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if both σ(G) = σ(H) and σ(G) = σ(H), where G (H) is the 
complement of G (H). In this paper, we generalize the notion 
“cospectrally-rooted” to “k-cospectrally-rooted”, and obtain 
two equivalent statements for k-(generalized) cospectrally-
rooted graphs. Furthermore, we have constructed two families 
of generalized cospectral graphs such that graphs in one of 
these two families are Hamiltonian and graphs in the other 
family are not Hamiltonian.
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1. Introduction

Throughout this paper, we consider undirected simple graph. Let G be a graph with 
vertex set {v1, v2, . . . , vn}, its adjacency matrix A(G) is defined to be the square ma-
trix (aij )n×n, in which aij = 1 if vi and vj are adjacent and aij = 0 otherwise. The 
characteristic polynomial of G is defined to be the characteristic polynomial of A(G)
and is denoted by φ(G; x), that is φ(G; x) = det (xI −A(G)) =

∑n
i=0 cix

n−i. φ(G; x) is 
usually abbreviated to φ(G) if there is no confusion. Since A(G) is a real symmetric 
matrix, its eigenvalues (the roots of φ(G)) are all real numbers, and can be ordered by 
λ1 ≥ λ2 ≥ · · · ≥ λn. These eigenvalues are called the eigenvalues of G, the spectrum σ(G)
of G is defined to be the multiset of eigenvalues of G. Two graphs G and H are called 
cospectral if they share the common spectrum, i.e., σ(G) = σ(H) and thus φ(G) = φ(H). 
Moreover, G and H are called generalized cospectral if they are cospectral with cospectral 
complement, i.e., φ(G) = φ(H) and φ(G) = φ(H), where G (H) denotes the complement 
of G (H). In a graph G, contraction of edge e with endpoints vi, vj is the replacement 
of vi and vj with a single vertex whose incident edges are the edges other than e that 
were incident to vi or vj . The resulting graph G/e or G/{vivj} has one less edge than G. 
A spanning cycle in a graph is referred as a Hamiltonian cycle. Let V = {vi1 , vi2 , . . . , vik}
be subset of the vertex set V (G), denote by G −V the subgraph induced by the vertices 
in V (G) \ V , in particular, G − V is short for G − vi1 when k = 1. For a matrix Mm×n

and index sets U ⊆ {1, . . . , m} and V ⊆ {1, . . . , n}, we denote by the (sub)matrix that 
lies in the rows of M indexed by U and columns indexed by V as M [U, V ]. If m = n

and U = V , the principal submatrix M [U, U ] is abbreviated to M [U ]. For any undefined 
notion or terms, we refer the readers to [4,7,8,12].

It is well-known that the graph spectrum encodes much useful information of a graph 
such as the order, size, number of triangles, regularity, bipartiteness [5,6], etc. Never-
theless, the perfect matching property is not determined by the spectrum, and recently, 
Z.L. Blázsik et al. [1] constructed two families of cospectral b-regular (b ≥ 5) graphs such 
that each graph in one of these two families has a perfect matching and graphs in the 
other family do not have any perfect matchings. Since Hamiltonicity [3,12] is another 
important property of a graph and testing whether a graph is Hamiltonian is an NP-
complete problem, it is naturally asked whether a graph’s Hamiltonicity can be deduced 
from its spectrum.

A.J. Schwenk [10,11] firstly introduced the concept of cospectrally-rooted graph, which 
enabled him to construct infinite pairs of cospectral trees so as to prove the famous re-
sult that almost all trees are cospectral. However, cospectral graphs constructed by the 
“cospectrally-rooted” approach cannot be applied to build cospectral graphs with Hamil-
tonian cycles since they always have a cut vertex. In order to overcome this shortcoming, 
we generalize the definition of cospectrally-rooted to k-cospectrally-rooted which allows 
us to show two families of generalized cospectral graphs where one family is Hamiltonian 
and the other one is not.
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The rest of this paper is organized as follows: in the next section, besides the notion 
of cospectrally-rooted will be generalized to k-cospectrally-rooted, the two equivalent 
conditions will be also obtained. Take this as the foundation, a number of (generalized) 
cospectral graphs will be derived. In Section 3, a pair of 2-cospectrally-rooted graphs 
will be presented and the equivalent conditions involved in section 2 are going to be 
verified in details. Finally, in Section 4 generalized cospectral graphs with and without 
Hamiltonian cycles will be supplied.

2. k-cospectrally-rooted

A k-rooted-graph is a graph in which k vertices are labeled in a special way so as to 
distinguish them from other vertices. These special k vertices are called the root vertices
of the graph. Meanwhile, the labels of these k root vertices correspond k standard or-
thonormal vectors ei1 , . . . , eik of Rn which are called the roots of the k-rooted-graph. 
Without loss of generality, we always assume that the k root vertices are labeled first 
and the corresponding roots are e1, . . . , ek. Let G and H be two k-rooted-graphs with 
root vertices u1, . . . , uk; v1, . . . , vk, respectively. (Note that G and H may be differ-
ent graphs, or the same graph with two sets of different root vertices.) G and H are 
called k-cospectrally-rooted if the first k entries of the orthnormal eigenvectors of A(G)
respectively coincide with that of A(H) for each eigenvalue λi (1 ≤ i ≤ n). More-
over, G and H are called k-generalized-cospectrally-rooted if both the first k entries of 
the orthnormal eigenvectors of A(G) respectively coincide with that of A(H) for each 
eigenvalue λi (1 ≤ i ≤ n) and the same results follow for G and H. Early in 1978 
Schwenk and Wilson [11] gave a necessary and sufficient condition for cospectrally-rooted 
graph.

Lemma 2.1. [11] Let G and H be a pair of rooted graphs on n vertices whose root 
vertices are u1, v1, respectively. Suppose that φ(G) = φ(H) with A(G)xi = λixi and 
A(H)yi = λiyi (i = 1, . . . , n) where x1, . . . , xn; y1, . . . , yn are respectively the or-
thonormal eigenvectors of G and H. (If these graphs have multiple eigenvalues, then 
the eigenvectors for the repeated eigenvalues must be selected carefully.) Then G and H
are cospectrally-rooted if and only if (eT1 xi)2 = (eT1 yi)2, for each i = 1, . . . , n.

Because for a family of orthogonal vectors x1, . . . , xn, substituting xi into −xi for any 
1 ≤ i ≤ n does not change the orthogonal property. After properly adjusting the sign 
of the orthonormal eigenvectors of graph G or H, Lemma 2.1 can be strengthened by G
and H are cospectrally-rooted if and only if eT1 xi = eT1 yi, for each i = 1, . . . , n.

In fact, we can generalize Lemma 2.1 to k-cospectrally-rooted graphs. The next the-
orem gives another two equivalent conditions.

Theorem 2.2. Let G and H be two k-cospectrally-rooted graphs on n vertices with root 
vertices u1, . . . , uk; v1, . . . , vk, respectively. Suppose that A(G) has orthonormal eigenvec-
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tors x1, . . . , xn; A(H) has orthonormal eigenvectors y1, . . . , yn such that A(G)xi = λixi

and A(H)yi = λiyi for i = 1, . . . , n. (If these graphs have multiple eigenvalues, then the 
eigenvectors for the repeated eigenvalues must be selected carefully.) Then the following 
statements (ii) and (iii) are equivalent to each other and that they imply statements (i) 
and (iv):

(i) φ(G) = φ(H) and φ(G − ui) = φ(H − vi) for each i = 1, . . . , k.
(ii) eTi xj = eTi yj, for each i = 1, . . . , k; j = 1, . . . , n.
(iii) There exists an n × n orthogonal matrix Q of the form

Q =
(
Ik OT

O Q1

)
, (1)

such that QTA(G)Q = A(H) where Ik is the identity matrix of order k, O is the 
zero matrix of order (n − k) × k.

(iv) φ(G) = φ(H) and φ(G − U) = φ(H − V ) where U = {ui1 , . . . , uir}, V =
{vi1 , . . . , vir}, 1 ≤ r ≤ k and {i1, . . . , ir} ⊆ {1, . . . , k}.

Proof. (ii)⇒(iii) Suppose that

X = (x1 x2 · · · xn ) , Y = (y1 y2 · · · yn ) .

It follows that XTA(G)X = diag(λ1, . . . , λn) = Y TA(H)Y . Denote by Q := XY T , since 
Y consists of orthonormal eigenvectors, we have Y Y T = I, by this fact we obtain

QTA(G)Q = (XY T )TA(G)(XY T )

= Y (XTA(G)X)Y T

= Y diag(λ1, . . . , λn)Y T

= Y (Y TA(H)Y )Y T

= A(H).

Since (eTi xj) = (eTi yj), for each i = 1, . . . , k and for each j = 1, . . . , n we have eTi X = eTi Y
and eTi Q = eTi XY T = eTi Y Y T = eTi for each i = 1, . . . , k. We conclude that Q is of the 
form shown in Eq. (1).

(iii)⇒(ii) Since QT =
(
Ik OT

O QT
1

)
, we see that eTi QT = eTi for each i = 1, . . . , k. Sup-

pose that A(G) has orthonormal eigenvectors x1, . . . , xn and X = (x1 x2 · · · xn ), 
then
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diag(λ1, . . . , λn) = XTA(G)X

= XT (QA(H)QT )X

= (XTQ)A(H)(QTX)

:= Y TA(H)Y.

It follows that eTi Y = eTi Q
TX = eTi X for for each i = 1, . . . , k.

(iii)⇒(iv) Let the root vertex set of G and H be S = {u1, . . . , uk}, T = {v1, . . . , vk}, 
respectively. Denote by A1 = A(G)[S], A2 = A(G)[G − S], BT = A(G)[S, G − S]; 
Ã1 = A(H)[T ], Ã2 = A(H)[H − T ], B̃T = A(H)[T, H − T ], then

A(G) =
(
A1 BT

B A2

)
, A(H) =

(
Ã1 B̃T

B̃ Ã2

)
.

Since there exists an orthogonal matrix Q =
(
Ik OT

O Q1

)
such that QTA(G)Q = A(H), 

we have Ã1 = A1, B̃T = BTQ1 and QT
1 A2Q1 = Ã2. Furthermore, it is obvious that 

A1[S −U ] = Ã1[T − V ], and BT [S −U, G − S]Q1 = (BTQ1)[S −U, G − S] = B̃T [T − V,

H − V ], set Q̃ =
(
Ik−r OT

O Q1

)
, it follows that Q̃TA(G − U)Q̃ = A(H − V ). Therefore 

φ(G − U) = φ(H − V ).
(iv)⇒(i) it is clearly established. �
(i)⇒(ii) are not generally true since such counterexample exits. However, we do not 

know whether (iv) implies (ii).
The k-coalescence G �Γ of two graphs G and Γ is obtained from G and Γ by identifying 

k vertices ui (i = 1, . . . , k) of G to k vertices wi (i = 1, . . . , k) of Γ, respectively. It 
immediately yields a corollary below.

Corollary 2.3. Let G and H be two k-cospectrally-rooted graphs with root vertices 
u1, . . . , uk; v1, . . . , vk, respectively. Suppose Γ is any a graph with arbitrary k vertices 
w1, . . . , wk. Then the k-coalescence G � Γ about vertices u1, . . . , uk and w1, . . . , wk is 
cospectral with the k-coalescence H � Γ about vertices v1, . . . , vk and w1, . . . , wk.

Proof. Since G and H are k-cospectrally-rooted, Theorem 2.2 (iii) implies that there 

exists an orthogonal matrix Q =
(
Ik OT

O Q1

)
such that QTA(G)Q = A(H). Set Q∗ =(

I|V (Γ)| OT

O Q1

)
, it is a routine to verify that (Q∗)TA(G �Γ)Q∗ = A(H�Γ). Thus G �Γ

and H � Γ have the same spectrum. �
An orthogonal matrix Q is regular if it has all row and column sums 1. The following 

result, due to Johnson and Newman [9], gives another equivalent condition for generalized 
cospectral graphs.
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Theorem 2.4. [2,9] Let G and H be two graphs with adjacency matrices A(G) and A(H), 
respectively, then the following are equivalent:

(i) G and H are cospectral with cospectral complements.
(ii) There exists a regular orthogonal matrix Q, such that A(G) = QTA(H)Q.

If we consider the generalized spectrum, then Theorem 2.2 and Corollary 2.3 have 
following enhanced version.

Theorem 2.5. Let G and H be two k-generalized-cospectrally-rooted graphs with root ver-
tices u1, . . . , uk; v1, . . . , vk, respectively. Suppose that A(G) has orthonormal eigenvectors 
x1, . . . , xn; A(H) has orthonormal eigenvectors y1, . . . , yn such that A(G)xi = λixi and 
A(H)yi = λiyi for i = 1, . . . , n. Further suppose that A(G) has orthonormal eigenvec-
tors x1, . . . , xn; A(H) has orthonormal eigenvectors y1, . . . , yn such that A(G)xi = λixi

and A(H)yi = λiyi for i = 1, . . . , n. (If these graphs have multiple eigenvalues, then the 
eigenvectors for the repeated eigenvalues must be selected carefully.) Then the following 
statements (ii) and (iii) are equivalent to each other and that they imply statements (i) 
and (iv):

(i)
{
φ(G) = φ(H)
φ(G− ui) = φ(H − vi) for each i = 1, . . . , k,

and{
φ(G) = φ(H)
φ(G− ui) = φ(H − vi) for each i = 1, . . . , k.

(ii) eTi xj = eTi yj and eTi xj = eTi yj for each i = 1, . . . , k; j = 1, . . . , n.
(iii) There exists an n × n regular orthogonal matrix Q of the form

Q =
(
Ik OT

O Q1

)
,

such that QTA(G)Q = A(H) where Ik is the identity matrix of order k, O is the 
zero matrix of order (n − k) × k.

(iv)
{
φ(G) = φ(H)
φ(G− U) = φ(H − V )

and 

{
φ(G) = φ(H)
φ(G− U) = φ(H − V )

where U = {ui1 , . . . , uir}, V = {vi1 , . . . , vir} and {i1, . . . , ir} ⊆ {1, . . . , k}.

Similarly, by Theorem 2.5, we can construct many generalized cospectral graphs as 
follows.

Corollary 2.6. Let G and H be two k-generalized-cospectrally-rooted graphs with root 
vertices u1, . . . , uk; v1, . . . , vk, respectively. Suppose Γ is any a graph with arbitrary k ver-
tices w1, . . . , wk. Then the k-coalescence G � Γ about vertices u1, . . . , uk and w1, . . . , wk
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Fig. 1. G. Fig. 2. H.

is generalized cospectral with the k-coalescence H � Γ about vertices v1, . . . , vk and 
w1, . . . , wk.

3. Examples

We give three examples in this section, where the first is a pair of 2-generalized-
cospectrally-rooted graphs of order 16; the second is an illustration of 2-coalescence of 
two graphs; and the third schematically shows the contraction graph obtained from Ex-
ample 2 by contracting a path P3 and three triangles. These graph operations will play 
a significant role in section 4.

Example 1. Let G and H be two graphs shown in Fig. 1 and Fig. 2. Then G and H
are 2-generalized-cospectrally-rooted graphs with rooted vertices u1, u2; v1, v2, respec-
tively.

Example 2. Let Γ (see Fig. 3) be the unicyclic graph obtained from the triangle C3 by 
appending a pendent vertex. Let G and H be two graphs shown in Fig. 1 and Fig. 2. 
Then according to Corollary 2.6, the 2-coalescence G �Γ about vertices u1, u2 and w1, w4

(see Fig. 3) is generalized cospectral with the 2-coalescence H � Γ about vertices v1, v2

and w1, w4.

Example 3. Let G � Γ be the graph shown in Fig. 4. Then (G � Γ)/{w2w3, w3w4}, 
(G � Γ)/({w2w3, w3w4} ∪ {u2u3, u2u16, u3u16, u4u5, u4u6, u5u6, u13u14, u13u15, u14u15})
are represented in Fig. 5 and Fig. 6, respectively.
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Fig. 3. Γ. Fig. 4. G � Γ.

Fig. 5. (G � Γ)/P3. Fig. 6. (G � Γ)/(P3 ∪ 3C3).

4. Hamiltonicity

In the following context, using the 2-generalized-cospectrally-rooted graphs shown 
in Example 1, we construct two families of generalized cospectral graphs in which one 
family have Hamiltonian cycles and the other one haven’t.

Theorem 4.1. Let G and H be the graphs depicted in Fig. 1 and Fig. 2, respectively. Let 
Γ be a graph with a Hamiltonian path PΓ = {w1w2, w2w3, · · · , wm−1wm} where w1 and 
wm are the two end vertices of PΓ. Denote by Γ1 the 2-coalescence G � Γ about vertices 
u1, u2 and w1, wm (see for example Fig. 4); Γ2 the 2-coalescence H � Γ about vertices 
v1, v2 and w1, wm, respectively. Then

(i) Γ1 is generalized cospectral with Γ2.
(ii) Γ1 is non-Hamiltonian.
(iii) Γ2 is Hamiltonian.
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Proof. (i) is a direct consequence of Example 1, Theorem 2.5 and Corollary 2.6.
We show statement (ii) by contradiction, let us assume that Γ1 has a Hamilto-

nian cycle C. Since Γ1 is the 2-coalescence G � Γ about vertices u1, u2 and w1, wm, 
C must traverse Γ from one of w1, wm along a Hamiltonian path to another. De-
note by Γ′

1 = Γ/{w2w3, · · · , wm−1wm}, then Γ′
1 also has a Hamiltonian cycle C ′ =

C/{w2w3, · · · , wm−1wm}. Let Δ1 = {u2u3, u3u16, u16u2}, Δ2 = {u4u5, u5u6, u6u4} and 
Δ3 = {u13u14, u14u15, u15u13} be the three triangles in G. The graph GP (5, 2) =
Γ′

1/(Δ1 ∪ Δ2 ∪ Δ3), obtained from Γ′
1 by contracting these three triangles, will be the 

Petersen graph (see for example Fig. 5 and Fig. 6 with the four loops deleted).
Since C ′ is a connected spanning subgraph of Γ′

1, C ′ will be contracted to a con-
nected spanning subgraph C ′′ of GP (5, 2). Moreover, every vertex of C ′ has even degree, 
and the same holds for C ′′. Hence C ′′ is a connected spanning subgraph of GP (5, 2), 
such that every vertex has an even degree. Thus C ′′ is a spanning eulerian subgraph of 
GP (5, 2). Since the degree of each vertex of C ′′ is even, and since GP (5, 2) is 3-regular, 
the degree of every vertex of C ′′ must be 2, and so C ′′ is a Hamiltonian cycle of the 
Petersen graph GP (5, 2). This contradicts the fact that Petersen graph GP (5, 2) is non-
Hamiltonian.

Statement (iii) follows by identifying a Hamiltonian cycle of Γ2 as follows: v1, w2, 
w3, · · · , wm−1, v2, v9, v10, v11, v12, v13, v14, v15, v16, v3, v8, v7, v6, v4, v5, v1. �
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