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Abstract
Let k, n, s, t > 0 be integers and n = s + t ≥ 2k + 2. A simple bipartite graph G
spanning Ks,t is bi-k-maximal, if every subgraph of G has edge-connectivity at most
k but any edge addition that does not break its bipartiteness creates a subgraph with
connectivity at least k+1.We investigate the optimal size bounds of the bi-k-maximal
simple graphs, and prove that if G is a bi-k-maximal graph with min{s, t} ≥ k on n
vertices, then each of the following holds.

(i) Letm be an integer. Then there exists a bi-k-maximal graph G withm = |E(G)|
if and only if m = nk − rk2 + (r − 1)k for some integer r with 1 ≤ r ≤ � n

2k+2�.
(ii) Every bi-k-maximal graph G on n vertices satisfies |E(G)| ≤ (n − k)k, and this

upper bound is tight.
(iii) Every bi-k-maximal graph G on n vertices satisfies |E(G)| ≥ k(n − 1) − (k2 −

k)� n
2k+2�, and this lower bound is tight. Moreover, the bi-k-maximal graphs

reaching the optimal bounds are characterized.
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1 Introduction

Throughout this paper, Z denotes the set of all integers. We consider finite simple
graphs, with undefined terms and notation following Bondy and Murty (2008). In
particular, κ ′(G) denotes the edge connectivity of a graph G. We use Gc to denote
the complement of a simple graph G. If X ⊆ E(Gc), then G + X is the simple
graph with vertex set V (G) and edge set E(G) ∪ X . We will use G + e for G + {e}.
Following Bondy and Murty (2008), we often use G[X ,Y ] to denote a bipartite graph
with vertex bipartition (X ,Y ). The bipartite complement of a simple bipartite graph
G = G[X ,Y ] is defined to be the bipartite graph Gbc with V (Gbc) = V (G) and

E(Gbc) = {xy : x ∈ X , y ∈ Y and xy /∈ E(G)}.

If W ⊆ V (G) or if W ⊆ E(G), then G[W ] denotes the subgraph of G induced by
W . For v ∈ V (G), we use G − v for G[V (G) − v]. For graphs H and G, we denote
H ⊆ G when H is a subgraph of G. We use G ∼= H when the graphs G and H are
isomorphic. Following Bondy and Murty (2008), for vertex subsets X ,Y ⊆ V (G),
EG[X ,Y ] denotes the set of edges of G with one end in X and the other end in Y . If
H , J are two subgraphs of G, then we also use EG[H , J ] for EG [V (H), V (J )].

Given a graph G, Matula (1972) first explicitly studied the quantity κ̄ ′(G) =
max{κ(H) : H ⊆ G}. He called κ̄ ′(G) the strength of G. Mader (1971) and Lai
(1990) considered extremal problems related to κ̄ ′(G). For an integer k > 0, a simple
graph G with |V (G)| ≥ k + 1 is (strength) k-maximal if κ̄ ′(G) ≤ k but for any edge
e ∈ E(Gc), κ̄ ′(G + e) > k. Mader (1971) and Lai (1990) proved the following for a
positive integer k.

Theorem 1.1 Let k ≥ 1 be an integer, and G be a k-maximal graph on n > k + 1
vertices. Each of the following holds.

(i) (Mader 1971) |E(G)| ≤ (n − k)k + (k
2

)
. Furthermore, this bound is tight.

(ii) (Lai 1990) |E(G)| ≥ (n − 1)k − � n
k+2� + (k

2

)
. Furthermore, this bound is tight.

There have been quite a few studies on this topic, as seen in Anderson (2017),
Anderson et al. (2017, 2018), Lai (1990), Li et al. (2019), Lin et al. (2016), Mader
(1971), Matula (1968), Matula (1969), Matula (1972), Matula (1976) and Xu (2018),
among others. Theorem 1.1 motivates the the current research. For integer s ≥ 1,
t ≥ 1, define

F(s, t) = {G[S, T ] : s = |S|, t = |T |}.

Let k > 0 be an integer. A graph G is bi-k-maximal if for some positive integers s
and t , we have G ∈ F(s, t) with κ̄ ′(G) ≤ k but for any edge e ∈ E(Gbc), we have
κ̄ ′(G+e) ≥ k+1. The graph obtained by Kk+1,k+1 deleting one edge is bi-k-maximal.
Additional examples of bi-k-maximal can be found in subsections 3.1 and 3.2 of this
paper. By definition, a graph G ∈ F(s, t) with min{s, t} ≤ k − 1 is bi-k-maximal if
and only if G = Ks,t . Thus in this paper we may assume that min{s, t} ≥ k. Then
every bi-k-maximal must have at least 2k vertices, and {Kk,n−k : n ≥ 2k} is the
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collection of bi-k-maximal complete bipartite graphs with order at least 2k. The main
result of this paper is the following.

Theorem 1.2 Let k and n be integers with k ≥ 2 and n ≥ 2k+2. Each of the following
holds.

(i) Let m be an integer. Then there exists a bi-k-maximal graph G with m = |E(G)|
if and only ifm = nk − rk2 + (r − 1)k for some integer r with 1 ≤ r ≤ � n

2k+2�.
(ii) Every bi-k-maximal graph G on n vertices satisfies |E(G)| ≤ (n − k)k, and this

upper bound is tight.
(iii) Every bi-k-maximal graph G on n vertices satisfies |E(G)| ≥ k(n − 1) − (k2 −

k)� n
2k+2�, and this lower bound is tight.

Section 2 below is devoted to the study of structural properties of bi-k-maximal
graphs, which would be used in our arguments. Theorem 1.2 will be proved in Sec-
tion 3.

2 Properties of bi-k-maximal graphs

By the definition of bi-k-maximal graphs, we observe that when k = 1,

a bipartite graph G is bi-1-maximal if and only if G is a tree with |E(G)| ≥ 1. (1)

Thus throughout this section, we assume that k, s, t are integers with min{s, t} ≥ k ≥
2, and G = G[S, T ] ∈ F(s, t) − {Kk,k} be a bipartite graph with n = s + t vertices.
Let

B(n, k) = {G : G is a simple bipartite graph with |V (G)|
= n and G is bi-k-maximal},

and B(k) = ∪n≥2kB(n, k) be the family of all bi-k-maximal graphs. Thus for any
integer t ≥ k,we have Kk,t ∈ B(k).Moreover, if H ∈ B(k) and |V (H)| ∈ {2k, 2k+1},
then H ∈ {Kk,k, Kk,k+1}. It follows from definition of B(k) that

for any G ∈ B(k),G is connected and κ ′(G) ≤ κ ′(G) ≤ k. (2)

Lemma 2.1 Let G ∈ B(n, k) be a graph and X be a minimum edge-cut of G with
|X | ≤ k, and let G1 and G2 be the two components of G − X. Each of the following
holds.

(i) If G is not a complete bipartite graph, then EGbc [V (G1), V (G2)] �= ∅.
(ii) κ ′(G) = κ̄ ′(G) = k.

Proof Let G = G[A, B] with |A| = s and |B| = t . We may assume, by symmetry,
that s ≥ t .
(i) Since G is a bipartite graph, we let G1 = G1[A1, B1] and G2 = G2[A2, B2]
denote the two components of G − X , with A = A1 ∪ A2 and B = B1 ∪ B2. We
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argue by contradiction to prove (i) and assume that EGbc [V (G1), V (G2)] = ∅. Thus
EG[A1, B2] ∪ EG[A2, B1] ⊆ X , and so we have

|A1||B2| + |A2||B1| = |X | ≤ k. (3)


�
Claim 1 |A1|, |B1|, |A2|, and |B2| > 0.

If |A1| = 0, then |B1| = 1 as G1 is connected. By (3), |A2| ≤ k. As G is not
a complete bipartite graph, there exists an edge xy ∈ E(Gbc). Since G ∈ B(k), we
have κ̄ ′(G + xy) ≥ k + 1. As |A| = |A2| ≤ k, implying that κ̄ ′(G + xy) ≤ k. This
contradiction forces that |A1| > 0. By symmetry, we conclude that Claim 1must hold.

As s ≥ t , we have |A1| + |A2| = s ≥ n
2 . By Claim 1, we have |B1| ≥ 1 and

|B2| ≥ 1, and so |A1||B2| + |B1||A2| ≥ |A1| + |A2| ≥ 2k+1
2 > k.

This leads to a contradiction to (3), and so Lemma 2.1(i) holds.
As (ii) holds trivially if G = Kk,n−k , we assume that G is not a complete bipartite

graph to prove (ii). By (2), κ ′(G) ≤ κ ′(G) ≤ k. Assume that X ⊆ E(G) is a minimum
edge-cut ofG. Then |X | ≤ k. ByLemma2.1(i),wemust have EGbc [V (G1), V (G2)] �=
∅. Pick an edge e ∈ EGbc [V (G1), V (G2)]. Since G ∈ B(k), we have κ̄ ′(G + e) > k.
Let H ⊆ G + e be a subgraph such that κ ′(H) ≥ k + 1. By (2), κ̄ ′(G) ≤ k,
and so e ∈ E(H). It follows that (X ∪ {e}) ∩ E(H) is an edge cut of H . Thus
|X | + 1 ≥ |(X ∪ {e})| ≥ κ ′(H) ≥ k + 1, implying that |X | = k. Thus κ ′(G) ≥ k.
This, together with (2), implies Lemma 2.1(ii). �

Lemma 2.2 Suppose that G = G[A, B] ∈ B(k) − {Kk,k}. Let X ⊆ E(G) be a
minimum edge-cut of G such that G1 and G2 are the two components of G − X. One
of the following must hold:

(i) |V (G1)| = 1 and G2 ∈ B(k).
(ii) G1 ∈ B(k) and |V (G2)| = 1.
(iii) Both G1 ∈ B(k) and G2 ∈ B(k), and, both G1 and G2 are not complete bipartite

graphs.

Proof Let X be a minimum k-edge-cut, and letG1 andG2 denote the two components
ofG− X . If min{|V (G1)|, |V (G2)|} = 1, then we shall show that (i) or (ii) must hold;
if min{|V (G1)|, |V (G2)|} > 1, then we shall show that (iii) must hold.

We start with a proof for (i) and (ii). By symmetry, we shall assume that
|V (G1)| ≥ |V (G2)| ≥ 1, and so it suffices to assume V (G2) = {v} ⊂ B to prove that
Lemma 2.2(ii) must hold. Let G1 = G1[A1, B1] with A1 = A and B1 = B − {v}.
By Lemma 2.1(ii), we have δ(G) ≥ κ ′(G) = k. Let s1 = |A1| and t1 = |B1|. Then
s1 = |A| ≥ k and t1 ≥ k − 1.

If G1 = Ks1,t1 , then k = κ̄ ′(G) ≥ κ ′(G1) = min{s1, t1}. Assume first that s1 ≥ t1.
Then as κ ′(G) = k, we have s1 ≥ k, t1 ∈ {k−1, k} and NG(v) = A. Since G �= Kk,k ,
we conclude that t1 = k and soG1 = Kk,s1(s1 ≥ k) ∈ B(k). Now assume that s1 < t1.
As κ ′(G) = k, we have s1 = k, and so G1 = Kk,t1 with t1 ≥ k. Thus G1 ∈ B(k).
Therefore, we may assume that G1 is not a complete bipartite graph.
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Thus there exists an edge e = xy ∈ E(Gbc
1 ). We may assume that x ∈ A1 and

y ∈ B1. SinceG ∈ B(k),G+xy contains a subgraph L with κ ′(L) ≥ k+1. Since v has
degree |X | = k in G, v /∈ V (L) and so L is a subgraph of (G − v) + xy = G1 + xy.
Since L is a simple subgraph of G1 with δ(L) ≥ κ ′(L) ≥ k + 1, it follows that
|V (G1)| ≥ |V (L)| ≥ 2(k + 1), and so G1 ∈ B(k) and Lemma 2.2(ii) holds.

It remains to prove (iii). In the rest of the proof, we assume that both G1 =
G[A1, B1] and G2 = G2[A2, B2] with min{|A1|, |B1|, |A2|, |B2|} ≥ 1 to prove (iii).
If G is a complete graph Ks′,t ′ , then since G � Kk,k and since by Lemma 2.1(ii),
min{s′, t ′} ≥ k, we havemax{s′, t ′} ≥ k+1. Hence k = |X | = |A1||B2|+|B1||A2| ≥
max{|A1| + |A2|, |B1| + |B2|} ≥ k + 1, a contradiction. Thus with the assumption of
(iii), G cannot be a complete graph. 
�

Claim 2 Neither G1 nor G2 is a compete bipartite graph.

By contradiction and by symmetry, we may assume that G1 = G[S, T ] ∼= Ks2,t2
with |S| = s2, |T | = t2 and 1 ≤ s2 ≤ t2. Since G is not a complete bipartite graph,
by Lemma 2.1(i), EGbc [V (G1), V (G2)] �= ∅. Let e ∈ EGbc [V (G1), V (G2)]. Since
G ∈ B(k), we have s2 ≤ k and that G + e has a subgraph L with κ ′(L) ≥ k + 1
and we call this subgraph L(e). Since κ ′(G) ≤ k, we must have e ∈ E(L), and
so (X ∪ {e}) ∩ E(L) is an edge-cut of L . Since κ ′(L) ≥ k + 1, we conclude that
X ∪ {e} ⊆ E(L).

For i ∈ {1, 2}, define Li = L[V (Gi )∩V (L)] = Li [Si , Ti ]with Si ⊆ S and Ti ⊆ T ,
and denote |V (L1)| = � and |S1| = s. Thus � ≥ s and s2 ≥ s. As δ(L) ≥ κ ′(L) ≥ k+1
and 1 ≤ s ≤ �, it follows that

�(k + 1) ≤
∑

v∈V (L1)

dL1(v) = 2|E(L1)| + |X ∪ {e}|

= 2s(� − s) + k + 1 ≤ �2

2
+ k + 1, (4)

where in the last inequality, equality holds if and only if � = 2s. By (4), we have
2(� − 1)(k + 1) ≤ �2, and so 2(k + 1) ≤ �2

�−1 = � + 1 + 1
�−1 < � + 2, implying

that � ≥ 2k + 1. Since |S1| = s ≤ s2 ≤ k, we have |T1| = � − s ≥ k + 1. If
�(k + 1) = �2

2 + k + 1, then by (4), we have � = 2s ≤ 2k, contrary to the fact that

� ≥ 2k+1. Hencewemust have �(k+1) < �2

2 +k+1, which implies 2(�−1)(k+1) <

�2 − 1, leading to � ≥ 2k + 2. It follows by s ≤ k that |D1| = � − s ≥ k + 2. As
|X ∪ {e}| ≤ k + 1, there must be a vertex v ∈ V (T1) with dL(v) ≤ k, contrary to the
fact that δ(L) ≥ κ ′(L) ≥ k + 1. This justifies Claim 2.

By Claim 2, neither G1 nor G2 is a complete bipartite graph. Fix i ∈ {1, 2}. For
any edge e ∈ E(Gbc

i ) ⊆ E(Gbc), G + e has a subgraph L with κ ′(L) ≥ k + 1.
Since X is an edge cut of G with |X | ≤ k, we observe that X ∩ E(L) = ∅. As
e ∈ E(L)∩E(Gbc

i ), we conclude that L is a subgraph ofGi , and so κ̄ ′(Gi +e) ≥ k+1.
Since κ̄ ′(Gi ) ≤ κ̄ ′(G) ≤ k, it follows that Gi ∈ B(k). This proves (iii). �

Definition 2.3 Let k, r ∈ Z with k > 0 and r ≥ 2.
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(i) Let G1 and G2 be two vertex disjoint connected bipartite graphs such that
G1 = G1[A1, B1] and G2 = G2[A2, B2] with max{|V (G1)|, |V (G2)|} ≥ 2k.
A bipartite k-edge-join of G1 and G2 is a simple bipartite graph obtained from
the disjoint union ofG1 and G2 by adding k new edges e1, e2, . . ., ek to the union
of G1 and G2 such that each ei is incident with a vertex of A1 and a vertex of B2
or a vertex of A2 and a vertex of B1. Denote by (G1,G2)k the set of all bipartite
k-edge-joins of G1 and G2.

(ii) Inductively, let G1, G2, . . ., Gr be sequence of mutually disjoint connected
bipartite graphs with max {|V (G1)|, . . . , |V (Gr )|} ≥ 2k and r ≥ 3, and
assume that for some integer m with 1 ≤ m ≤ r − 1, the bipartite k-
edge-join families (G1,G2, . . . ,Gm)k and (Gm+1,Gm+2, . . . ,Gr )k have been
defined. A bipartite k-edge-join of G1, G2, . . ., Gr is a bipartite graph with
graph of the form G ∈ (H1, H2)k for some H1 ∈ (G1,G2, . . . ,Gm)k and
H2 ∈ (Gm+1,Gm+2, . . . ,Gr )k . Let (G1,G2, . . . ,Gr )k denote the family of all
bipartite k-edge-joins of G1, G2, . . ., Gr .

Observation 2.4 below follows from Definition 2.3 and routine verifications.

Observation 2.4 Each of the following holds.

(i) (G1,G2)k = (G2,G1)k .
(ii) If κ ′(G1) ≥ k, and if κ ′(G2) ≥ k or G2 = K1, then

κ ′(H) = k for any H ∈ (G1,G2)k . (5)

The corollaries below follows immediately from Lemma 2.2.

Corollary 2.5 Let G ∈ B(k) \ {Kk,k} be a bipartite graph. Then one of the following
must hold.

(i) For some H ∈ B(k), G ∈ (H , K1)k .
(ii) For some non-complete bipartite graphs H1, H2 ∈ B(k), G ∈ (H1, H2)k .

Corollary 2.6 Suppose that min{κ ′(H1), κ
′(H2)} ≥ k and G ∈ (H1, H2)k . Then for

any edge cut X of G with |X | = k, either X is an edge cut of H1, or X is an edge cut
of H2, or X = EG [V (H1), V (H2)].

3 The size range of bi-k-maximal bipartite graphs

The main goal of this section is to prove Theorem 1.2. Let G be a graph and let
v ∈ V (G). Define EG(v) be the set of edges in G incident with v. A minimal edge cut
X is trivial if there exists a vertex v with EG(v) = X , otherwise X is an essential edge
cut. If δ(G) = κ ′(G) and if every minimum edge-cut of G is trivial, then G is super-
edge-connected (see Chen et al. 2003; Esfahanian and Hakimi 1988; Xu to appear).
Throughout the rest of this paper, for an edge subset Y ⊆ E(G), let V (Y ) = V (G[Y ]).
For an integer k ≥ 1 and a graph G with κ ′(G) ≥ k, let Ck(G) denote the set of all
edge cuts of size k of G.
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3.1 Structural properties of graphs inB(k)

The main results of this subsection are Lemmas 3.2 and 3.3, exploring some structural
properties of graphs in B(k) to be applied in the arguments later.

Definition 3.1 Let k, n be positive integers with n ≥ 2k + 2.

(i) Define H(k, n − 2k) to be the family of simple non-complete bipartite graphs
(Kk,k, K1, . . . , K1)k of order n. Unless otherwise stated, H(k, n − 2k) denotes
an arbitrary member inH(k, n − 2k).

(ii) If G = H(k, 2), then G has exactly two vertices of degree k. We use
{x1(G), x2(G)} to denote the set of vertices of degree k in G.

As an example,H(1, n− 2) is precisely the family of trees on n vertices. Assume that
k ≥ 2. If H ∈ H(k, n − 2k), then let H1 denote the subset of V (H) corresponding to
the (n − 2k) singletons K1’s that are not in the subgraph isomorphic to Kk,k of H . It
is routine to verify that that

κ ′(H) = k, for any H ∈ H(k, n − 2k). (6)

Lemma 3.2 Suppose that k ≥ 2. If H ∈ H(k, n − 2k), then

(i) H ∈ B(k), and
(ii) H is super-edge-connected.

Proof If n = 2k + 2, then since H(k, 2) contains no complete bipartite graphs, we
haveH(k, 2) = {Kk+1,k+1−e}, and so Lemma 3.2 holds. Assume that n ≥ 2k+3 and
Lemma 3.2 holds for smaller values of n. Let H1 = H1(k, n − 2k) ∈ H(k, n − 2k).
By Definition 2.3, there exists a graph H2 = H2(k, n − 2k − 1) ∈ H(k, n − 2k − 1)
such that H1 = (H2, K1)k ∈ H(k, n − 1). Let V (H1) − V (H2) = {v}.

Suppose that (ii) does not hold. Then there is a minimum edge-cut X =
EH1[V (J1), V (J2)] of H1, where J1 and J2 are the two components of H1 − X with
min{|V (J1)|, |V (J2)|} ≥ 2. By (5), |X | = k. Without loss of generality, assume that
v ∈ V (J1). By (5), κ ′(H2) = k. If EH1(v)∩ X �= ∅, then as X �= EH1(v), X −EH1(v)

is an edge-cut of H2, and so κ ′(H2) ≤ |X − EH1(v)| < |X | = k = κ ′(H2), a contra-
diction. Hence we must have EH1(v) ∩ X = ∅, and so NH1(v) ⊆ V (J1). It follows
that X = (V (J1 − v), V (J2))H2 is an edge-cut of H2. By induction, H2 satisfies
Lemma 3.2(ii), forcing min{|V (J1)|, |V (J2)|} = 1, contrary to the assumption of
min{|V (J1)|, |V (J2)|} ≥ 2. Thus Lemma 3.2(ii) must hold.

To prove (i), we argue by way of contradiction, and assume that H1 /∈ B(k).
Then there is an edge e ∈ E(Hbc

1 ) such that κ̄ ′(H1 + e) ≤ k. If e ∈ E(Hbc
2 ),

then by induction, we have H2 ∈ B(k) and so κ ′(H1 + e) ≥ κ ′(H2 + e) ≥ k + 1, a
contradiction. Hence then e /∈ E(Hbc

2 ). By Definition 2.3, E(H1)−E(H2) = EH1(v),
and so |E(H1) − E(H2)| = k. Since e /∈ E(Hbc

2 ), we have e ∈ EH1+e(v).
Let Y = EH1+e[V (F1), V (F2)] be a minimum edge-cut of H1 + e with |Y | = k,

where F1 and F2 are the two components of (H1 + e) − Y . By (5), κ ′(H1) = k,
and so e /∈ Y and Y �= EH1(v). This means Y ⊆ E(H1). Without loss of generality,
assume that v ∈ V (F1). By (5), κ ′(H2) = k. If Y ∩ EH1(v) �= ∅, then as Y �= EH1(v),
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Y−EH1(v) is an edge-cut of H2. It follows that κ ′(H2) ≤ |Y−EH1(v)| < k = κ ′(H2),
a contradiction. Hence we must have Y ∩ EH1(v) = ∅, and so Y ⊆ E(H1 − EH1(v) =
E(H2). By induction, Lemma 3.2 holds for H2, and so there exists a vertexw ∈ V (H2)

such that Y = EH2(w). As NH1(v) ∪ {v} ⊆ V (F1), we must have V (F2) = {w}.
LetG ′ = H1−w. Then e ∈ E((G ′)bc). By Definition 2.3,G ′ ∈ H(k, (n−1)−2k).

By induction, G ′ ∈ B(k), and so κ̄ ′(H1 + e) ≥ κ̄ ′(G ′ + e) ≥ k + 1, contrary to the
assumption of κ̄ ′(H1 + e) ≤ k. 
�
Lemma 3.3 Let n, k be integerswith k ≥ 2andn ≥ 2k+2. Let G ∈ B(n, k)−{Kk,n−k}.
Then there exist integers r , m1, m2, . . ., mr , mr+1 such that each of the following holds.

(i) 1 ≤ r ≤ � n
2k+2�, mi ≥ 2, (1 ≤ i ≤ r), and mr+1 ≥ 0;

(ii) m1 + m2 + · · · + mr+1 = n − 2rk,
(iii) For each i = 1, 2, . . . , r , there exists an Hi = H(k,mi ) ∈ H(k,mi ) such that

G ∈ (H1, K1, . . . , K1, H2, K1, . . . , K1, Hr , K1, K1, . . . , K1)k,

with exactly mr+1 singleton K1’s.

Proof We argue by induction on n. If n = 2k + 2, then by Corollary 2.5, we conclude
that G = H(k, 2), and so the theorem holds with r = 1 and m1 = 2.

Assume that n > 2k+2 and the theorem holds for smaller values of n. By Corollary
2.5, either Corollary 2.5(i) or Corollary 2.5(ii) must hold. Assume first that Corollary
2.5(i) holds for G. Then there exists some H ∈ B(k) such that G ∈ (H , K1)k . By
induction, there exist integers r , m1, m2, . . ., mr , m′

r+1 such that H satisfies Lemma
3.3 (i), (ii) and (iii). As G ∈ (H , K1)k , by Definition 2.3, Lemma 3.3 (i), (ii) and (iii)
hold for G with mr+1 = m′

r+1 + 1.
Now assume that Corollary 2.5(ii) holds. Then there exist non-complete bipartite

graphs H ′
1, H

′
2 ∈ B(k)withG ∈ (H ′

1, H
′
2)k . By induction, each of H

′
1 and H ′

2 satisfies
Lemma 3.3 (i), (ii) and (iii), and so by Definition 2.3, Lemma 3.3 (i), (ii) and (iii) hold
for G as well. 
�
Corollary 3.4 Let k, n be integers with k ≥ 2 and n ≥ 2k + 2, and let G ∈ B(n, k) −
{Kk,n−k}. Each of the following holds.

(i) There exist integers r , s with 1 ≤ r ≤ � n
2k+2� and s = n − r(2k + 2), and

graphs H1, H2, . . . Hr+s with H1 = H(k, 2) and for 2 ≤ i ≤ r + s, we have
Hi ∈ {H(k, 2), K1} such that exactly r of the Hi ’s are isomorphic to H(k, 2)
and such that G ∈ (H1, H2, . . . , Hr+s)k .

(ii) For the integers r and s defined in (i), we have |E(G)| = nk − rk2 + (r − 1)k.
(iii) The integer r is uniquely determined by the value k and the graph G. (This

number r will be denoted by rk(G). )
(iv) There exist subgraphs H1 and H2 of G with H1 ∈ B(k)−{Kk, j−k : j ≥ 2k} such

that either H2 = K1 and G ∈ (H1, K1)k or δ(G) ≥ k+1, H2 ∈ B(k)−{Kk, j−k :
j ≥ 2k} and G ∈ (H1, H2)k .

Proof By Definition 3.1, if m > 2, then H(k,m) ∈ (H(k, 2), L1, . . . , Lm−2)k with
L j ∼= K1, for all j ∈ {1, 2, . . . ,m−2}. It follows fromLemma 3.3 that there exist inte-
gers r , swith 1 ≤ r ≤ � n

2k+2� and s = n−r(2k+2), and graphs H1, H2, . . . Hr+s with
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H1 = H(k, 2) and for 2 ≤ i ≤ r + s, such that Hi ∈ {H(k, 2), K1} and that exactly r
of the Hi ’s are isomorphic to H(k, 2) and such that G ∈ (H1, H2, . . . , Hr+s)k . This
proves (i).

By (i), and by s = n−r(2k+2), we have |E(G)| =
∑r+s

i=1
|E(Hi )|+(r+s−1)k =

r(k2 +2k)+ (r + s−1)k = nk−rk2 + (r −1)k. Thus r = (|V (G)| − 1)k − |E(G)|
k2 − k

is uniquely determined by the value k and the graph G. This proves (ii) and (iii).
To prove (iv), we first observe that by Lemma 2.1, we have δ(G) ≥ κ ′(G) = k. If

δ(G) = k, then by Corollary 2.5, we must have G ∈ (H1, K1)k for some subgraph
H1 of G with H1 ∈ B(k). Assume that δ(G) ≥ k + 1. Then by Lemma 3.3, we must
have subgraphs H1, H2 of G satisfying H1, H2 ∈ B(k) and G ∈ (H1, H2)k . 
�

3.2 Structural properties of graphs in E(k)

Lemma 3.3 reveals the structure of bi-k-maximal graphs and motivates the following
definition. We observed that by Definition 2.3 that H(k,m) and K1 are the building
blocks of bi-k-maximal graphs. This leads to the definition of a special subfamily
E(k) of B(k). The purpose of this subsection is to develop and explore some structural
properties of graphs in E(k) to be deployed in the arguments to justify the main result
of this paper in the last subsection.

Definition 3.5 Let n and k be integers with k ≥ 1 and n ≥ 2k + 2. Let S(n, k) be the
set of all integral sequences (s1, s2, . . . , sq) satisfying n = s1 + s2 +· · ·+ sq such that
s1 = 2k + 2, and for i = 2, si ∈ {1, 2k + 2}. For any s = (s1, s2, . . . , sq) ∈ S(n, k),
define bipartite graphs L(s) = L(s1, s2, . . . , sq) as follows.

(i) Given s = (s1, s2, . . . , sq) ∈ S(n, k), define Ji = K1 if si = 1 and Ji =
H(k, 2) if si = 2k + 2. Then the sequence of bipartite graphs J1, J2, . . . , Jq
is called a construction sequence of L(s).

(ii) If i = 1, then define L1 ∼= H(k, 2).
(iii) Assume that i ≥ 2.

(iii-A) If si = 1, then define Li ∈ (Li−1, K1)k .
(iii-B) If si = 2k + 2, then define Li ∈ (Li−1, H(k, 2))k , in such a way that for

each h ∈ {1, 2}, dLi (xh(L1)) ≥ k + 1 and dLi (xh(Ji )) ≥ k + 1.
(iv) Define L(s) = Lq . Thus each L(s) represents a collection of bipartite graphs.
(v) Define E(n, k) = {L(s) : s ∈ S(n, k)} and E(k) = (⋃

n≥2k+2 E(n, k)
) ∪

{Kk,k, Kk,k+1}.
In the discussions below, we shall adopt the notation in Definition 3.5 in our argu-

ments involving graphs in Ek . As an example, define

s′(n, k) = (s1, s2, . . . , sn−(k+2)), where

s1 = k + 2 and s2 = s3 = . . . = sn−(k+2) = 1.

Then by Definitions 3.1 and 3.5, L(s′(n, k)) = H(k, n − 2k).
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Observation 3.6 Let s = (s1, s2, . . . , sq) ∈ S(n, k) with q ≥ 2, and let G ∈ L(s)
with J1, J2, . . . , Jq being a construction sequence of G.

(i) If for some i > 1, si = 2k + 2, then for every j with 1 ≤ j ≤ i and with J j =
H(k, 2), the degree k vertices x1(J j ) and x2(J j ) of J j satisfies dLi (x1(J j )) ≥
k + 1 and dLi (x2(J j )) ≥ k + 1.

(ii) If for some i with 1 < i ≤ q, we have si = 2k+2 and if X = EG[V (Li−1),G−
V (Li−1)] ∈ Ck(G), then G ′ = G − V (Li−1) ∈ S(n − |V (Li−1)|, k), and either
G ′ = H(k, n − |V (Li−1)| − k) or both dG ′(x1(Ji )) ≥ k + 1 and dG ′(x2(Ji )) ≥
k + 1.

(iii) If X = EG[V (Lq−1), V (Jq)] and if there exists an index i0 < q − 1
satisfying V (X) ∩ V (Lq−1) ⊆ V (Li0), then G ∈ L(s′) where s′ =
(s1, . . . , si0 , iq , is0+1, . . . , sq−1).

(iv) If X is an edge cut of G with |X | = k, then there exists some i with 1 ≤ i < q
such that X = EG [V (Li ), V (Ji+1)].

Proof By Definition 3.5 (iii-B), if i > 1, then Observation 3.6 (i) holds since xh(Ji )
has degree k in Ji and is adjacent to a vertex in G − V (Ji ). Assume that i = 1. Let
t > 1 be the smallest integer such that st = 2k + 2. By Definition 3.5 (iii-B), we may
assume that x1(Jt )x1(J1) ∈ E(G). Since G is bipartite, it follows by Definition 3.5
(iii-B) again that wemust have x2(Jt )x2(J1) ∈ E(G), and so both dLi (x1(J j )) ≥ k+1
and dLi (x2(J j )) ≥ k + 1, implying (i).

To prove (ii), assume that for some i with 1 < i ≤ q, both si = 2k + 2 and
X = EG[V (Li−1,G − V (Li−1)] is a k-edge-cut of G. As |X | = k, for any j with
i < j ≤ q, no edge in X j = EG [V (L j−1,G − V (L j−1)] is incident with an vertex
in V (Li−1). Define s′ = (si , si+1, . . . , sq) and G ′ = G − V (Li−1). By Definition
3.5, s′ ∈ S(|V (G ′)|, k) and G ′ ∈ L(s′). If si+1 = . . . = sq = 1, then G ′ =
H(k, n − |V (Li−1)| − k); if for some j > i , s j = 2k + 2, then by Observation 3.6
(i), both dG ′(x1(Ji )) ≥ k + 1 and dG ′(x2(Ji )) ≥ k + 1.

Observation 3.6 (iii) follows from Definition 3.5 straightforwardly.
To prove (iv), let X is an edge cut of G with |X | = k and let i < q be the smallest

index such that E(Li ) ∩ X �= ∅. If i = 1, then by Definition 3.5, L1 = H(k, 2),
and X = EL1(x j (J1)) for some j ∈ {1, 2}. By Observation 3.6 (i), we conclude
that s = (2k + 2, 1, 1, . . . , 1) and G = H(k, n − 2k). Thus Observation 3.6 (iv)
must hold. Assume that that i > 1. By the definition of i , X ∩ E(Li−1) = ∅. If
X ∩ E(Ji ) �= ∅, then Ji ∼= H(k, 2), and so the only edge cut of size k in Ji must
be EJi (x j (Ji )) with j ∈ {1, 2}. Since X ∩ E(Ji ) is an edge-cut of Ji of size at most
|X | = k, it follows that X = EJi (x j (Ji )) for some j ∈ {1, 2}. By Observation 3.6 (i),
X cannot be an edge cut of G, contrary to the assumption on X . Hence X ∩ E(Ji ) = ∅
and so X = ELi [V (Li−1), V (Ji )] = EG [V (Li−1), V (G) − V (Li−1)]. This proves
Observation 3.6 (iv) . 
�

Lemma 3.7 For any G ∈ Ek , we have

κ ′(G) = κ̄(G) = k. (7)
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Proof Let G ∈ Ek . Then there exists an s = (s1, s2, . . . , sq) ∈ S(n, k) such that
G ∈ L(s). If q = 1, then G = H(k, 2), and so (7) holds. Assume that q > 1 and
(7) holds for smaller values of q. In the rest of the proof of this lemma, we adopt the
notation in Definition 3.5 and let J1, J2, . . . , Jq be the construction sequence of G.
Define s′ = (s1, s2, . . . , sq−1) and G ′ = G − V (Jq). Then s′ ∈ S(n − sq , k), and
G ′ ∈ L(s′). By Definition 3.5, G ∈ (G ′, Jq)k . By induction, κ(G ′) = κ̄ ′(G ′) = k.

To prove that κ ′(G) ≥ k, we assume that G has an edge-cut X with |X | ≤ k − 1.
If X ∩ E(G ′) �= ∅, then X ∩ E(G ′) is also an edge-cut of G ′, and so k = κ(G ′) ≤
|X ∩ E(G ′)| ≤ k −1, a contradiction. Thus X ∩ E(G ′) = ∅. If sq = 1, then Jq = K1.
Let w denote the only vertex in Jq . It follows that X ⊆ E(G) − E(G ′) = EG(w).
But |EG(w)| = k > k − 1 ≥ |X |, implying that X is not an edge-cut of G. Hence we
must have sq = k+2 and Jq = H(k, 2). As κ ′(Jq) = k, X ∩ E(Jq) = ∅ as well. This
implies that X ⊆ E(G) − (E(G ′) ∪ E(Jq)) = EG[V (G ′), V (Jq)]. By Definition 3.5
and as G = (G ′, Jq)k , we have k = |EG[V (G ′), V (Jq)]| > |X |, contrary to the fact
that X is an edge-cut of G. This proves that κ ′(G) ≥ k.

Finally, we argue by contradiction to prove κ̄ ′(G) = k, and assume that G has a
subgraph H such that κ(H) ≥ k + 1. By induction, κ̄ ′(G ′) ≤ k, and so V (H) −
V (G ′) �= ∅. If V (H)∩V (G ′) �= ∅, then EG[V (G ′), V (Jq)]∩ E(H) is an edge-cut of
H , and so k+1 ≤ κ(H) = |EG[V (G ′), V (Jq)]∩E(H)| ≤ |EG[V (G ′), V (Jq)]| = k,
a contradiction. This forces that V (H)∩V (G ′) = ∅, and so H is a subgraph of Jm . This
also leads to a contradiction, since Jq ∈ {K1, H(k, 2)} contains no nontrivial subgraph
with edge-connectivity at least k + 1. This completes the proof of the lemma. 
�
Lemma 3.8 Let k ≥ 1 be an integer. If G ∈ E(n, k) and X is an edge cut of G with
|X | = k, then one of the following must hold.

(i) There exists a vertex w ∈ V (G) such that X = EG(w).
(ii) There exists an i with 2 ≤ i ≤ m, such that X = EG[V (Li−1),G − V (Li−1)].
Proof We assume that (ii) does not hold to prove (i). We adopt the notation in Defini-
tion 3.5 in the proof. Suppose first that q = 2. Then G ∈ (J1, J2)k with J1 = H(k, 2)
and J2 ∈ {K1, H(k, 2)}. If Lemma3.8 (ii) does not hold, then X �= EG[V (J1), V (J2)].
Hence for some i ∈ {1, 2}, we must have both Ji = H(k, 2) and X ∩ E(Ji ) �= ∅, and
so X ∩E(Ji ) is an edge-cut of Ji . It follows that k = κ ′(Ji ) ≤ |X ∩E(Ji )| ≤ |X | = k,
which forces that X ⊆ E(Ji ) is an edge cut of Ji . By Lemma 2.1(ii), there exists a
vertex w ∈ V (Ji ) such that X = EJi (w). Since X is also an edge-cut of G, we have
X = EG(w) and so (i) holds. Hence Lemma 3.8 holds if q = 2. Assume that q ≥ 3
and Lemma 3.8 holds for smaller values of q.

Let E ′ = EG[Lq−1, Jq ]. By Lemma 3.7, κ̄ ′(Lq−1) = κ ′(Lq−1) = k. If X ⊆
E(Lq−1), then by induction, there exists a vertex w′ ∈ V (Lq−1) such that X =
ELq−1(w

′). As X is an edge-cut of G, we conclude that X = EG(w′), and so Lemma
3.8 (i) must hold. Hence we may assume that X − E(Lq−1) �= ∅ and X �= E ′.

If X ∩ E ′ �= ∅, then since X �= E ′, either X ∩ E(Lq−1) is an edge-cut of Lq−1,
whence κ ′(Lq−1) ≤ |X ∩ E(Lq−1)| < k, a contradiction; or both Jq = H(k, 2) and
X ∩ E(Jq) is an edge-cut of Jq , whence k = κ ′(H(k, 2)) ≤ |X ∩ E(H(k, 2))| < k,
another contradiction. Hence we must have X ∩ E ′ = ∅. It follows that both Jq =
H(k, 2) and X ⊆ E(Jq). Again X must be an edge-cut of Jq , and so by Lemma 3.7,
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there exists a vertex w′′ ∈ V (Jq) such that X = EJq (w
′′). As x1(Jq) and x2(Jq)

are the only two vertices of degree k in Jq , by Definition 3.5 (iii-B), dG(x) ≥ k + 1
for any x ∈ {x1(Jq), x2(Jq)}, and so no such vertices would exist. This justifies
Lemma 3.8. 
�
Lemma 3.9 Let k ≥ 2 be an integer. Then E(k) ⊆ B(k).

Proof Suppose n and k be positive integers with n ≥ 2k + 2, and let G ∈ E(n, k).
By Definition 3.5, there exists an s = (s1, s2, . . . , sq) ∈ S(n, k) such that G ∈ L(s).
We shall adopt the notation in Definition 3.5 and use L1, L2, . . . , Lq to denote the
construction sequence in the process to build Lq . We argue by induction on n to prove
the Lemma. If n = 2k + 2, then by Definition 3.5, G = H(k, 2) ∈ B(k). Assume that
n > 2k + 2 and that E(n, k) ⊆ B(k) for smaller values of n.

By contradiction, assume thatG ∈ E(n, k)−B(k). Choose an s = (s1, s2, . . . , sq) ∈
S(n, k) with q minimized so that G ∈ L(s), and let J1, J2, . . . , Jq to denote the
corresponding graphs as in Definition 3.5. Since n > 2k + 2, we have q ≥ 2, and so
G ∈ (Lq−1, Jq)k . In the rest of the proof, we let G1 and G2 be the two components
of G − X .

We will prove the Lemma by finding a contradiction. Since G ∈ E(n, k) − B(k),
there exists an edge e = uv ∈ E(Gbc), we have

κ̄ ′(G + e) ≤ k. (8)

Ifu, v ∈ V (Lq−1), then by induction, Lq−1 ∈ B(k) and so κ̄ ′(G+e) ≥ κ̄ ′(Lq−1+e) ≥
k + 1, contrary to (8). Similarly, when sq = 2k + 2 and so Jq = H(k, 2), we cannot
have u, v ∈ V (Jq). Hence we may assume that

u ∈ V (Lq−1) and v ∈ V (Jq). (9)

By (8), there exists an edge-cut X of G + e with |X | = k. If e ∈ X , then X − e is an
edge-cut of G with κ ′(G) ≤ |X − e| = k − 1, contrary to Lemma 3.7. Hence e /∈ X ′,
and so X is an edge-cut of G. By Lemma 3.8, either Lemma 3.8 (i) or Lemma 3.8 (ii)
must hold.

Assume Lemma 3.8 (i) holds. Then for some vertex w ∈ V (G), we have X =
EG(w). As s = (s1, s2, . . . , sq) ∈ S(n, k) andG ∈ L(s), eitherw ∈ {x1(J1), x2(J1)},
or for some � > 1, s� = 1 and V (J�) = {w}. If w ∈ {x1(J1), x2(J1)}, then by Obser-
vation 3.6(ii) and Lemma 3.2, G = H(k, n − k) ∈ B(k), contrary to the assumption
that G ∈ E(n, k) − B(k). Therefore, we there must be an � > 1 such that s� = 1 and
V (J�) = {w}. Let s′ = (s1, . . . , s�−1, s�+1, . . . , sq). Since s ∈ S(n, k), we conclude
that s′ ∈ S(n−1, k). Since dG(w) = k, it follows byDefinition 3.5 thatG−w ∈ L(s′).
By induction, G − w ∈ B(k), and so κ̄ ′(G + e) ≥ κ̄ ′((G − w) + e) ≥ k + 1, contrary
to (8).

Therefore, Lemma 3.8 (ii) must hold, and so for some i with 2 ≤ i ≤ q,

X = EG [V (Li−1), V (G) − V (Li−1)]
= EG+e[V (Li−1), V (G + e) − V (Li−1)]. (10)

123

Author's personal copy



Journal of Combinatorial Optimization

Let G ′ = G − V (Li−1). By Observation 3.6 (iii), G ′ ∈ S(n − |V (Li−1)|, k). By (8),
e ∈ E((G ′)bc). By induction, G ′ ∈ B(k), and so we have κ̄ ′(G + e) ≥ κ̄ ′(G ′ + e) ≥
k + 1, contrary to (8). This completes the proof of the lemma. 
�

3.3 Justification of Theorem 1.2

We are now ready to prove Theorem 1.2. By (1), it suffices to study the bi-k-maximal
graphs for k ≥ 2. For integers k and n with k ≥ 2 and n ≥ 2k + 2, define

FB(n, k) = max{|E(G)| : G ∈ B(n, k)} and fB(n, k) = min{|E(G)| : G ∈ B(n, k)};

In order to recursively characterize the extremal graphs in {G : G ∈ B(n, k) and |E(G)|
= fB(n, k)}, we recall that by Corollary 3.4, rk(G) is uniquely determined by k and
G, and make the following definition.

Definition 3.10 Let k and n be integers with k ≥ 2 and n ≥ 2k + 2. Let BL(k) be the
family of graphs satisfying the following.

(BL1) H(k, 2) ∈ BL(k).
(BL2) For any H1, H2 ∈ BL(k)∪{K1}, a graph G ∈ (H1, H2)k is in BL(k) if and only

if both rk(G) = �|V (G)|
2k+2 � and � |V (H1)|

2k+2 � + � |V (H2)|
2k+2 � = � |V (G)|

2k+2 �.
LetBL(n, k) = {G ∈ BL(k) : |V (G)| = n}. We will prove a slightly extended version
of Theorem 1.2 as follows.

Theorem 3.11 Let k and n be integers with k ≥ 2 and n ≥ 2k+2. Define r0 = � n
2k+2�.

Each of the following holds.

(i) Let m be an integer. There exists a graph G ∈ B(n, k) with m = |E(G)| if and
only if m = nk − rk2 + (r − 1)k for some integer r with 1 ≤ r ≤ � n

2k+2�,
(ii) FB(n, k) = (n − k)k. Moreover, a graph G ∈ B(n, k) with |E(G)| = FB(n, k) if

and only if G ∈ {Kk,n−k} ∪ H(k, n − k),
(iii) fB(n, k) = k(n − 1) − (k2 − k)� n

2k+2�. Moreover, a graph G ∈ B(n, k) with
|E(G)| = fB(n, k) if and only if G ∈ BL(n, k).

Proof For given values k and n, define

M(n, k) = {nk − rk2 + (r − 1)k : where r = 1, 2, . . . , r0}.

We first show that for any integer r with 1 ≤ r ≤ r0, there exists a graph G ∈ B(n, k)
such that |E(G)| = nk − rk2 + (r − 1)k. Since Kk,n−k ∈ B(n, k) and |E(Kk,n−k)| =
k(n − k) ∈ M(n, k) with r = 1. Assume that 2 ≤ r ≤ r0. Let � = n − (2k + 2)r ,
s1 = s2 = . . . sr = k + 2, sr+1 = . . . = s� = 1, and s = (s1, s2, . . . , s�). For
any G ∈ L(s), by Definition 3.5, |V (G)| = (2k + 2)r + � = n, and |E(G)| =∑r

i=1 |E(H(k, 2))| + (� + r − 1)k = r(k2 + 2k) + (n − (2k + 2)r + r − 1)k
= nk − rk2 + (r − 1)k. As L(s) ⊆ E(n, k), by Lemma 3.9, G ∈ B(n, k), and so any
value inM(n, k) is the size of a bi-k-maximal graph of size n.
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Conversely, let G ∈ B(n, k). We shall show that |E(G)| ∈ M(n, k). As Kk,n−k ∈
B(n, k) and |E(Kk,n−k)| ∈ M(n, k), we assume that G ∈ B(n, k) − {Kk,n−k : n ≥
2k}. By Corollary 3.4(ii), |E(G)| = nk − rk2 + (r − 1)k ∈ M(n, k). This proves (i).

To prove (ii) and (iii), we first observe that by Theorem 3.11 (i), we have
FB(n, k) = (n − k)k and fB(n, k) = k(n − 1) − (k2 − k)� n

2k+2�. As B(2k + 2, k) =
{H(k, 2), Kk,k+2}. Theorem 3.11 (ii) and (iii) hold when n = 2k + 2. We assume
that n > 2k + 2 and Theorem 3.11 holds for smaller values of n. It is routine by
direct computation to conclude that every graph G ∈ H(k, n− k)∪ {Kk,n−k} satisfies
|E(G)| = FB(n, k) and every graph G ∈ ∪s∈S ′(n,k)L(s) satisfies |E(G)| = fB(n, k).

To complete the proof for (ii), letG ∈ B(n, k)−{Kn,n−k} be a graphwith |E(G)| =
k(n−k). Since |E(G)| = rk2+(n−2kr)k+(r−1)k = nk−rk2+(r−1)k = nk−k2,
then r = 1, which implies that G ∈ {Kk,n−k} ∪ H(k, n − k), and so (ii) must hold.

To complete the proof for (iii), as graphs in {Kk,n−k} are bi-k-maximal graphs, (iii)
holds if 2k ≤ n ≤ 2k+2.Assume that (iii) holds for smaller values ofn, andn > 2k+2.
Let G ∈ B(n, k) − {Kk,n−k} be a graph with |E(G)| = k(n − 1) − (k2 − k)� n

2k+2�.
Since |E(G)| = nk−rk2+(r−1)k, it follows that wemust have r = r0. By Corollary
2.5, either (i) or (ii) of Corollary 2.5 must hold.

Case 1 Corollary 2.5 (i) holds and for some H ∈ B(k), G ∈ (H , K1)k .

Then nk−r0k2 + (r0 −1)k = |E(G)| = |E(H)|+ k, and so |E(H)| = (n−1)k−
r0k2 + (r0 − 1)k. Since r0 = � n

2k+2�, we can express that n = r0(2k + 2) + h, where
0 ≤ h ≤ 2k + 1.

Assume h = 0 and let r ′
0 = � n−1

2k+2�. As h = 0, we have r ′
0 = r0 − 1 and

n − 1 = r ′
0(2k + 2) + 2k + 1. Since H ∈ B(k), by Theorem 3.11 (i), for some

1 ≤ r ≤ r ′
0, |E(H)| = (n − 1)k − rk2 + (r − 1)k. As G ∈ (H , K1)k and |E(G)| =

k(n − 1) − (k2 − k)r0, we have

k(n − 1) − (k2 − k)r0 = |E(G)| = |E(H)|
+ k = (n − 1)k − rk2 + (r − 1)k + k = (n − 1)k − r(k2 − k),

which forces r0 = r ≤ r ′
0 = r0 − 1, a contradiction. This implies that it is impossible

to have h = 0 in this case.
Hencewemust have h > 0. Thus (n−1) = r0(2k+2)+(h−1), and so r0 = � n−1

2k+2�.
As |V (H)| = n − 1, it follows by |E(H)| = (n − 1)k − r0k2 + (r0 − 1)k and by
induction that for some s1 ∈ S ′(n − 1, k), we have H ∈ L(s1). As G ∈∈ (H , K1)k ,
by Definition 3.5, we have G ∈ L(s), for some s ∈∈ S ′(n, k). This justifies (iii) in
Case 1.

Case 2 Corollary 2.5 (ii) holds and for some non-complete bipartite graphs H1, H2 ∈
B(k), G ∈ (H1, H2)k .

Letn1 = |V (H1)|,n2 = |V (H2)|, r1 = � n1
2k+2� and r2 = � n2

2k+2�. By the conclusion
of Theorem 3.11 (i) and by the assumption of of Theorem 3.11 (iii), it follows by
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n1 + n2 = n and r1 + r2 = � n1
2k+2� + � n2

2k+2� ≤ r0 that

k(n − 1) − (k2 − k)r0 = |E(G)| = k +
2∑

i=1

|E(Hi )|

= k +
2∑

i=1

[ni k − ri k
2 + (ri − 1)k] ≥ nk − r0(k

2 − k) − k.

This forces that r1 + r2 = r0 and for i ∈ {1, 2}, |E(Hi )| = ni k − ri k2 + (ri − 1)k =
fB(ni , k). By induction, we have Hi ∈ BL(k, ni ) ⊆ BL(k). Since G ∈ (H1, H2)k and
since r1 + r2 = r0, it follows by Definition 3.10 that G ∈ BL(k, n). This completes
the proof of Case 2, as well as the theorem. 
�
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