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Let r 2 ≥ r 1 ≥ 0 be two integers. A bipartite graph G is two-disjoint-cycle-cover vertex 

[ r 1 , r 2 ] -bipancyclic (2-DCC vertex [ r 1 , r 2 ] -bipancyclic in short) if for any two vertices u, v ∈ 
V (G ) and any even integer � satisfying r 1 ≤ � ≤ r 2 , there exist two vertex-disjoint cycles 

J 1 and J 2 in G with | V (J 1 ) | = � and | V (J 2 ) | = | V (G ) | − � such that u ∈ V (J 1 ) and v ∈ V (J 2 ) ; 

and there also exist two vertex-disjoint cycles J ′ 1 and J ′ 2 in G with | V (J ′ 1 ) | = � and | V (J ′ 2 ) | = 

| V (G ) | − � such that v ∈ V (J ′ 1 ) and u ∈ V (J ′ 2 ) . We study the 2-DCC vertex bipancyclicity of 

the n -dimensional bipartite generalized hypercube C(d 1 , d 2 , . . . , d n ) . As a result, we deter- 

mine a family of exceptional graphs and show that for all integers n ≥ 2 , an n -dimensional 

bipartite generalized hypercube G is 2-DCC vertex [4 , | V (G ) | / 2] -bipancyclic if and only 

if G is not a member in this family. Furthermore, as applications, we prove the vertex- 

bipancyclicity and 2-DCC bipancyclicity on n -dimensional bipartite generalized hypercube 

and show that the similar properties also hold for all n -dimensional bipartite k -ary n - 

cubes, for n ≥ 2 . 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Graphs are often models for interconnection networks. As presented in [11,14,15,17] , among others, ring connection is 

one of the most common interconnection network structures. Hence embedding of rings into an interconnection network 

is an important issue in parallel processing. As the ring embedding problem is often modeled as finding cycles in the

corresponding graph, many studies have been conducted in ring embedding problems, including investigating Hamiltonian 

and pancyclic properties in networks, as seen in [14–16] , among others. 

We follow Bondy and Murty [5] for notation and terminology not defined in this paper. A graph G = (V, E) is a pair of

the vertex set V and the edge set E, where V is a finite set and E is a subset of { (u, v ) | (u, v ) is an unordered pair of V } . We

often use G = (V (G ) , E(G )) to emphasize the graph G . If e = (u, v ) ∈ E(G ) , then u and v are called the ends of e . We often

use P = v 1 v 2 . . . v k to denote a path in which v 1 is adjacent only to v 2 , v k is adjacent only to v k −1 , and v i is exactly adjacent

to v i −1 and v i +1 , for all 1 < i < k . To emphasize the ends of a path, we also use P [ v 1 , v k ] to denote the same path. Likewise,

we often use C = v 1 v 2 . . . v k v 1 to denote a cycle which is formed from a path P [ v 1 , v k ] by adding an edge joining v 1 and v k .
We define the length of a path or a cycle to be the number of its edges. A path or a cycle of length k is called a k -path or
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Fig. 1. Q 1 , Q 2 and Q 3 . 
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k -cycle, respectively. A Hamilton path (respectively, Hamilton cycle ) of a graph G is a spanning path (respectively, spanning

cycle) in G ; and G is Hamiltonian if it has a Hamilton cycle. 

In [4] , Bondy defined a graph G to be pancyclic if it contains an � -cycle for every integer � with 3 ≤ � ≤ | V (G ) | . Based

on the definition, Randerath et al. [16] defined a graph G to be vertex-pancyclic (respectively, edge-pancyclic ) if every vertex

(respectively, edge) of G lies on an � -cycle for every � with 3 ≤ � ≤ | V (G ) | . Define a bipartite graph G to be bipancyclic if it

contains an � -cycle for every even integer � with 4 ≤ � ≤ | V (G ) | . The vertex (edge)-bipancyclicity in bipartite graphs can be

defined similarly. 

Expanding the notion of hamiltonicity, Kung and Chen [9] investigated the problem of embedding disjoint cycles in a 

graph covering every vertex exactly once. For positive integer i, j with i ≤ j, let [ i, j] = { i, i + 1 , . . . , j − 1 , j} . A two-disjoint-

cycle-cover (2-DCC for short) of a graph G is a pair of vertex-disjoint cycles J 1 and J 2 in G with V (J 1 ) ∪ V (J 2 ) = V (G ) . Fur-

thermore, a (bipartite) graph G is 2-DCC [ r 1 , r 2 ] -(bi)pancyclic if for any (even) integer � satisfying r 1 ≤ � ≤ r 2 , there exist

two vertex-disjoint cycles J 1 and J 2 in G such that | V (J 1 ) | = � and | V (J 2 ) | = | V (G ) | − � . It follows from the definition that

r 2 ≤ | V (G ) | 
2 . 

Kung et al. in [10] proposed the notion of 2-DCC vertex pancyclicity. Following [10] and motivated by the former studies,

we introduce 2-DCC vertex bipancyclicity of bipartite graphs in the following. 

Definition 1.1. A graph G is 2-DCC vertex [ r 1 , r 2 ] -(bi)pancyclic if for any two distinct vertices u and v of G, there exist two

vertex-disjoint cycles J 1 and J 2 in G such that both of the following two conditions hold: 

1) For any (even) integer �, r 1 ≤ � ≤ r 2 , J 1 contains u with length �, and J 2 contains v with length | V (G ) | − � . 

2) For any (even) integer �, r 1 ≤ � ≤ r 2 , J 1 contains u with length | V (G ) | − �, and J 2 contains v with length � . 

By Definition 1.1 , we observe that if a graph G is 2-DCC vertex [ r 1 , r 2 ] -(bi)pancyclic, then r 2 ≤ | V (G ) | 
2 . 

The purpose of the current research is to prove the 2-DCC vertex bipancyclicity of bipartite n -dimensional generalized 

hypercubes. We present the related preliminaries in Section 2 and justify the main result in Section 3 . Section 4 is devoted

to applications of our main result, including the determinations of vertex-bipancyclicity and 2-DCC bipancyclicity of the 

generalized hypercube and the similar properties of k -ary n -cube Q 

k 
n . 

2. Preliminaries 

Let n be a positive integer. We follow the standard notation to use C n to denote a cycle of order n, and K n to denote the

complete graph of order n . 

2.1. Cartesian product 

The Cartesian product of two graph G and H, denoted G × H, has vertex set V (G × H) = { u v | u ∈ V (G ) and v ∈ V (H) } , where

two vertices u 1 v 1 and u 2 v 2 are adjacent if and only if either u 1 = u 2 and v 1 is adjacent to v 2 in H, or v 1 = v 2 and u 1 is

adjacent to u 2 in G . 

Following [6] , the n -dimensional hypercube, denoted Q n , is a graph with V (Q n ) = { u 1 u 2 · · · u n | u i ∈ { 0 , 1 } , 1 ≤ i ≤ n } being

the set of n -bit binary strings, where two vertices of Q n are adjacent if and only if their binary strings differ in exactly

one bit position. Thus | V (Q n ) | = 2 n . Let K 2 denote the complete graph on two vertices. Then utilizing Cartesian products

of graph, it is routine to verify that Q n = K 2 × K 2 × · · · × K 2 , taking a Cartesian product of K 2 exactly n times. See Fig. 1 for

examples of Q n with 1 ≤ n ≤ 3 . 

2.2. Generalized hypercube 

The hypercube has been naturally generalizes into many other network models. Among them, the generalized hyper- 

cube , introduced in [6] , has become a widely used topological structure of interconnection network. For an integral n -tuple

(d , d , . . . , d n ) with d ≥ 2 for any i ∈ { 1 , 2 , . . . , n } , an n -dimensional generalized hypercube, denoted as C(d , d , . . . , d n ) ,
1 2 i 1 2 

2 
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Fig. 2. The illustration of C(4 , 3 , 2) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

has vertex-set 

V (C(d 1 , d 2 , . . . , d n )) = { u 1 u 2 · · · u n | u i ∈ { 0 , 1 , 2 , . . . , d i − 1 } and d i ≥ 2 for every 1 ≤ i ≤ n } , (1)

where two vertices u 1 u 2 · · · u n and v 1 v 2 · · · v n are adjacent in C(d 1 , d 2 , . . . , d n ) if and only if there exists an integer j ∈
{ 1 , 2 , . . . , n } such that | u j − v j | ≡ 1 (mod d j ) and u i = v i for i ∈ { 1 , 2 , . . . , j − 1 , j + 1 , . . . , n } . It is routine to verify that 

C(d 1 , d 2 , . . . , d n ) = H 1 × H 2 × · · · × H n (2) 

is the Cartesian product of the graphs H 1 , ... H n , where, for each j with 1 ≤ j ≤ n, H j = C d j if d j ≥ 3 and H j = K 2 if d j = 2 .

By definition, Q n = C(2 , 2 , . . . , 2) , and so C(d 1 , d 2 , . . . , d n ) generalized the notion of n -dimensional hypercube. Fig. 2 depicts

a generalized hypercube C(4 , 3 , 2) , as an example. 

The 2-dimensional generalized hypercube C(d 1 , d 2 ) has been widely used as a topological structure of interconnection 

network in parallel processing, such as ILLAIC IV (Illinois automatic computer), MPP (massively parallel processors), DAP 

(distributed array processors) and WRM (wire routing machine). In addition, the 2-dimensional generalized hypercube has 

also been widely used in LAN (local area network) and MAN (metropolitan are network). In some articles, the LAN and MAN

are called Manhattan street network if their topological structures are same as 2-dimensional generalized hypercube [3,12] . 

2.3. k -Ary n -Cubes 

A special case of the generalized hypercube is the k -ary n -cube. Let k and n be integers at least 2. A k -ary n -cube, denoted

Q 

k 
n , has vertex set 

V (Q 

k 
n ) = { u 1 u 2 · · · u n | u i ∈ { 0 , 1 , 2 , . . . , k − 1 } , 1 ≤ i ≤ n } , 

where two vertices u = u 1 u 2 · · · u n and v = v 1 v 2 · · · v n are adjacent in Q 

k 
n if and only if there exists an integer j ∈ { 1 , 2 , . . . , n }

such that | u j − v j | ≡ 1 (mod k ) and u i = v i for i ∈ { 1 , 2 , . . . , j − 1 , j + 1 , . . . , n } . 
The k -ary n -cubes have often been considered as a common model for multiprocessor systems due to its applications, as

seen in [1,2,7,8,13] , among others. By definition, Q 

k 
n = C(k , k , . . . , k ) , and so Q 

k 
n = C k × C k × · · · × C k is Cartesian product of the

k -cycle C k taking n times. 

In the rest of the paper, we will show the 2-DCC vertex bipancyclicity of generalized hypercube. So that we can also

prove the 2-DCC vertex bipancyclicity of k -ary n -cubes. 

3. Two-disjoint-cycle-cover bipancyclicity of bipartite generalized hypercube 

Let k ≥ 0 be an integer. We use Z k = { 1 , 2 , . . . , k } to denote the cyclic group of order k and with the additive binary

operation + k and with k being the additive identity in Z k . Let P = v 1 v 2 . . . v k be a path. We use P [ v 1 , v k ] to emphasize

the orientation of P is from v 1 to v k . Thus P [ v k , v 1 ] denotes the same path as P [ v 1 , v k ] (as a graph) with an opposite ori-

entation. For any 1 ≤ i ≤ j ≤ k, we use P [ v i , v j ] = v i v i +1 . . . v j−1 v j to denote the subpath of P . Likewise, if C = u 1 u 2 . . . u k u 1 
is a cycle, then for any i, j with 1 ≤ i < j ≤ k, C[ u i , u j ] denotes the subpath u i u i +1 . . . u j−1 u j and C[ u j , u i ] denotes the

subpath u j u j+1 . . . u k u 1 . . . u i −1 u i . To emphasize the orientation, we use C = u k u k −1 u k −2 . . . u 1 u k to denote the same cy-

cle C (as a subgraph) but with the opposite orientation. If Q = w 1 w 2 . . . w k ′ is a path with v k = w 1 and V (P ) ∩ V (Q ) =
{ v k } , then we use P Q or P [ v 1 , v k ] Q[ v k , w k ′ ] to denote the path v 1 v 2 . . . v k w 2 . . . w k ′ . If V (P ) ∩ V (Q ) = ∅ and there is a

path z 1 z 2 . . . z t with z 2 , . . . , z t−1 / ∈ V (P ) ∪ V (Q ) and with z 1 = v k and z t = w 1 , then we use P z 1 . . . z t Q to denote the path

v 1 v 2 . . . v k z 2 . . . z t w 2 . . . w k ′ . As cycles are considered as closed paths, we also use the same notation to denote cycles ob-

tained by amalgamating paths. 
3 
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Fig. 3. Graphs in Example 3.1 . 
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In this section, we shall investigate the 2-DCC vertex bipancyclicity of an n -dimensional generalized hypercubes G = 

(d 1 , d 2 , . . . , d n ) . We start with two examples. 

Example 3.1. There exist generalized hypercubes that are not 2-DCC vertex bipancyclic, as seen in the examples below. 

(i) If G = C(2 , 2) , then G 

∼= 

C 4 . As it has only one cycle, it cannot be 2-DCC vertex bipancyclic. 

ii) Suppose that n = 2 , min { d 1 , d 2 } = 2 and max { d 1 , d 2 } ≥ 6 . By symmetry, we may assume that d 1 > d 2 = 2 . For each i, j

with 1 ≤ i ≤ 2 and 1 ≤ j ≤ d 1 , let v i 
j 
= u j−1 u i −1 denote the vertices in V (G ) . Choose two vertices u = v i 1 

j 1 
and v = v i 2 

j 2 
such

that j 1 = j 2 and i 1 � = i 2 . As d 2 = 2 , every 4-cycles in G has the form v 1 
j 
v 1 

j+ d 1 1 
v 2 

j+ d 1 1 
v 2 

j 
v 1 

j 
as illustrated in Fig. 3 . This forces

that every 4-cycle containing u must also contain v . Thus such a G = C(d 1 , 2) with two distinguished vertices u, v as

defined above cannot be 2-DCC [4 , | V (G ) | 
2 ] vertex bipancyclic. Thus when d 1 ≥ 6 , G = C(d 1 , 2) contain specific vertices u

and v , such that G does not have disjoint cycles J 1 and J 2 with | E(J 1 ) | = 4 , | E(J 2 ) | = | V (G ) | − 4 such that u ∈ V (J 1 ) and

v ∈ V (J 2 ) . Such a triple (G, u, v ) is called a bad triple. 

Moti Motivated by Example 3.1 , we define an exceptional configuration to be either a graph isomorphic to C(2 , 2) , or a

graph G isomorphic to a G = C(d 1 , 2) with distinguished vertices u, v ∈ V (G ) such that (G, u, v ) is a bad triple. 

Theorem 3.2. Let G = C(d 1 , d 2 , . . . , d n ) be a bipartite n -dimensional generalized hypercube. Each of the following holds. 

(i) If n ≥ 3 , then G is 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. 

ii) Suppose that n = 2 . Then G is 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic if and only if G is not an exceptional configuration. 

To prove the Theorem 3.2 , we start with Lemmas 3.3, 3.4 and 3.5 . 

Lemma 3.3. Let k and � be integers with k ≥ 4 and � ≥ 1 . Let C = v 1 v 2 · · · v k v 1 denote a cycle on k vertices and P = w 1 w 2 · · · w � 

denote a path on � vertices. For each i, j with i ∈ Z k and 1 ≤ j ≤ �, let v i 
j 

denote the vertex v j w i in V (C × P ) . Each of the following

holds. 

(i) For any element i ∈ Z k , and for any integer j with 1 ≤ j ≤ �, C × P has a spanning cycle J = J ( j) satisfying each of the follow-

ing. 

(ia) If j ≡ 1 (mod 2), then (v 1 
i 
, v 1 

i + k 1 ) , (v 
j 
i + k 2 , v 

j 
i + k 3 ) ∈ E(J) . 

(ib) If j ≡ 0 (mod 2), then (v 1 
i 
, v 1 

i + k 1 ) , (v 
j 
i 
, v j 

i + k 1 ) ∈ E(J) . 

ii) For any i ∈ Z k , there exists a Hamilton cycle of C × P containing the edge (v 1 
i 
, v 1 

i + k 1 ) . Consequently, there exists a Hamilton

path of C × P joining vertices v 1 
i 

and v 1 
i + k 1 . 

Proof. For each i, j with i ∈ Z k and 1 ≤ j ≤ �, define cycle C i 
k 

= v i 
1 
v i 

2 
· · · v i 

k 
v i 

1 
. We shall argue by induction to prove conclusion

(i) of the lemma. 

By inspection, if j = 1 , then C × P = C. Thus as k ≥ 4 , J (1) = C is a cycle of length k containing distinct edges (v 1 
i 
, v 1 

i + k 1 )

and (v 1 
i + k 2 , v 

1 
i + k 3 ) , for any i ∈ Z k . 

Inductively, assume that for an odd index j with 1 ≤ j ≤ � − 1 , C × P [ w 1 , w j ] has a spanning cycle J ( j) with (v 1 
i 
, v 1 v i + k 1 

) and

(v j 
i + k 2 , v 

j 
i + k 3 ) ∈ E(J ( j) ) . Thus J ( j) [ v j 

i + k 3 , v 
j 
i + k 2 ] is a spanning path of length jk − 1 in C × P [ w 1 , w j ] . Let P j+1 = C 

j+1 

k 
[ v j+1 

i + k 2 , v 
j+1 
i + k 3 ] .

Then P j+1 is a spanning path in C 
j+1 

k 
containing edge (v j+1 

i 
, v j+1 

i + k 1 ) in it. Define 

J ( j+1) = J ( j) [ v j 
i + k 3 , v 

j 
i + k 2 ] v 

j 
i + k 2 v 

j+1 
i + k 2 P 

j+1 [ v j+1 
i + k 2 , v 

j+1 
i + k 3 ] v 

j+1 
i + k 3 v 

j 
i + k 3 . 

Then it is routine to verify that J ( j+1) is a spanning cycle of C × P [ w 1 , w j+1 ] of length ( j + 1) · k with the edges (v 1 
i 
, v 1 

i + k 1 ) ∈
E(J ( j+1) ) ∩ E(C 1 

k 
) and (v j+1 

i 
, v j+1 

i + 1 
) ∈ E(J ( j+1) ) ∩ E(C j+1 

k 
) . 
k 

4 
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Fig. 4. The illustration of the proof of Claim 1 in Lemma 3.3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

Assume that for an even index j + 1 with 1 ≤ j ≤ � − 2 , C × P [ w 1 , w j+1 ] has a spanning cycle J ( j+1) of length ( j + 1) · k,

and with the edges (v 1 
i 
, v 1 

i + k 1 ) ∈ E(J ( j+1) ) ∩ E(C 1 
k 
) and (v j+1 

i 
, v j+1 

i + k 1 ) ∈ E(J ( j+1) ) ∩ E(C j+1 

k 
) . Thus J ( j+1) [ v j+1 

i + k 1 , v 
j+1 
i 

] is a spanning

path in C × P [ w 1 , w j+1 ] of length ( j + 1) k − 1 . Let P j+2 = C 
j+2 

k 
[ v j+2 

i 
, v j+2 

i + k 1 ] . Then P j+2 is a spanning path in C 
j+2 

k 
containing

edge (v j+2 
i + k 2 , v 

j+2 
i + k 3 ) . We define 

J ( j+2) = J ( j+1) [ v j+1 
i + k 1 , v 

j+1 
i 

] v j+1 
i 

v j+2 
i 

P j+2 [ v j+2 
i 

, v j+2 
i + k 1 ] v 

j+2 
i + k 1 v 

j+1 
i + k 1 . 

Again it is routine to verify that J ( j+2) is a spanning cycle of C k × P [ w 1 , w j+2 ] of length ( j + 2) · k with the edges (v 1 
i 
, v 1 

i + k 1 ) ∈
E(J ( j+2) ) ∩ E(C 1 

k 
) and (v j+2 

i + k 2 , v 
j+2 
i + k 3 ) ∈ E(J ( j+2) ) ∩ E(C j+2 

k 
) . Hence Lemma 3.3 (i) is proved by induction, as illustrated in Fig. 4 . 

By Lemma 3.3 (i), J (� ) is the desired spanning cycle of C × P [ w 1 , w � ] containing the edge (v 1 
i 
, v 1 

i + k 1 ) , and so J (� ) [ v 1 
i + k 1 , v 

1 
i 
]

is a Hamilton path in C × P, as desired. �

Lemma 3.4. If H 1 and H 2 are Hamiltonian graphs such that the Cartesian product G = H 1 × H 2 is bipartite, then G is 2-DCC

vertex [4 , | V (G ) | 
2 ] -bipancyclic. 

Proof. For i = 1 , 2 , let k i = | V (H i ) | . Then | V (G ) | = k 1 k 2 . Since G is bipartite, by the definition of Cartesian product, both

H 1 and H 2 are bipartite, and so k 1 ≡ k 2 ≡ 0 (mod 2). In the rest of the proof, we by symmetry assume that k 1 ≥ k 2 and

k 1 ≥ 4 . For i = 1 , 2 , as H i is Hamiltonian, H 1 has a Hamilton cycle C k 1 = v 1 v 2 · · · v k 1 v 1 and H 2 has a Hamilton cycle C k 2 =
w 1 w 2 · · · w k 2 

w 1 . 

By Definition 1.1 , to prove the lemma, it suffices to prove the following. 

The Cartesian product C k 1 × C k 2 is 2-DCC vertex [4 , 
k 1 k 2 

2 
] -bipancyclic. (3) 

Thus in the rest of the proof of this lemma, we assume that G = C k 1 × C k 2 . The fact that C k 1 × C k 2 is vertex-transitive would

easy some of the arguments in our proofs. Throughout the proof, we let 

P = C k 2 [ w 1 , w k 2 ] , a Hamilton path of H 2 . (4) 

Therefore the graph � = C k 1 × P is an spanning subgraph of G . For each i, j with 1 ≤ i ≤ k 2 and 1 ≤ j ≤ k 1 , let v i 
j 

denote the

vertex v j w i in V (G ) , and let C i 
k 1 

= v i 
1 
v i 

2 
· · · v i 

k 1 
v i 

1 
. Then G contains k vertex-disjoint copies of C k 1 , C 

1 
k 1 

, C 2 
k 1 

, . . . , C 
k 2 
k 1 

, as induced

subgraphs and V (G ) = ∪ 

k 2 
i =1 

V (C i 
k 1 

) . 

Let u, v ∈ V (G ) be two arbitrary vertices and let � be an even integer with 4 ≤ � ≤ k 1 k 2 
2 . We shall construct a 2-DCC J 1 

and J 2 in G, with | V (J 1 ) | = � and | V (J 2 ) | = k 1 k 2 − �, such that u ∈ V (J 1 ) and v ∈ V (J 2 ) . By the vertex transitivity of C k 1 × C k 2 ,

we always assume that u � = v , u = v 1 
1 

∈ V (C 1 
k 1 

) , and v = v t r , where 1 ≤ r ≤ k 1 , 1 ≤ t ≤ k 2 . We will find the cycles J 1 and J 2 in

each of the different cases. We prove the following claim, which will help us to prove this lemma. 

Claim 1 If length � = a · k 1 + b, where a is an integer with 0 ≤ a < 

k 2 
2 , b is an even integer with b 

2 ≥ 2 and k 1 − b 
2 ≥ 2 ,

then G = C k 1 × C k 2 contains two vertex disjoint cycles J 1 of length � and J 2 of length | V (G ) | − � with u = v 1 1 ∈ V (J 1 ) and v = v t r ∈
 (J 2 ) . 

This claim will be verified in each one of the following three cases. 

Case A: a + 3 ≤ t ≤ k 2 or 1 ≤ t ≤ 2 and v = v t r � = v 2 1 . 

We note that as 0 ≤ a < 

k 2 
2 , the discussion in this case include the possibility that a = 0 . 

Case A.1: Assume first that 2 ≤ r ≤ b 
2 . Pick a path 

P 1 = C 1 k 1 
[ v 1 

k 1 − b 
2 + r 

, v 1 r−1 ] = v 1 
k 1 − b 

2 + r 
· · · v 1 k 1 

v 1 1 v 
1 
2 · · · v 1 r−2 v 

1 
r−1 

in C 1 
k 1 

and a path P 2 = C 2 
k 1 

[ v 2 
k 1 − b 

2 
+ r , v 

2 
r−1 

] in C 2 
k 1 

. Thus each of P 1 and P 2 is of length 

b 
2 . Then 

J ′ 1 = P 1 [ v 1 k 1 − b + r , v 
1 
r−1 ] v 

1 
r−1 v 

2 
r−1 P 2 [ v 

2 
r−1 , v 

2 
k 1 − b + r ] v 

2 
k 1 − b + r v 

1 
k 1 − b + r 
2 2 2 2 

5 
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Fig. 5. The illustration of proof of Case A.1 in Claim 1. 

 

C

 

 

 

V

 

C  

 

 

 

 

 

 

 

V

 

 

is a cycle of length b in G with edge (v 2 
k 1 

, v 2 
1 
) ∈ E(J ′ 

1 
) ∩ E(C 2 

k 1 
) and vertex u = v 1 

1 
∈ V (J ′ 

1 
) . 

Let P ′ 1 = C 1 
k 1 

[ v 1 r , v 1 k 1 − b 
2 

+ r−1 
] = v 1 r v 1 r+1 · · · v 1 k 1 − b 

2 
+ r−1 

and P ′ 2 = C 2 
k 1 

[ v 2 r , v 2 k 1 − b 
2 

+ r−1 
] . Then P ′ 1 is a path in C 1 

k 1 
and P ′ 2 is a path in

 

2 
k 1 

− V (J ′ 1 ) , and each of P ′ 1 and P ′ 2 is of length k 1 − b 
2 . Since k 1 − b 

2 ≥ 2 , C k 1 × P [ w 1 , w 2 ] − V (J ′ 1 ) contains a spanning cycle 

J ′ 2 = P ′ 1 [ v 
1 
r , v 1 k 1 − b 

2 + r−1 
] v 1 

k 1 − b 
2 + r−1 

v 2 
k 1 − b 

2 + r−1 
P ′ 2 [ v 

2 
k 1 − b 

2 + r−1 
, v 2 r ] v 2 r v 1 r 

of length 2 k 1 − b, with (v 1 r , v 1 r+1 
) ∈ E(J ′ 

2 
) ∩ E(C 1 

k 1 
) and { v 1 r , v 2 r } ⊆ V (J ′ 

2 
) . 

By Lemma 3.3 , C k 1 × P [ w 3 , w a +2 ] has a spanning path P ′′ 
1 

[ v 3 
k 1 

, v 3 
1 
] and C k 1 × P [ w k 2 

, w a +3 ] has a spanning path

P ′′ 2 [ v 
k 2 
r , v k 2 

r+1 
] which contains all vertices v a +3 

r , v a +4 
r , . . . , v k 2 r . As V (C k 1 × P [ w 3 , w a +2 ]) = ∪ 

a +2 
i =3 

V (C i 
k 1 

) and V (C k 1 × P [ w k 2 
, w a +3 ]) =

∪ 

k 2 
i = a +3 

V (C i 
k 1 

) , it follows by the definition of P in (4) that V (P ′′ 
1 

[ v 3 
k 1 

, v 3 
1 
]) ∩ V (P ′′ 

2 
[ v k 2 r , v k 2 

r+1 
]) = ∅ . Define 

J 1 = J ′ 1 [ v 2 1 , v 
2 
k 1 

] v 2 k 1 
v 3 k 1 

P ′′ 1 [ v 
3 
k 1 

, v 3 1 ] v 
3 
1 v 

2 
1 

J 2 = J ′ 2 [ v 1 r+1 , v 
1 
r ] v 1 r v 

k 2 
r P ′′ 2 [ v 

k 2 
r , v 

k 2 
r+1 

] v k 2 
k 1 

v 1 k 1 
. 

Then J 1 is a cycle of length a · k 1 + b = � and with u ∈ V (J 1 ) , and J 2 is a spanning cycle in G − V (J 1 ) of length (2 k 1 −
b) + (k 2 − a − 2) k 1 = k 1 k 2 − � and with v ∈ V (J 2 ) . By their definitions, u ∈ V (J 1 ) , v ∈ V (J 2 ) , V (J 1 ) ∪ V (J 2 ) = V (G ) and V (J 1 ) ∩
 (J 2 ) = ∅ . See Fig. 5 for an illustration of this process. 

Case A.2: If b 
2 + 1 ≤ r ≤ k 1 or r = 1 and a + 3 ≤ t ≤ k 2 , similarly, pick a path P 1 = C 1 

k 1 
[ v 1 1 , v 

1 
b 
2 

] in C 1 
k 1 

and a path P 2 =
 

2 
k 1 

[ v 2 1 , v 
2 
b 
2 

] in C 2 
k 1 

of length 

b 
2 . Then for b 

2 ≥ 2 , C k 1 × P [ w 1 , w 2 ] has a cycle J ′ 1 = P 1 [ v 1 1 , v 
1 
b 
2 

] v 1 
b 
2 

v 2 
b 
2 

P 2 [ v 2 b 
2 

, v 2 1 ] v 
2 
1 v 

1 
1 of length b that

contains the edge (v 2 1 , v 
2 
2 ) and vertex u = v 1 1 . Thus the path P ′ 1 = C 1 

k 1 
[ v 1 

b 
2 

+1 
, v 1 

k 1 
] is a subgraph of C 1 

k 1 
− V (J ′ 1 ) and the path

P ′ 
2 

= C 2 
k 1 

[ v 2 
k 1 

, v 2 
b 
2 

+1 
] is contained in C 2 

k 1 
− V (J ′ 

1 
) . And the length of paths P ′ 

1 
, P ′ 

2 
are both k 1 − b 

2 ≥ 2 . Also we can see that P ′ 
1 

contains vertex v 1 r and P ′ 2 contains vertex v 2 r for b 
2 + 1 ≤ r ≤ k 1 . Hence we observe that C k 1 × P [ w 1 , w 2 ] − V (J ′ 1 ) has a span-

ning cycle J ′ 
2 

= P ′ 
1 
[ v 1 

b 
2 

+1 
, v 1 

k 1 
] v 1 

k 1 
v 2 

k 1 
P ′ 

2 
[ v 2 

k 1 
, v 2 

b 
2 

+1 
] v 2 

b 
2 

+1 
v 1 

b 
2 

+1 
of length 2 k 1 − b with (v 1 

k 1 
, v 1 

k 1 −1 
) ∈ E(J ′ 

2 
) and { v 1 r , v 2 r } ⊆ V (J ′ 

2 
) for

b 
2 + 1 ≤ r ≤ k 1 . 

By Lemma 3.3 , C k 1 × P [ w 3 , w a +2 ] has a spanning path P ′′ 
1 

[ v 3 
1 
, v 3 

2 
] and C k 1 × P [ w k 2 

, w a +3 ] has a spanning path P ′′ 
2 

[ v k 2 
k 1 

, v k 2 
k 1 −1 

]

which contains all vertices v a +3 
r , v a +4 

r , . . . , v k 2 r . As V (C k 1 × P [ w 3 , w a +2 ]) = ∪ 

a +2 
i =3 

V (C i 
k 1 

) and V (C k 1 × P [ w k 2 
, w a +3 ]) =

∪ 

k 2 
i = a +3 

V (C i 
k 1 

) , it follows by the definition of P in (4) that V (P ′′ 
1 

[ v 3 
1 
, v 3 

2 
]) ∩ V (P ′′ 

2 
[ v k 2 

k 1 
, v k 2 

k 1 −1 
]) = ∅ . Define 

J 1 = J ′ 1 [ v 2 2 , v 
2 
1 ] v 

2 
1 v 

3 
1 P 

′′ 
1 [ v 

3 
1 , v 

3 
2 ] v 

3 
2 v 

2 
2 

J 2 = J ′ 2 [ v 1 k 1 
, v 1 k 1 −1 ] v 

1 
k 1 −1 v 

k 2 
k 1 −1 

P ′′ 2 [ v 
k 2 
k 1 −1 

, v k 2 
k 1 

] v k 2 
k 1 

v 1 k 1 
. 

Then | E(J 1 ) | = | E(J ′ 
1 
) | + | E(P ′′ 

1 
) | + 1 = b + ak 1 = � and | E(J 2 ) | = | E(J ′ 

2 
) | + | E(P ′′ 

2 
) | + 1 = (2 k 1 − b) + (k 2 − a − 2) k 1 = k 1 k 2 − � .

As u ∈ V (J ′ 
1 
) , v ∈ V (J ′ 

2 
) or v ∈ V (P ′′ 

2 
) , V (J ′ 

1 
) ∩ V (J ′ 

2 
) = ∅ and V (P ′′ 

1 
) ∩ V (P ′′ 

2 
) = ∅ , we also have u ∈ V (J 1 ) , v ∈ V (J 2 ) , V (J 1 ) ∩

 (J 2 ) = ∅ and V (J 1 ) ∪ V (J 2 ) = V (G ) , which is explained in Fig. 6 . Thus the claim holds in this case. 

Case B: t = 2 , r = 1 , for any values of a with 0 ≤ a < 

k 2 
2 . 

Pick P 1 = C 1 
k 1 

[ v 1 1 , v 
1 
b 
2 

] in C 1 
k 1 

and path P 2 = C 
k 2 
k 1 

[ v k 2 
1 

, v k 2 
b 
2 

] in C 
k 2 
k 1 

of length 

b 
2 ≥ 2 . Then J ′ 1 = P 1 [ v 1 1 , v 

1 
b 
2 

] v 1 
b 
2 

v k 2 
b 
2 

P 2 [ v 
k 2 
b 
2 

, v k 2 
1 

] v k 2 
1 

v 1 1 is

a cycle of length b in G containing vertex u = v 1 
1 

and with edge (v k 2 
1 

, v k 2 
2 

) in it. Thus a path P ′ 
1 

= C 1 
k 1 

[ v 1 
b 
2 

+1 
, v 1 

k 1 
] of length

k 1 − b 
2 ≥ 2 is in C 1 

k 1 
and path P ′ 

2 
= C 

k 2 
k 1 

[ v k 2 
b +1 

, v k 2 
k 1 

] of length k 1 − b 
2 is in C 

k 2 
k 1 

− V (J ′ 
1 
) . Hence we observe that C k 1 × P [ w 1 , w 2 ] −
2 

6 
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Fig. 6. The illustration of proof of Case A.2 in Claim 1. 

Fig. 7. The illustration of proof of Case B in Claim 1. 

V  

 

 

 

 

V

 

 

 

C  

 

 

 

V

 (J ′ 
1 
) has a spanning cycle J ′ 

2 
= P ′ 

1 
[ v 1 

b 
2 

+1 
, v 1 

k 1 
] v 1 

k 1 
v k 2 

k 1 
P ′ 

2 
[ v k 2 

k 1 
, v k 2 

b 
2 

+1 
] v k 2 

b 
2 

+1 
v 1 

b 
2 

+1 
of length 2 k 1 − b and with the edge (v 1 

k 1 
, v 1 

k 1 −1 
)

∈ E(J ′ 
2 
) ∩ E(C 1 

k 1 
) . 

By Lemma 3.3 , C k 1 × P [ w k 2 −a , w k 2 −1 ] has a spanning path P ′′ 
1 

[ v k 2 −1 

1 
, v k 2 −1 

2 
] and C k 1 × P [ w 2 , w k 2 −a −1 ] has a spanning

path P ′′ 2 [ v 
2 
k 1 

, v 2 
k 1 −1 

] with v = v 2 1 ∈ V (C 2 
k 1 

) ⊂ V (P ′′ 2 ) . As V (C k 1 × P [ w k 2 −a , w k 2 −1 ]) = ∪ 

k 2 −1 

i = k 2 −a 
V (C i 

k 1 
) and V (C k 1 × P [ w 2 , w k 2 −a −1 ]) =

∪ 

k 2 −a −1 

i =2 
V (C i 

k 1 
) , it follows by the definition of P in (4) that V (P ′′ 1 [ v 

k 2 −1 

1 
, v k 2 −1 

2 
]) ∩ V (P ′′ 2 [ v 

2 
k 1 

, v 2 
k 1 −1 

]) = ∅ . Define 

J 1 = J ′ 1 [ v 
k 2 
2 

, v k 2 
1 

] v k 2 
1 

v k 2 −1 
1 

P ′′ 1 [ v 
k 2 −1 
1 

, v k 2 −1 
2 

] v k 2 −1 
2 

v k 2 
2 

J 2 = J ′ 2 [ v 1 k 1 
, v 1 k 1 −1 ] v 

1 
k 1 −1 v 

2 
k 1 −1 P 

′′ 
2 [ v 

2 
k 1 −1 , v 

2 
k 1 

] v 2 k 1 
v 1 k 1 

. 

Then | E(J 1 ) | = | E(J ′ 
1 
) | + | E(P ′′ 

1 
) | + 1 = b + ak 1 = � and | E(J 2 ) | = | E(J ′ 

2 
) | + | E(P ′′ 

2 
) | + 1 = (2 k 1 − b) + (k 2 − a − 2) k 1 = k 1 k 2 − � .

As u ∈ V (J ′ 1 ) , v ∈ V (P ′′ 2 ) , V (J ′ 1 ) ∩ V (J ′ 2 ) = ∅ and V (P ′′ 1 ) ∩ V (P ′′ 2 ) = ∅ , we also have u ∈ V (J 1 ) , v ∈ V (J 2 ) , V (J 1 ) ∩ V (J 2 ) = ∅ and

 (J 1 ) ∪ V (J 2 ) = V (G ) , as illustrated in Fig. 7 . Thus the claim holds in this situation. 

Case C: 3 ≤ t ≤ a + 2 . 

In this case, it is implied that a ≥ 1 . Pick a path P 1 = C 1 
k 1 

[ v 1 1 , v 
1 
b 
2 

] in C 1 
k 1 

and a path P 2 = C 2 
k 1 

[ v 2 1 , v 
2 
b 
2 

] in C 2 
k 1 

of length 

b 
2 .

Then for b 
2 ≥ 2 , C k 1 × P [ w 1 , w 2 ] has a cycle J ′ 

1 
= P 1 [ v 1 1 

, v 1 
b 
2 

] v 1 
b 
2 

v 2 
b 
2 

P 2 [ v 2 b 
2 

, v 2 
1 
] v 2 

1 
v 1 

1 
of length b that contains the edge (v 1 

1 
, v 1 

2 
) and

vertex u = v 1 
1 
. Thus the path P ′ 

1 
= C 1 

k 1 
[ v 1 

b 
2 

+1 
, v 1 

k 1 
] is a subgraph of C 1 

k 1 
− V (J ′ 

1 
) and the path P ′ 

2 
= C 2 

k 1 
[ v 2 

k 1 
, v 2 

b 
2 

+1 
] is contained in

 

2 
k 1 

− V (J ′ 1 ) . And the length of paths P ′ 1 , P 
′ 
2 are both k 1 − b 

2 ≥ 2 . Hence we observe that C k 1 × P [ w 1 , w 2 ] − V (J ′ 1 ) has a spanning

cycle J ′ 2 = P ′ 1 [ v 
1 
b 
2 

+1 
, v 1 

k 1 
] v 1 

k 1 
v 2 

k 1 
P ′ 2 [ v 

2 
k 1 

, v 2 
b 
2 

+1 
] v 2 

b 
2 

+1 
v 1 

b 
2 

+1 
of length 2 k 1 − b with (v 2 

k 1 
, v 2 

k 1 −1 
) ∈ E(J ′ 2 ) . 

By Lemma 3.3 , C k 1 × P [ w k 2 
, w k 2 −a +1 ] has a spanning path P ′′ 

1 
[ v k 2 

1 
, v k 2 

2 
] . And C k 1 × P [ w 3 , w k 2 −a ] has a spanning path

P ′′ 
2 

[ v 3 
k 1 

, v 3 
k 1 −1 

] containing vertex v = v t r since k 2 − a ≥ k 2 
2 + 1 ≥ a + 2 . As V (C k 1 × P [ w 3 , w k 2 −a ]) = ∪ 

k 2 −a 

i =3 
V (C i 

k 1 
) and V (C k 1 ×

P [ w k 2 
, w k 2 −a +1 ]) = ∪ 

k 2 
i = k 2 −a +1 

V (C i 
k 1 

) , it follows by the definition of P in (4) that V (P ′′ 1 [ v 
k 2 
1 

, v k 2 
2 

] ∩ V (P ′′ 2 [ v 
3 
k 1 

, v 3 
k 1 −1 

])) = ∅ . De-

fine 

J 1 = J ′ 1 [ v 1 2 , v 
1 
1 ] v 

1 
1 v 

k 2 
1 

P ′′ 1 [ v 
k 2 
1 

, v k 2 
2 

] v k 2 
2 

v 1 2 

J 2 = J ′ 2 [ v 2 k 1 
, v 2 k 1 −1 ] v 

2 
k 1 −1 v 

3 
k 1 −1 P 

′′ 
2 [ v 

3 
k 1 −1 , v 

3 
k 1 

] v 3 k 1 
v 2 k 1 

. 

Then | E(J 1 ) | = | E(J ′ 1 ) | + | E(P ′′ 1 ) | + 1 = b + ak 1 = � and | E(J 2 ) | = | E(J ′ 2 ) | + | E(P ′′ 2 ) | + 1 = (2 k 1 − b) + (k 2 − a − 2) k 1 = k 1 k 2 −
� . As u ∈ V (J ′ 

1 
) , v ∈ V (P ′′ 

2 
) , V (J ′ 

1 
) ∩ V (J ′ 

2 
) = ∅ and V (P ′′ 

1 
) ∩ V (P ′′ 

2 
) = ∅ , we also have u ∈ V (J 1 ) , v ∈ V (J 2 ) , V (J 1 ) ∩ V (J 2 ) = ∅ and

 (J ) ∪ V (J ) = V (G ) , as illustrated in Fig. 8 . This justifies Case C of Claim 1 as well as the claim. 
1 2 
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Fig. 8. The illustration of proof of Case C in Claim 1. 

Fig. 9. The illustration of the graph C(4 , 4) . 

 

 

 

 

 

V

 

 

 

V  

 

 

 

 

 

 

In the following, we shall apply Claim 1 to prove Lemma 3.4 by validating Lemma 3.4 in each of the following cases. 

Case 1: 4 ≤ � ≤ k 1 . In this case, let a = 0 , b = �, then � = a · k 1 + b. Since k 1 ≥ 4 , we have b 
2 = 

� 
2 ≥ 2 and k 1 − b 

2 ≥ k 1 −
k 1 
2 = 

k 1 
2 ≥ 2 . Then according to Claim 1, the lemma holds in this case. 

Case 2: k 1 + 2 ≤ � ≤ k 1 ·k 2 
2 . 

Since � and k 1 are even integers, by division algorithm, � can be expressed as � = a 1 · k 1 + b 1 , where a 1 is an integer with

1 ≤ a 1 ≤ k 2 
2 and b 1 is an even integer with 0 ≤ b 1 ≤ k 1 − 1 . 

Case 2.1: b 1 ≥ 4 . 

In this case, a 1 < 

k 1 
2 , 

b 1 
2 ≥ 2 and k 1 − b 1 

2 > k 1 − k 1 
2 ≥ 2 since k 1 ≥ 4 . Then according to Claim 1, the lemma holds in this

case. 

Case 2.2: b 1 = 2 . 

If k 1 = k 2 = 4 , it means G = C(4 , 4) and � = 6 . And Fig. 9 depicts the generalized hypercube C(4 , 4) . When t = 1 ,

r = 2 or 3, we can construct a cycle J 1 = v 1 
4 
v 1 

1 
v 2 

1 
v 3 

1 
v 3 

4 
v 2 

4 
v 1 

4 
of length � = 6 containing vertex u = v 1 

1 
and a cycle J 2 =

v 1 2 v 
1 
3 v 

2 
3 v 

2 
2 v 

3 
2 
v 3 

3 
v 4 3 v 

4 
4 v 

4 
1 v 

4 
2 v 

1 
2 of length 10 containing vertex v = v 1 r . And we observe that V (J 1 ) ∩ V (J 2 ) = ∅ and V (J 1 ) ∪ V (J 2 ) =

 (G ) . When r = 4 , according to the symmetry of the graph, this case is similar as the case r = 2 . 

When t = 2 or 3, we can construct a cycle J 1 = v 4 
1 
v 1 

1 
v 1 

2 
v 1 

3 
v 1 

4 
v 4 

4 
v 4 

1 
⊆ C 4 

k 1 
∪ C 1 

k 1 
of length � = 6 with vertex u = v 1 

1 
in it but not

containing vertex v since v ∈ V (C t 
k 1 

) . And we can also construct a spanning cycle J ′ 
2 

in C k 1 × P [ w 3 , w 2 ] of length 8 containing

vertex v and edge (v 3 
3 
, v 3 

2 
) . Then we get cycle J 2 = J ′ 2 [ v 3 4 

, v 3 
3 
] v 3 

3 
v 4 3 v 

4 
2 v 

3 
2 

of length 12 containing vertex v . And we observe that

 (J 1 ) ∩ V (J 2 ) = ∅ and V (J 1 ) ∪ V (J 2 ) = V (G ) . When t = 4 , according to the symmetry of the graph, this case is the same as

the case t = 2 . 

If max { k 1 , k 2 } > 4 , we assume k 1 ≥ k 2 and k 1 > 4 . In this case � = (a 1 − 1) k 1 + (b 1 + k 1 ) . Let a = a 1 − 1 and b = b 1 + k 1 ,

Thus � = a · k 1 + b with 0 ≤ a < 

k 2 
2 , b > k 1 > 4 , b 

2 ≥ 2 and k 1 − b 
2 = 

k 1 
2 − 1 ≥ 2 since k 1 ≥ 6 . It follows by Claim 1 that G

contains the desired disjoint cycles J 1 of length � and cycle J 2 of length | V (G | − �, with u ∈ V (J 1 ) , v ∈ V (J 2 ) . 

Case 2.3: b 1 = 0 . 

Then � = a 1 · k 1 = (a 1 − 1) k 1 + k 1 . Let a = a 1 − 1 and b = k 1 . Thus � = a · k 1 + b with 0 ≤ a < 

k 2 
2 , b = k 1 ≥ 4 , b 

2 ≥ 2 and

k 1 − b 
2 = 

k 1 
2 ≥ 2 . Then we turn this case into Claim 1 . So we can directly get two disjoint cycles J 1 of length � and the cycle

J 2 of length | V (G | − �, with u ∈ V (J 1 ) , v ∈ V (J 2 ) . 

Hence in any case, G always have a desired pair of cycles J 1 and J 2 containing vertices u and v respectively. Since the

graph C k × C k is vertex-transitive, we can also construct cycles ˜ J 1 of length � and 

˜ J 2 of length | k 1 · k 2 | − � containing vertices

1 2 
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v and u respectively with 4 ≤ � ≤ k 1 k 2 
2 . And so by Definition 1.1 , C k 1 × C k 2 is 2-DCC vertex [4 , 

k 1 k 2 
2 ] -bipancyclic. By (3) , if H 1 

and H 2 are Hamiltonian graphs and if H 1 × H 2 is bipartite, then H 1 × H 2 is also 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. �

Lemma 3.5. The generalized hypercube C(d 1 , d 2 , . . . , d n ) is Hamiltonian for any integer n ≥ 2 and d i ≥ 2 . 

Proof. We argue by induction on n . Assume first that n = 2 . As C(2 , 2) = C 4 is itself a cycle, we by symmetry assume that

d 1 ≥ d 2 and d 1 ≥ 4 . By (2) , G = C(d 1 , d 2 ) = H 1 × H 2 , where H 1 = C d 1 and H 2 is spanned by a path P = w 1 w 2 . . . w d 2 
. It follows

by Lemma 3.3 that C(d 1 , d 2 ) is Hamiltonian. 

Assume that n ≥ 3 and Lemma 3.5 holds for smaller values of n and denote G 

′ = C(d 1 , d 2 , . . . , d n −1 ) and G =
(d 1 , d 2 , . . . , d n ) . By induction, G 

′ has a Hamilton cycle C d ′ of length d ′ = 

n −1 ∏ 

i =1 

d i . By (2) , G has a spanning graph C(d ′ , d n ) .

By Lemma 3.3 , C(d ′ , d n ) has a spanning cycle, and so G is Hamiltonian. �

Now we are ready to present the proof for Theorem 3.2 . 

Proof. Denote G = C(d 1 , d 2 , . . . , d n ) . Suppose first that n ≥ 4 . Let G 

′ 
1 

= C(d 1 , d 2 ) and G 

’ 
2 

= C(d 3 , d 4 , . . . , d n ) . By (2) , G = G 

′ 
1 

×
G 

′ 
2 . By Lemma 3.5 , G 

′ 
1 and G 

′ 
2 are Hamiltonian and so G is a Cartesian product of two Hamiltonian bipartite graphs. It follows

by Lemma 3.4 that G is 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. 

Next we assume that n = 3 and max { d 1 , d 2 , d 3 } ≥ 4 . Without loss of generality, we may assume that d 1 ≥ 4 . Let G 

′ =
(d 2 , d 3 ) . Then G = C d 1 × G 

′ . By Lemma 3.5 , G 

′ is Hamiltonian, and so as d 1 ≥ 4 , G is a Cartesian product of two Hamiltonian

bipartite graphs. It follows by Lemma 3.4 that G is 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. 

Observe that if n = 3 with max { d 1 , d 2 , d 3 } = 2 , then G = C(2 , 2 , 2) = C 4 × K 2 = C(4 , 2) , which is a special case when n = 2 .

Thus it remains to prove the theorem for the case when n = 2 . 

Assume that n = 2 . By symmetry, we also assume that d 1 ≥ d 2 . By Example 3.1 , if G is an exceptional configuration, then

G is not 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. In the following, we assume that G is not an exceptional configuration to prove

that for any u, v ∈ V (G ) , G has the desirable cycles as required in Definition 1.1 . If d 2 ≥ 4 , then by Lemma 3.4 that G is

2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. Therefore, we assume that d 2 = 2 , and so G = C d 1 × K 2 . 

For each i, j with 1 ≤ i ≤ 2 and 1 ≤ j ≤ d 1 , let v i 
j 
= u j−1 u i −1 denote the vertex in V (G ) , and C i 

d 1 
= v i 

1 
v i 

2 
· · · v i 

d 1 
v i 

1 
. By defi-

nition of generalized hypercubes, V (G ) = V (C 1 
d 1 

) ∪ V (C 2 
d 1 

) . By the vertex-transitivity of G, we may assume u = v 1 
1 

and v = v t r 
where r ∈ { 1 , 2 , . . . , d 1 } , t ∈ { 1 , 2 , . . . , d 2 } . 

Since G is not an exceptional configuration, we assume that either v � = v 2 
1 
, or v = v 2 

1 
and G = C(4 , 2) . If v = v 2 

1 
and G =

(4 , 2) , then the two cycles J 1 = C 1 
d 1 

and J 2 = C 2 
d 1 

, each of which has length 4 = 

| V (G ) | 
2 with u ∈ V (J 1 ) and v ∈ V (J 2 ) . Hence G

is 2-DCC vertex [4 , | V (G ) | 
2 ] -bipancyclic. Therefore, we assume in the rest of the proof, v � = v 2 

1 
. 

Suppose that 2 ≤ r ≤ � 
2 where 4 ≤ � ≤ d 1 . For each i ∈ { 1 , 2 } , C i 

d 1 
contains disjoint paths P i = C i 

d 1 
[ v i 

d 1 − � 
2 

+ r , v 
i 
r−1 

] and P ′ 
i 

=
 

i 
d 1 

[ v i r , v i d 1 − � 
2 

+ r−1 
] . As r − 1 ≥ 1 , 2 ≤ r ≤ � 

2 and d 1 − � 
2 + r ≤ d 1 , we have u = v 1 

1 
∈ V (P 1 ) and v i r ∈ V (P ′ 

i 
) , i = 1 , 2 . Define 

J 1 = P 1 [ v 1 d 1 − � 
2 + r 

, v 1 r−1 ] v 
1 
r−1 v 

2 
r−1 P 2 [ v 

2 
r−1 , v 

2 
d 1 − � 

2 + r 
] v 2 

d 1 − � 
2 + r 

v 1 
d 1 − � 

2 + r 

and 

J 2 = P ′ 1 [ v 
1 
r , v 1 d 1 − l 

2 + r−1 
] v 1 

d 1 − l 
2 + r−1 

v 2 
d 1 − l 

2 + r−1 
P ′ 2 [ v 

2 
d 1 − l 

2 + r−1 
, v 2 r ] v 2 r v 1 r . 

Then J 1 a cycle of length � containing vertex u in G and J 2 is a cycle of length 2 d 1 − � = | V (G ) | − � containing vertex v . Thus

a pair of desired cycles exist in this case. 

Next we suppose that � 
2 + 1 ≤ r ≤ d 1 . For each i ∈ { 1 , 2 } , C i 

d 1 
contains disjoint paths P i = C i 

d 1 
[ v i 

1 
, v i � 

2 

] and P ′ 
i 

=
 

i 
d 1 

[ v i � 
2 

+1 
, v i 

d 1 
] . As � 

2 + 1 ≤ r ≤ d 1 , u = v 1 
1 

∈ V (P 1 ) and for each i = 1 , 2 , v i r ∈ V (P ′ 
i 
) . Define J ′ 

1 
= P 1 [ v 1 1 

, v 1 � 
2 

] v 1 � 
2 

v 2 � 
2 

P 2 [ v 2 � 
2 

, v 2 
1 
] v 2 

1 
v 1

1

and J ′ 
2 

= P ′ 
1 
[ v 1 � 

2 
+1 

, v 1 
d 1 

] v 1 
d 1 

v 2 
d 1 

P ′ 
2 
[ v 2 

d 1 
, v 2 � 

2 
+1 

] v 2 � 
2 

+1 
v 1 � 

2 
+1 

. Then J ′ 
1 

is a cycle of length � in G with u ∈ V (J ′ 
1 
) , and J ′ 

2 
is a cycle of

length 2 d 1 − � = | V (G ) | − � with v ∈ V (J ′ 
2 
) . As V (J ′ 

1 
) ∩ V (J ′ 

2 
) = ∅ and V (J ′ 

1 
) ∪ V (J ′ 

2 
) = V (G ) . Hence in this case, the desired cy-

cles also exist. We conclude that if v � = v 2 
1 
, then for any � with 4 ≤ � ≤ | V (G ) | 

2 , G always has disjoint cycles J 1 and J 2 with

| E(J 1 ) | = � and | E(J 2 ) | = | V (G ) | − � such that u ∈ V (J 1 ) and v ∈ V (J 2 ) . 

This completes the proof of the theorem. �

Remark 3.6. As shown in Example 3.1 , when n = 2 and d 1 ≥ 6 , d 2 = 2 , if v = v 2 1 , G does not have a cycle of length 4 that

only contains vertex u but not v . Thus it is not 2-DCC [4 , | V (G ) | 
2 ] vertex bipancyclic. However, for any vertex v = v t r � = v 2 1 , the

proof of Theorem 3.2 above indicates that G always contains two disjoint cycles J 1 of length � and J 2 of length | V (G ) | − �
containing u and v , respectively, with required length � . 

9 



R. Niu, M. Xu and H.-J. Lai Applied Mathematics and Computation 400 (2021) 126090 

Fig. 10. Illustration of the proof of Corollary 4.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Applications 

In this section, we present several corollaries of Theorem 3.2 as applications to vertex-bipancyclicity and 2-DCC bipan- 

cyclicity of bipartite generalized hypercubes as well as to the same properties of bipartite k -ary n -cubes. 

Corollary 4.1. The n -dimensional bipartite generalized hypercube is vertex-bipancyclic for n ≥ 2 . 

Proof. Let G = C(d 1 , d 2 , . . . , d n ) be an n -dimensional bipartite generalized hypercube with (1) denoting the set of vertices

in G . For any even integer � with 4 ≤ � ≤ | V (G ) | , and for any vertex v ∈ V (G ) , we are to find a cycle C of order � such

that v ∈ V (C) . If � = | V (G ) | , then the existence of such C is assured by Lemma 3.5 . If � satisfies 4 ≤ � ≤ | V (G ) | − 4 , then

Theorem 3.2 warrants that G has a desirable such cycle C when n ≥ 2 and G is not exceptional configuration. 

As for the exceptional configuration, we consider the generalized hypercubes of the form C(d 1 , d 2 ) with d 1 ≥ d 2 ≥ 2 . If

G = C(2 , 2) = C 4 , then the corollary is obvious. Then, suppose that d 1 ≥ 6 and d 2 = 2 . By Remark 3.6 , for any vertex u = u 1 u 2 
and v = v 1 v 2 , where v 1 � = u 1 , G always has two disjoint cycles J 1 of length � and J 2 of length | V (G ) | − � containing u and v ,
respectively, with 4 ≤ � ≤ | V (G ) | − 4 . 

Then for any vertex v ∈ V (G ) , except for C(2 , 2) , what we should construct is a cycle of length | V (G ) | − 2 in graph G

containing vertex v . 
When n = 2 , G = C(d 1 , d 2 ) . If max { d 1 , d 2 } ≥ 4 , we can assume d 1 ≥ 4 without loss of generality. For each i, j with 1 ≤ i ≤

d 2 and 1 ≤ j ≤ d 1 , let v i 
j 
= u j−1 u i −1 denote the vertex in V (G ) , and let C i 

d 1 
= v i 

1 
v i 

2 
· · · v i 

d 1 
v i 

1 
. Then G contains C 1 

d 1 
, C 2 

d 1 
, . . . , C 

d 2 
d 1 

as induced subgraphs. Denote path P = w 1 w 2 · · · w d 2 
, then C d 1 × P is a spanning graph of G . And we may assume vertex

v = v 1 
1 

since generalized hypercube is vertex-transitive. 

We can pick two paths P i = C i 
d 1 

[ v i 
1 
, v i 

d 1 −1 
] in C i 

d 1 
of length d 1 − 2 , where i ∈ { 1 , 2 } . We can see path P 1 containing vertex

v . Then we can construct a cycle 

C ′ = P 1 [ v 1 1 , v 
1 
d 1 −1 ] v 

1 
d 1 −1 v 

2 
d 1 −1 P 2 [ v 

2 
d 1 −1 , v 

2 
1 ] v 

2 
1 v 

1 
1 

of length 2 d 1 − 2 containing vertex v and with edge (v 2 1 , v 
2 
2 ) in it. If d 2 = 2 , we have got the desired the cycle. If d 2 ≥ 4 ,

according to Lemma 3.3 , we can construct a spanning cycle C ′′ in graph C d 1 × P [ w 3 , w d 2 
] of length (d 2 − 2) · d 1 containing

edge (v 3 
1 
, v 3 

2 
) . Thus C ′′ [ v 3 

1 
, v 3 

2 
] is one spanning path of C d 1 × P [ w 3 , w d 2 

] . Then we have cycle C = C ′ [ v 2 
2 
, v 2 

1 
] v 2 

1 
v 3 

1 
C ′′ [ v 3 

1 
, v 3 

2 
] of

length � = 2 d 1 − 2 + (d 2 − 2) · d 1 = | V (G ) | − 2 containing vertex v . So we can also get the desired cycle, as illustrated in

Fig. 10 . 

When n ≥ 3 , G = C(d 1 , d 2 , . . . , d n ) . We denote G 

′ = C(d 1 , d 2 , . . . , d n −1 ) , then G = G 

′ × C d n (or G = G 

′ × K 2 if d n = 2) which

contains $C(d’, d_n) $ as a subgraph According to Lemma 3.5 , there exists a Hamilton cycle C d ′ in G 

′ , where d ′ = 

n −1 ∏ 

i =1 

d i . Then

G 

′′ = C d ′ × C d n (or C d ′ × K 2 if d n = 2 ) is a spanning subgraph of G . Then we turn the case into the situation that n = 2 . Hence

we prove any vertex in G 

′′ contained in a cycle of length d ′ · d n − 2 , which means any vertex in G contained in a cycle of

length | V (G ) | − 2 . �

Since the 2-DCC vertex bipancyclicity can deduce the 2-DCC bipancyclicity of a graph. By Theorem 3.2 and Remark 3.6 ,

we have the Corollary 4.2 immediately. 

Corollary 4.2. The n -dimensional bipartite generalized hypercube G is 2-DCC [4 , | V (G ) | 
2 ] -bipancyclic except for C(2 , 2) when n ≥ 2 .

As for k -ary n -cube Q 

k 
n = C(k , k , . . . , k ) is a special case of the generalized hypercube. We can see that | V (Q 

k 
n ) | = n k and

k is an even number if Q 

k 
n is bipartite. Then we can get the following corollaries. 

Corollary 4.3. The bipartite k -ary n -cube Q 

k 
n is 2-DCC vertex [4 , k 

n 
] -bipancyclic except for Q 

2 when n ≥ 2 . 
2 2 
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Corollary 4.4. The bipartite k -ary n -cube Q 

k 
n is 2-DCC [4 , k 

n 

2 ] -bipancyclic except for Q 

2 
2 when n ≥ 2 . 

5. Concluding remark 

In this paper, we show that for all integers n ≥ 2 , an n -dimensional bipartite generalized hypercube G is 2-DCC vertex

[4 , | V (G ) | / 2] -bipancyclic if and only if G � = C(2 , 2) or G � = C(d 1 , d 2 ) with min { d 1 , d 2 } = 2 and max { d 1 , d 2 } ≥ 6 , where d 1 , d 2
are even numbers. As a corollary, we prove that any n -dimensional bipartite k -ary n -cube Q 

k 
n = C(k , k , . . . , k ) is also 2-DCC

vertex [4 , k 
n 

2 ] -bipancyclic except for Q 

2 
2 when n ≥ 2 , and show the vertex-bipancyclicity of bipartite generalized hypercubes.
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