∈ {1, 2, 3}, there exist a vertex vi ∈ V (Hzi )
with v1, v2, v3 being a stable set of G. By Lemma 3.1(i) with a =

1
2 and b = −2, we conclude that at least two of these

hree vertices are in Z ′
−V ′

X , and so |Z ′
− V ′

X | ≥ 2. By Claim 4.1(i), we conclude that |Z ′
− V ′

X | = 2 and so we may assume
hat z1, z2 ∈ Z ′

−V ′

X . By (5) and (23), and as ∂G(Hzi )∩Y = ∅, for i ∈ {1, 2}, every vertex v ∈ V (Hzi ) has degree dG(v) ≥
n
2 −2,

and so by Lemma 2.4, we have |V (Hzi )| ≥
n
2 − 1. It follows that

n = |V (G)| ≥ |V (J ′ − V ′

X ) − {z1, z2}| +

2∑
i=1

|V (Hzi )| ≥ |V (J ′ − V ′

X )| − 2 + 2
(n
2

− 1
)

= |V (J ′ − V ′

X )| − 4 + n,

nd so |V (J ′ − V ′ )| ≤ 4. This completes the proof of the claim.
X
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laim 4.2. F (J ′) ≥ 3.

We assume by contradiction that F (J ′) = 2, and so by Theorem 2.2(ii), we have J ′ = K2,h. By Observation 4.1(iii), J is
ot supereulerian. By Theorem 2.1(i), J ′ is not supereulerian. Thus h must be an odd integer and so h ≥ 3. If h − h1 ≤ 1,
hen by Lemma 3.1(iii), G is contractible to a member in {2K−−

3 , 2K−

3 , 2K3, K4, K2,3}, contrary to Observation 4.1(ii). Hence
h − h1 ≥ 2, and so Lemma 3.1(iv), either t ∈ {1, 2} and h − h1 = 2, or t = 0 and 0 ≤ s ≤ 2. Let Dh(J ′) = {u1, u2}, and let

′
u1 ,H

′
u2 be the preimages of u1 and u2 in J , respectively.

ase 4.1. Both t ∈ {1, 2} and h − h1 = 2.

Let z1, z2 be the two vertices in D2(J ′) − V ′

X . By Lemma 3.1(iv), Y = EG[V (Hz1 ), V (Hz2 )]. If t = 1, then |∂G(V (Hz1 ))| =

∂G(V (Hz2 ))| = 3, and so j0(s, 1) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 3. Thus by (2), s ∈ {0, 1}. As h1 ≤ s ≤ 1 and h ≥ 3, we conclude
hat h1 = s = 1, t = 1 and h = 3. It follows that (X ∪Y )∩E(Hz1 ∪Hz2 ∪H ′

u1 ∪H ′
u2 ) = ∅, and G/(Hz1 ∪Hz2 ∪H ′

u1 ∪H ′
u2 )

∼= K4,
contrary to Observation 4.1 (ii).

Therefore, we assume that t = 2, and so |∂G(V (Hz1 ))| = |∂G(V (Hz2 ))| = 4. Thus j0(s, 1) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 4.
y (2), s ∈ {0, 1, 2}. Since h ≥ 3 is odd, and 1 ≤ h1 ≤ s, we conclude that h1 = 1, t = 2 and h = 3. If s = 1, then
z1 ∪ Hz2 ∪ H ′

u1 ∪ H ′
u2 is a subgraph of G; if s = 2, then one of the restoration of Hz1 ,Hz2 ,H

′
u1 ,H

′
u2 in G may contain an

edge in X . We continue using Hz1 ,Hz2 ,H
′
u1 ,H

′
u2 to denote their restorations in G. Then G/(Hz1 ∪ Hz2 ∪ H ′

u1 ∪ H ′
u2 )

∼= 2K−

3 ,
contrary to Observation 4.1 (ii). Case 4.1 is proved.

Case 4.2. Both t = 0 and 0 ≤ s ≤ 2.

Hence Y = ∅ in this case. Denote D2(J ′) − V ′

X = {z1, z2, . . . , zh−h1}. Then {z1, z2, . . . , zh−h1} is a stable set of J ′. By
symmetry, we may assume for any 1 ≤ i < j ≤ h − h1, there exists a vertex z ′

i ∈ V (Hzi ) such that dG(z ′

i ) ≤ dG(z ′

j ). As for
each i ∈ {1, 2, . . . , h − h1}, we have |∂G(Hzi )| = 2, it follows by (5) and Lemma 2.5(ii) that

n − 3 ≥ n − (|V (Hu1 )| − |V (Hu2 )| − |V (Hz1 )|) =

h−h1∑
i=2

|V (Hzi )| ≥ (h − h1 − 1)(
n
2

− 3). (24)

s n > 50, (24) implies that 1 ≤ h − h1 ≤ 3. Since 0 ≤ h1 ≤ s, we also have 0 ≤ h1 ≤ 2. If h1 = 0, then since h ≥ 3,
e have h = 3, and so G is contractible to K2,3, contrary to Observation 4.1 (ii). Hence we assume that h1 ∈ {1, 2}. Since
= ∅, we observe that for each i ∈ {1, 2, . . . , h − h1}, ∂G(V (Hzi )) ⊆ ∂G(V (Hu1 )) ∪ ∂G(V (Hu2 )). If h1 = 1, then as h ≥ 3 is

dd and h − h1 ≤ 3, we have h − h1 = 2, and so G is contractible to K 1
2,2, contrary to Observation 4.1 (ii). If h1 = 2, then

s h ≥ 3 is odd and h − h1 ≤ 3, either h = 3 or h = 5. If h1 = 2 and h = 3, then G is contractible to 2K−−

3 , contrary to
bservation 4.1 (ii). Hence we assume that h = 5 and so h − h1 = 3. Then G is contractible to K 2

2,3. In this case, the pair
f parallel edges in K 2

2,3 must be edges in X , and the 3 vertices of degree 2 in this K 2
2,3 are the three vertices in D2(J ′) and

(J ′ −V ′

X ) = V (K 2
2,3). As Y = ∅, by Claim 4.1(ii), we must have 5 = |V (K 2

2,3)| = |V (J ′ − V ′

X )| ≤ 4, a contradiction. Hence the
ossibility of h = 5 does not occur. This implies that we cannot have F (J ′) = 2, and so we must have F (J ′) ≥ 3, validating
laim 4.2.
Let n′′

= |V (J ′) − V ′

X |. By Claim 4.2 and Theorem 2.2(iii), 2|E(J ′)| ≤ 4n′
−10. By (23), if z ∈ V (J ′)−Z ′, then dJ ′ (z) ≥ s+6.

ence by V ′

Z ⊂ Z ′ and by Claim 4.1(ii),

(s + 6)(n′′
− 2) ≤ (s + 6)(|V (J ′ − V ′

X )| − |Z ′
|) ≤

∑
v∈V (J ′−V ′

X )

dJ ′ (v) ≤ 2|E(J ′)|

≤

∑
v∈V (J ′)

dJ ′ (v) = 2|E(J ′)| ≤ 4|V (J ′)| − 10 = 4n′′
+ 4|V ′

X | − 10.

ence (s + 2)(n′′
− 2) + 4n′′

− 8 ≤ 4n′′
+ 4|V ′

X | − 10, or (s + 2)(n′′
− 2) ≤ 4|V ′

X | − 2. Thus by |V ′

X | ≤ s,

n′′
≤ 2 +

4|V ′

X | − 2
s + 2

≤ 2 +
4(s + 2) − 10

s + 2
= 6 −

10
s + 2

. (25)

ecall that κ ′(J ′) ≥ 2. If 1 ≤ s ≤ 2, then |V (J ′)| ≤ 5 with at most 2 vertices of degree 2. By Theorem 2.2(iii), F (J ′) ≤ 1,
contrary to Claim 4.2. Assume that s = 3. Then by (25), we have n′′

≤ 4, and so |V (J ′)| ≤ 7 and |V ′

X | ≤ 3. It follows
y Theorem 2.2(iii) and Claim 4.2 that F (G) = 3, and so by Theorem 2.2(iv), J ′ ∼= K1,3(1, 1, 1) with |V ′

X | = s = 3. This
mplies that G − Y can be contracted to K4, and so κ ′(G − Y ) ≤ κ ′(K4) = 3. By (2) with s = 3, κ ′(G) ≥ t + 4, and so
≥ κ ′(G − Y ) ≥ 4, a contradiction.
Hence we may assume that s ≥ 4 and n′′

∈ {4, 5}. By (2) and by assumption of Theorem 1.2, we have κ ′(G) ≥

0(s, t) ≥ s + t ≥ 4. As |Y | ≤ t , we have κ ′(G − Y ) ≥ s ≥ 4. Let X1 ⊆ X such that |X − X1| = min{2, |X |}. Then by
emma 2.1 with s = 2ℓ + ϵ and k = 2, we conclude that G − (X1 ∪ Y ) has 2 edge-disjoint spanning trees. Since adding
a new vertex with two edges joining the new vertex to a graph with two edge-disjoint spanning trees will also result in
a graph with two edge-disjoint spanning trees, we conclude that (G − Y )(X ) also has two edge-disjoint spanning trees.
1
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ince J = (G − Y )(X) = ((G − Y )(X1))(X − X1) and since |X − X1| = min{2, |X |} ≤ 2, it follows that F (J) ≤ 2, and so
F (J ′) ≤ F (J) ≤ 2, contrary to Claim 4.2. Hence J ′ must be isomorphic to K1, contrary to (22). This completes the proof of
the theorem. ■

In the arguments to prove Corollary 1.1 and Theorem 1.3, we define the following notation for a graph G, and for an
integer k ≥ 2:

σk(G) = min{

k∑
i=1

dG(vi) : v1, v2, . . . , vk ∈ V (G) and E(G[{v1, v2, . . . , vk}]) = ∅}. (26)

We are to apply Theorem 1.2 to prove Corollary 1.1. By Proposition 1.1, the necessity of Corollary 1.1 holds. Hence we
assume that κ ′(G) ≥ j0(s, t) to show that G is (s, t)-supereulerian. Arguing by contradiction, we assume that G satisfies (6)
with κ ′(G) ≥ j0(s, t) but G is not (s, t)-supereulerian. By (3) and (26), we have σ2(G) ≤ 2m2(G). Thus that σ2(G) ≥ n − 4
implies that m2(G) ≥

n
2 − 2. It follows, by Theorem 1.2 and by the assumption that G is not (s, t)-supereulerian, that G

ust be contractible to a graph H , which is isomorphic to a member in {2K−−

3 , 2K−

3 , 2K3, K4, K 1
2,2, K2,3}. Let n′

= |V (H)|
nd V (H) = {z1, z2, . . . , zn′}, and let Hzi be the preimage of zi in G.
Since δ(G) ≥ 5 > 4 ≥ ∆(H), it follows by Lemma 2.4 that for any vertex zi ∈ V (H), we have |V (Hzi )| ≥

> 4 ≥ |∂G(V (Hzi ))|. Therefore, there must be a vertex vi ∈ V (Hzi ) such that NG(vi) ⊆ V (Hzi ), which implies that
(G[{v1, v2, v3}]) = ∅. By (6), we have

2n ≥ 2
3∑

i=1

|V (Hzi )| ≥ 2
3∑

i=1

|NG[vi]| ≥ 3(n − 4) + 6 = 3n − 6.

his leads to 51 ≤ n ≤ 9, a contradiction, and so the sufficiency of Corollary 1.1 is also proved. ■
There exist infinitely many examples to show that if we relax the condition δ(G) ≥ 5 in Corollary 1.1, then Corollary 1.1

ill not hold.

xample 4.1. Let m > 4 be an arbitrary integer. Let z1, z2, z3 denote the vertices of a 2K3, which is defined in Fig. 1.
Let 2K3(m) denote a simple graph formed from 2K3 by replacing z1 by a complete subgraph Km, and each of z2 and z3
eplaced by a complete graph K4 in such a way that δ(2K3(m)) ≥ 4. Then 2K3(m) satisfies (6). As 2K3(m) is contractible
o 2K3, and by Example 1.1, 2K3 is not (2, 2)-supereulerian, we conclude that 2K3(m) is not (2, 2)-supereulerian with
′(2K3(m)) = 4 = j0(2, 2).

. Proof of Theorem 1.3

By Proposition 1.1, the necessity of Theorem 1.3 holds. Hence we assume that κ ′(G) ≥ j0(s, t) to show that G is
s, t)-supereulerian.

roof of the sufficiency of Theorem 1.3. We also argue by contradiction to prove the sufficiency of Theorem 1.3, and
ssume that G is a counterexample to Theorem 1.3 with n = |V (G)| ≥ 51. This assumption leads to the following
bservation.

bservation 5.1. Each of the following holds for this graph G.
(i) G satisfies (7) and κ ′(G) ≥ j0(s, t).
(ii) There exist disjoint edge subsets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t such that G− Y does not have a spanning closed

rail that contains all edges in X. By Observation 2.1(iv), (G − Y )(X) is not supereulerian.

Fix a pair of disjoint edge subsets X and Y of E(G) whose existence is assured by Observation 5.1(ii). As before, we
et J = (G − Y )(X), J ′ be the reduction of J , and adopt the notation in Observation 2.1 for the definition of VX and EX .
efine V ′

X as in (11). Once again, by Observation 2.1(iv) and (v) and by κ ′(G) ≥ j0(s, t), we have κ ′(J ′) ≥ κ ′(J) ≥ 2, J ′ is not
upereulerian, and F (J ′) ≥ 2. For each vertex z ∈ V (J ′), let H ′

z be the preimage of z in J and let Hz denote the restoration
f H ′

z in G − Y . In the arguments below, we let D2(J ′) be the set of vertices of degree 2 in J ′. Then by (11), V ′

X ⊆ D2(J ′).
hen by (8)h = |D2(J ′)| and h1 = |V ′

X |.

laim 5.1. J ′ does not have three vertices z1, z2, z3 such that there exist three vertices v1, v2, v3 ∈ V (G) with the property
hat for each i ∈ {1, 2, 3}, vi ∈ V (Hzi ) with NG(vi) ⊆ V (Hzi ).

By contradiction, assume that such vertices exist. Then, as NG(vi) ⊆ V (Hzi ), we must have E(G[{v1, v2, v3}]) = ∅ and so
by (7),

n = |V (G)| ≥

3∑
i=1

|V (Hzi )| ≥

3∑
i=1

(|NG(vi)| + 1) > (n − 3) + 3 = n, (27)

contradiction. This proves the claim.
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laim 5.2. G cannot be contractible to a graph L with ∆(L) ≤ 4 and |V (L)| ≥ 3.

By contradiction, we assume that G is contractible to a graph L with ∆(L) ≤ 4 and |V (L)| ≥ 3. Let w1, w2, w3 be three
istinct vertices of V (L) and let Hwi be the preimage of wi in G. As δ(G) ≥ 5 > 4 ≥ ∆(L), it follows by Lemma 2.4 that
V (Hwi )| ≥ 6 for any i with 1 ≤ i ≤ 3. As |V (Hwi )| > 4 ≥ |∂G(Hwi )|, there must be a vertex vi ∈ V (Hwi ) such that
G(vi) ⊆ V (Hwi ). Thus by (7), we obtain the same contradiction as in (27). This proves Claim 5.2.

laim 5.3. J ′ is not isomorphic to a member in {K2,2p+1 : p ≥ 1}.

We assume that for some integer p ≥ 1, J ′ = K2,2p+1. Thus h = |D2(J ′)| = 2p+1 is an odd integer. Let Dh(J ′) = {u1, u2},
nd let D2(J) = {z1, z2, . . . , zh}. For each vertex w ∈ V (J ′), let H ′

w denote the preimages of w in J , and Hw denote the
estoration of H ′

w in G − Y . Since κ ′(G) ≥ j0(s, t), it follows by Lemma 3.1 that either Lemma 3.1(iii) or Lemma 3.1(iv)
ust hold. If Lemma 3.1(iii) holds, then G is contracted to a member in {2K−−

3 , 2K−

3 , 2K3}, leading to a contradiction to
laim 5.2. Hence we assume that Lemma 3.1(iv) must hold, and so h− h1 ≥ 2 and either t ∈ {1, 2}, h− h1 = 2 and edges
n Y are joining vertices in the preimages of the two vertices in D2(J ′) − V ′

X , or t = 0 and 0 ≤ s ≤ 2.

ase 5.1. Both t ∈ {1, 2} and h − h1 = 2.

Without loss of generality, we assume that z1, z2 are the two vertices in D2(J ′) − V ′

X . By Lemma 3.1(iv), Y =

G[V (Hz1 ), V (Hz2 )]. If t = 1, then |∂G(V (Hz1 ))| = |∂G(V (Hz2 ))| = 3, and so j0(s, 1) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 3.
hus by (2), s ∈ {0, 1}. As h1 ≤ s ≤ 1 and h ≥ 3, we conclude that h1 = s = 1, t = 1 and h = 3, and so
X ∪ Y ) ∩ E(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ) = ∅. Let L = G/(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ). Then |V (L)| = 5 with ∆(L) = 3,
ontrary to Claim 5.2.
Therefore, we assume that t = 2, and so |∂G(V (Hz1 ))| = |∂G(V (Hz2 ))| = 4. Thus j0(s, 1) ≤ κ ′(G) ≤ |∂G(V (Hz1 ))| = 4.

y (2), s ∈ {0, 1, 2}. Since h ≥ 3 is odd, and 1 ≤ h1 ≤ s, we conclude that h1 = 1, t = 2 and h = 3. Once again,
X ∪ Y ) ∩ E(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ) = ∅. Let L′

= G/(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ). Then |V (L′)| = 5 with ∆(L′) = 3,
ontrary to Claim 5.2. This completes the prove for Case 5.1.

ase 5.2. Both t = 0 and 0 ≤ s ≤ 2.

D2(J ′)−V ′

X = {z1, z2, . . . , zh−h1}. Then {z1, z2, . . . , zh−h1} is a stable set of J ′. If h−h1 ≥ 3, and by symmetry we assume
2(J ′)−V ′

X = {z1, z2, z3}. It follows from δ(G) ≥ 5 > 2 = |∂G(Hzi )| and by Lemma 2.4 that for each i ∈ {1, 2, 3}, |V (Hzi )| ≥ 6.
s |∂G(Hzi )| = 2, there must be a vertex vi ∈ V (Hzi ) with NG(vi) ⊆ V (Hzi ), leading to a violation of Claim 5.1. Hence we
ust have h − h1 ≤ 2. Since h is an odd number, we have either s = 1, h − h1 = 2 or s = 2, h − h1 = 1. In either case,
= 3 and X ∩ E(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ) = ∅. Define L′′

= G/(Hz1 ∪ Hz2 ∪ Hz3 ∪ Hu1 ∪ Hu2 ). Then |V (L′′)| = 5 with
(L′′) = 3, contrary to Claim 5.2. This completes the prove for Case 5.2, as well as Claim 5.3.

laim 5.4. Each of the following holds.
(i) F (J ′) ≥ 3.
(ii) s ≤ 3.

If F (J ′) ≤ 2, then as J is not supereulerian, it follows by Theorem 2.2(i) that J ′ ∈ {K2p+1 : p ≥ 1}, contrary to Claim 5.3.
his proves (i).
Now assume that s ≥ 4. Then by assumption of Corollary 1.1, κ ′(G) ≥ j0(s, t). Without loss of generality, we assume

hat |X | = s. Let X ′ be a subset of X such that |X ′
| = 2, and let X ′′

= X − X ′. Then by Lemma 2.1, G − (X ′′
∪ T ) has 2

dge-disjoint spanning trees T1 and T2 (say). For each edge ei = uivi ∈ X ′′, subdividing ei means to add a new vertex vei
nd to replace the edge ei by the path uiveivi, thus T1 + {uivei} and T2 + {veivi} are two edge-disjoint spanning trees of
− ((X ′′

− {ei}) ∪ T ). This indicates that (G − Y )(X − X ′) also have two edge-disjoint spanning trees, and so as |X ′
| = 2,

e have F (J) = F ((G − Y )(X)) ≤ 2. Since J is not supereulerian and κ ′(J ′) ≥ κ ′(J) ≥ 2, by Theorem 2.1(i), J ′ is a member
n {K2p+1 : p ≥ 1}, contrary to Claim 5.3. This proves (ii), as well as Claim 5.4.

Denote di = |Di(J ′)| and n′
= |V (J ′)|. By Claim 5.4, F (J ′) ≥ 3. By Theorem 2.2(iii), we have 2n′

− |E(J ′)| ≥ 5. This leads
o

4
∑
i≥2

di −
∑
i≥2

idi ≥ 10, or equivalently, 2d2 + d3 ≥ 10 +

∑
i≥5

(i − 4)di.

t follows that 2(d2 + d3) ≥ 10, or d2 + d3 ≥ 5, where equality holds if and only if d3 = 0, d2 = 5 and
∑

i≥5(i − 4)di = 0.
y Claim 5.4(ii), |D2(J ′) ∪ D3(J ′) − V ′

X | ≥ 2, where equality holds if and only if d3 = 0, |V ′

X | = s = 3, d2 = 5 and
i≥5(i − 4)di = 0. Thus if |D2(J ′) ∪ D3(J ′) − V ′

X | = 2, then |V (J ′)| = |D2(J ′)| = 5, implying that J ′ is a cycle of 5 vertices,
nd so J ′ must be supereulerian, a contradiction to Observation 5.1(ii). Hence we must have |D2(J ′) ∪ D3(J ′) − V ′

X | > 2,
nd so D2(J ′) ∪ D3(J ′) − V ′

X contains three distinct vertices z1, z2, z3. Let H ′
zi denote the preimage of zi in J and Hzi the

restoration of H ′
zi in G − Y . Then by δ(G) ≥ 5 and by Lemma 2.4, we have |V (Hzi )| ≥ 6 > 3 ≥ |∂G(Hzi )|, and so for each

i ∈ {1, 2, 3}, there must be a vertex vi ∈ V (Hzi ), such that NG(vi) ⊆ V (Hzi ). This is a contradiction to Claim 5.1, and so the
theorem is proved. ■
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. Concluding remarks

In applications, the must avoid edges Y may represent the connections at fault and the must included edges in X
may represent the routing constrains, the notion of (s, t)-supereulerian would also be a suitable model in interconnection
network studies for appropriate problems. Theoretically, determining if a graph is (0, 0)-supereulerian is known as an
NP-complete problem, it would be of interests to seek new best possible sufficient conditions to warrant the property
of being (s, t)-supereulerian. This paper presents a sharp strengthened Ore Type degree condition in Theorem 1.2, whose
corollary implies an Ore Type degree conditions for (s, t)-supereulerian graphs. In particular, it generalizes the Dirac degree
condition for (s, t)-supereulerian graphs obtained in [16]. A common density condition, called the neighborhood union
condition of a graph G, is defined as

U2(G) = min{|NG(u) ∪ NG(v)| : u, v ∈ V (G) and uv /∈ E(G)}.

As m2(G) ≥
1
2U2(G), our main results can also imply certain sufficient conditions for (s, t)-supereulerian graphs using

eighborhood union conditions. Thus it will be of interests to seek other sufficient conditions that are independent of this
trengthened Ore Type degree condition, and other structural or extremal conditions for a graph to be (s, t)-supereulerian.
n particular, in view of (26), it is also of interest to investigate sufficient conditions for a graph G with bounded stability
umber α(G) to be (s, t)-supereulerian, and sharp conditions in terms of σk(G) for large values of k for a graph G to be

(s, t)-supereulerian.
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