Supereulerian digraphs with forbidden induced subdigraphs containing short dipaths

Mansour J. Algefari, Hong-Jian Lai, Juan Liu, Xindong Zhang

August 11, 2017

Abstract

A digraph D is supereulerian if D has a spanning eulerian subdigraph. We investigate forbidden induced subdigraph conditions for a strong digraph to be supereulerian. Let P_k denote the dipath on k vertices. For $k \in \{2, 3, 4\}$, we determine the smallest integer h_k such that if a strong strict digraph D containing a subdigraph H isomorphic to P_k always satisfies $|A(D(V(H)))| \geq h_k$, then D is supereulerian. For $k \geq 5$, we show that $k^2 - 4k + 8 \leq h_k \leq k(k - 1)$.

Key words. Strong arc connectivity, eulerian digraphs, supereulerian digraphs, forbidden induced subdigraphs

1 Introduction

We consider finite graphs and digraphs. Undefined terms and notations will follow [7] and [6]. We use (u, v) to represent an arc oriented from a vertex u.

*Department of Management and Humanities Sciences, Community College, Buraydah, Qasim University, KSA. Email: mans3333@gmail.com
†Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA. Email: hjlai@math.wvu.edu, corresponding author
‡College of Mathematics Sciences, Xinjiang Normal University, Urumqi, China. Email: liuyuan19990126.com
§College of Mathematics Sciences, Xinjiang Normal University, Urumqi, China. Email: baoyuan1126@163.com

ARS COMBINATORIA 147 (2019) pp.289-301
to a vertex v. As in [7], a digraph D is strict if D has no loops and if for any pair of distinct vertices $u, v \in V(D)$, there is at most one arc in D oriented from u to v. Throughout out this paper, we only consider strict digraphs. We use $D \cong D'$ to mean that the two digraphs D and D' are isomorphic. For an integer $n > 0$, we use K_n^* to denote the complete digraph on n vertices. Hence for every pair of distinct vertices $u, v \in V(K_n^*)$, there is exactly one arc (u, v) in $A(K_n^*)$. For a digraph D, the underlying graph of D, denoted by $G(D)$, is obtained from D by erasing the orientations of all arcs of D. A digraph D is weakly connected if $G(D)$ is connected.

Following [4], for a digraph D with $X, Y \subseteq V(D)$, define

$$(X, Y)_D = \{(x, y) \in A(D) : x \in X, y \in Y\}.$$ When $Y = V(D) - X$, we define

$$\partial^+_D(X) = (X, V(D) - X)_D$$

and

$$\partial^-_D(X) = (V(D) - X, X)_D.$$

For a vertex $v \in V(D)$, $d^+_D(v) = |\partial^+_D(\{v\})|$ and $d^-_D(v) = |\partial^-_D(\{v\})|$ are the out-degree and the in-degree of v in D, respectively. Finally, we define the following notations: $\delta^+(D) = \min\{d^+_D(v) : v \in V(D)\}$ and $\delta^-(D) = \min\{d^-_D(v) : v \in V(D)\}$. Let $N^+_D(v) = \{u \in V(D) - v : (u, v) \in A(D)\}$ and $N^-_D(v) = \{u \in V(D) - v : (v, u) \in A(D)\}$ denote the out-neighbourhood and in-neighbourhood of v in D, respectively. We call the vertices in $N^+_D(v)$, $N^-_D(v)$ the out-neighbours, in-neighbours of v. When the digraph D is understood from the context, we often omit the subscript D. For an integer $k > 0$, let P_k denote a path (or a dipath) on k vertices.

Boesch, Suffel, and Tindell [5] in 1977 proposed the supereulerian problem, which seeks to characterize graphs that have spanning Eulerian subgraphs. Pulleyblank [16] later in 1979 proved that determining whether a graph is supereulerian is NP-complete. Since then, there have been lots of researches on this topic. For the literature of supereulerian graphs, see Catlin’s first survey [8] on the topic and its updates [9] and [15].

It is natural to study supereulerian digraphs. A digraph D is eulerian if D is weakly connected and for every $v \in V(D)$, $d^+_D(v) = d^-_D(v)$; and is supereulerian if D contains a spanning eulerian subdigraph. The main
problem is to determine supereulerian digraphs. Some earlier studies were
done by Gutin [11, 12], and recent developments can be found in [1, 2, 3,
5, 13, 14], among others.

Forbidden induced subgraph conditions have been a widely investigated
topic. Given a graph K, a graph G is said to be K-free if G does not have
an induced subgraph isomorphic to K. This is equivalent to saying that
if G has a subgraph H isomorphic to K, then $|E(G[V(H)])| \geq |E(H)| + 1$.
Sufficient $K_{1,3}$-free conditions for hamiltonicity have been intensively
studied, as seen in [10]. For a vertex w of G, let

$$M_2(w) = G\{x \in V(G) : 1 \leq d_G(w, x) \leq 1\}.$$

For $w \in V(G)$, let $N_2(w)$ be the subgraph induced by the set of edges
uw, such that either u or v is adjacent to w. A vertex w of G is N^1-locally
connected (N_2-locally connected, respectively) if $M_2(w)$ ($N_2(w)$,
respectively) is connected. If every vertex of G is N^1-locally connected
(N_2-locally connected, respectively), then G is N^1-locally connected
(N_2-locally connected, respectively). Recently, Saito and Xiong proved
the following.

Theorem 1.1 (Saito and Xiong, [17]) Let H be a connected graph of order
at least three, P_k be an undirected path on k vertices, and G be a connected
N^1-locally connected graph. Each of the following holds.

(i) Every 2-edge connected H-free graph is supereulerian if and only if H
is $K_{1,2}$.

(ii) Every N^1-locally connected H-free graph is supereulerian if and only if
H is either $K_{1,2}$ or $K_{1,3}$

(iii) If G is P_3-free, then G is supereulerian, if G is P_6-free, then G is
supereulerian or the Petersen graph.

These motivates the current study on forbidden induced subdigraph
sufficient conditions for supereulerian digraphs. Throughout the rest of
the paper, for an integer $k \geq 2$, P_k denotes the dipath on k vertices. A
subdigraph H of a digraph D is a P_k-subdigraph if H is isomorphic to P_k.
If D does not have an induced P_k, then for any P_k-subdigraph H of D, we
must have $|A(D[V(H)])| \geq k$.

291
Definition 1.1 For integers \(h \geq k \geq 2 \), we define \(\mathcal{F}(P_k, h) \) to be the family of all strict digraphs such that \(D \in \mathcal{F}(P_k, h) \) if and only if \(D \) is strong and satisfies both of the following.

(i) \(D \) contains at least one dipath \(P_k \) with \(|A(D[V(P_k)])| = h \), and

(ii) for any dipath \(P_k \) in \(D \), \(|A(D[V(P_k)])| \geq h \).

If \(D \in \mathcal{F}(P_k, h) \), then we also call \(D \) a \(\mathcal{F}(P_k, h) \)-digraph. It is known (for example, Corollary 3.1 of [2]) that every strong \(\mathcal{F}(P_k, k^2 - k) \) digraph is supereulerian. Thus it is of interest to determine the smallest \(h_k \) such that every strong strict digraph in \(\mathcal{F}(P_k, h_k) \) is supereulerian. A digraph \(D \) is transitive if for every triple of distinct vertices \(x, y, z \in V(D) \) with \((x, y), (y, z) \in A(D) \), then \((x, z) \in A(D) \). Thus if \(D \) is a transitive digraph, then \(D \in \mathcal{F}(P_3, 3) \), and so \(\mathcal{F}(P_k, h) \) digraphs also represent some of the well studied families of digraphs.

The main purpose of this research is to investigate, for smaller values of \(k \) with \(k \leq h \leq k(k - 1) \), the behavior of graphs in \(\mathcal{F}(P_k, h) \) and to determine the value of \(h_k \). We show that \(h_2 = 2 \), \(h_3 = 5 \), \(h_4 = 8 \), and for \(k \geq 5 \), we show that \(k^2 - 4k + 8 \leq h_k \leq k(k - 1) \). Our results are presented in the subsequent sections.

2 Supereulerian digraphs in \(\mathcal{F}(P_2, h) \cup \mathcal{F}(P_3, h) \)

In this section, we investigate the supereulerianity of digraphs in \(\mathcal{F}(P_2, h) \) with \(h = 2 \) and in \(\mathcal{F}(P_3, h) \) with \(3 \leq h \leq 6 \). We need a necessary condition for a digraph to be supereulerian. Let \(D \) be a digraph and \(U \subseteq V(D) \). Let \(t_0(U) \) be the smallest integer \(t \) such that \(D[U] \) has a collection of arc disjoint directed trails \(T_1, T_2, \ldots, T_t \) with \(U = \cup_{i=1}^{t} V(T_i) \). For any subset \(A \subseteq V(D) \) \(- U \), define \(B := V(D) - U - A \), and

\[
h(U, A) := \min\{\delta_+^{-1}(A), \delta_-^{-1}(A)\} + \min\{|(U, B)_D|, |(B, U)_D|\} - t_0(U).
\]

Then we have the following proposition.

Proposition 2.1 (Hong, Lai and Liu, Proposition 2.1 of [18]) If \(D \) has a spanning eulerian subdigraph, then for any \(U \subseteq V(D) \), we have \(h(U, A) \geq 0 \).
Digraphs in $F(P_3, h)$ with $3 \leq h \leq 4$ are not necessarily supereulerian, as can be seen in the example below.

![Diagram](image)

Figure 1 The digraph $D = D(\alpha, \beta, k, \ell)$.

Example 2.1 Let $\alpha, \beta, k > 0$ be integers with $\alpha, \beta \geq k + 1$, and let A and B be two disjoint set of vertices with $|A| = \alpha$ and $|B| = \beta$. Let $\ell \geq \alpha \beta + 1$ be an integer, and U be a set of vertices disjoint from $A \cup B$ with $|U| = \ell$. We construct a digraph $D = D(\alpha, \beta, k, \ell)$ such that $V(D) = A \cup B \cup U$ and the arcs of D are given as required in (D1) and (D2) below. (See Figure 1).

(D1) $D[A \cup B] \cong K_{\alpha+\beta}$ is a complete digraph.

(D2) For every vertex $u \in U$, and for every $v \in A$, $(u, v) \in A(D)$ and for every $w \in B$, $(w, u) \in A(D)$. Thus for any $u \in U$, we have $N^+_D(u) = A$ and $N^-_D(u) = B$. No two vertices in U are adjacent.

Direct computation yields

$$h(U, A) = |\partial^+_D(A)| + |(U, B)_D| - e_0(U) = \alpha \beta - |U| < 0,$$

and so by Proposition 2.1, any $D = D(\alpha, \beta, k, \ell)$ is nonsupereulerian. By Definition 1.1, $D \in F(P_3, 4)$. Thus Example 2.1 indicates that $F(P_3, 4)$ contains infinitely many nonsupereulerian digraphs.

An arc (u, v) of D is symmetric in D if both $(u, v), (v, u) \in A(D)$. A digraph D is symmetric if $|V(D)| = 1$ or if $|A(D)| > 0$ and every arc of D is symmetric. A digraph $D \neq K_1$ is symmetrically connected, if for every $u, v \in V(D)$, D contains a symmetric (u, v)-dipath.

Theorem 2.1 ([2]) If D is symmetrically connected, then D is supereulerian.
Observe that if $D \in \mathcal{F}(P_3,2) \cup \mathcal{F}(P_3,5)$, then D is symmetrically connected. Thus by Theorem 2.1, every digraph in $\mathcal{F}(P_3,2) \cup \mathcal{F}(P_3,5)$ is supereulerian. Hence we have our conclusions in this section.

Proposition 2.2 Let D be a digraph.
(i) Every digraph in $\mathcal{F}(P_3,2) \cup \mathcal{F}(P_3,5)$ is supereulerian.
(ii) Not every digraph in $\mathcal{F}(P_3,3) \cup \mathcal{F}(P_3,4)$ is supereulerian.

3 Supereulerian digraphs in $\mathcal{F}(P_4, h)$

Throughout this section, $k > 0$ denotes an integer. In this section, we will study the supereulerianicity of digraphs in $\mathcal{F}(P_4, h)$, and determine the smallest value of η_4 such that every digraph in $\mathcal{F}(P_4, \eta_4)$ is supereulerian.

We start with some terminology and definitions. For a digraph D and a subdigraph S of D, an (x, y)-dipath P is called an (S, S)-dipath if $V(P) \cap V(S) = \{x, y\}$. An (S, S)-dipath P is shortest if for some $x, y \in V(S)$, P is an (x, y)-dipath and P is shortest among all (x, y)-dipath in $D - A(S)$.

Definition 3.1 Let D be a digraph. Suppose that S is an eulerian subdigraph of D with $|V(S)|$ maximised. A shortest (S, S)-dipath H with $|V(H)| = k + 2 \geq 3$ is called a k-handle of S in D.

The following is a necessary condition for a digraph to be supereulerian.

Lemma 3.1 (K.A. Alsatami et al, Lemma 2 of [3]) A digraph D is non-supereulerian if there exist vertex-disjoint subdigraphs (A, B_1, \ldots, B_m) of D, for some integer $m > 0$, satisfying each of the following.
(i) $N^{-}(B_i) \subseteq V(A)$, $\forall i \in \{1, 2, \ldots, m\}$.
(ii) $|\partial^{-}(A)| \leq m - 1$.

In the rest of this section, we examine the supereulerian membership of digraphs in $\mathcal{F}(P_4, h)$, for each value h with $4 \leq h \leq 12 = |\mathbb{A}(K_4^+)|$, and to determine the value of η_4 such that every digraph in $\mathcal{F}(P_4, \eta_4)$ is supereulerian.

294
Proposition 3.1 Let \(D \) be a digraph. There exists an infinite family of nonsupereulerian digraphs in \(F(P_4, 7) \). More precisely, there are infinitely many \(1 \)-handles in \(F(P_4, 7) \).

Proof. Let \(M = xy \) be a symmetric dipath, \(Q = xy \) be a dipath and \(H_i = xuy, 1 \leq i \leq \ell \) be dipaths. Define \(D_\ell = M \cup Q \cup \left(\bigcup_{i=1}^{\ell} H_i \right) \cup \{(x,y)\} \), as depicted in Figure 2. It is routine to verify that \(D_\ell \in F(P_4, 7) \). By Lemma 3.1 with \(A = D([x]), B_1 = D([u]) \) and \(B_2 = D([v]) \), we conclude that \(D_\ell \) is nonsupereulerian. By Definition 3.1, \(D_\ell \) is a \(1 \)-handle.

We make the following observation for nonsupereulerian strong digraph:

Observation 3.1 Suppose that \(D \) is a nonsupereulerian strong digraph. Let \(S \) be a maximal eulerian subdigraph of \(D \) and let \(H = xu_1...u_ky \) be a \(k \)-handle of \(S \) and \(Q = xu_1...u_ky \) be a shortest \((x,y)\)-dipath in \(S \) with \(k + s \) minimized. We have the following observations.

(A) If for some \(i \) with \(1 \leq i \leq k \), we have \(\{(u_i,x),(y,u_i)\} \cap A(D) \neq \emptyset \), then either \(S \cup \{(x,u_1),(u_1,u_2),...,(u_{i-1},u_i),(u_i,x)\} \) or \(S \cup \{(u_i,y),(u_i,u_{i+1}),...,(u_{k-1},u_k),(u_k,y)\} \) would violate the maximality of \(S \). Hence for any \(i \) with \(1 \leq i \leq k \), we have \(\{(u_i,x),(y,u_i)\} \cap A(D) = \emptyset \).

(B) If for some \(i \) with \(1 \leq i \leq k - 1 \), we have \(\{(x,u_{i+1}),(u_i,y)\} \cap A(D) \neq \emptyset \), then \(H' = xu_{i+1}...u_ky \) or \(H'' = xu_1...u_ky \) is a shorter \((S,S)\)-dipath,
contrary to the fact that H is a shortest (S, S)-dipath, stated in Definition 3.1. Hence for any $1 \leq i \leq k - 1$, we have $\{(x, u_{i+1}), (u_i, y)\} \cap A(D) = \emptyset$.

(C) By Definition 3.1, H is a shortest (S, S)-dipath. The minimality of $k + s$ implies that for every i, j with $1 \leq i \leq s, 1 \leq j \leq k$, we have $\{(v_i, u_j), (u_j, v_i)\} \cap A(D) = \emptyset$, and for every j with $i + 2 \leq j$, we have $(u_i, u_j) \notin A(D)$.

Theorem 3.1 Each of the following holds.

(i) Every digraph D in $\mathcal{F}(P_4, 8)$ is supersimerian.

(ii) $h_4 = 8$.

Proof. As (ii) follows from (i) and Proposition 3.1, it suffices to prove (i). Assume that $D \in \mathcal{F}(P_4, 8)$. By contradiction, we assume that D is a nonsupersimerian digraph. Let S be a maximal eulerian subdigraph of D and let $H = xu_1 \ldots u_k y$ be a k-handle of S and, for some integer $s \geq 1$, let $Q = xu_1 \ldots u_i y$ be a shortest (x, y)-dipath in S such that

$$k + s \text{ is minimized.}$$

(1)

We consider three cases.

Case 1. $k \geq 3$.

In this case, $P' = xu_1 u_2 u_3$ is a P_4 in D. By Observation 3.1 ((A) and (B)), we conclude that $\{(u_1, x), (x, u_2), (u_2, x), (x, u_3), (u_3, x)\} \cap A(D) = \emptyset$. It follows that $|A(D[V(P')]| < 8$, contrary to the assumption that $D \in \mathcal{F}(P_4, 8)$.

Case 2. $k = 2$.

In this case, $P'' = xu_1 u_2 y$ is a P_4 in D. By Observation 3.1 ((A) and (B)), we conclude that $\{(u_1, x), (x, u_2), (u_2, x), (y, u_2), (y, u_1), (u_1, y)\} \cap A(D) = \emptyset$. It follows that $|A(D[V(P'')]| < 8$, contrary to the assumption that $D \in \mathcal{F}(P_4, 8)$.

Case 3. $k = 1$.

Claim 1. $(y, x) \notin A(D)$.

By contradiction, we assume that $(y, x) \in A(D)$. If $(y, x) \notin A(S)$, then $SU(A(H)) \cup \{(y, x)\}$ is violation to the maximality of S. Hence $(y, x) \in A(S)$.
Since $P^{(3)} = u_1 y v x_1$ is a P_4 in D, by Observation 3.1 ((A) and (C)), we conclude that $\{(u_1, x), (y, u_1), (u_1, v_1), (v_1, u_1)\} \cap A(D) = \emptyset$. Since $D \in F(P_4, 8)$, we have $|A(D)[V(P^{(3)})]| \geq 8$, and so $\{(y, v_1), (v_1, x)\} \subset A(D)$.

Suppose first that $s = 1$. If $\{(y, v_1), (v_1, x)\} \cap A(S) = \emptyset$, then $S \cup \{(y, u_1), (v_1, x), (x, u_1), (u_1, y)\}$ is a violation to the maximality of S. Hence $\{(y, v_1), (v_1, x)\} \cap A(S) \neq \emptyset$, whence $S - \{(x, v_1), (v_1, y)\} + \{(x, u_1), (u_1, y)\}$ is a violation to the maximality of S. In either case, a contradiction obtains and so we must have $s \geq 2$. Note that $P^{(4)} = y u_1 v x_1 v_2$ is a P_4 in D. By Observation 3.1 ((A) and (C)), we conclude that $\{(y, u_1), (u_1, v_1), (v_1, u_1), (u_1, v_2), (v_2, u_1)\} \cap A(D) = \emptyset$. It follows that $|A(D)[V(P^{(4)})]| < 8$, contrary to the assumption that $D \in F(P_4, 8)$. This justifies Claim 1.

Claim 2. For any i with $1 \leq i \leq s$, $(y, v_i) \notin A(D)$.

By contradiction, we assume that $(y, u_i) \in A(D)$ for some i with $1 \leq i \leq s$. Then $P^{(5)} = x u_1 y v_i$ is a P_4 in D. Since $D \in F(P_4, 8)$, we must have $|A(D)[V(P^{(5)})]| \geq 8$. By Observation 3.1 ((A) and (C)) and Claim 1, $\{(u_1, x), (y, u_1), (u_1, v_1), (v_1, u_1), (y, x)\} \cap A(D) = \emptyset$. It follows that $|A(D)[V(P^{(5)})]| < 8$, contrary to the assumption that $D \in F(P_4, 8)$. This justifies Claim 2.

By Claims 1 and 2, we have,

$$\{(y, u_1), (y, u_2), \ldots, (y, u_s), (y, x)\} \cap A(D) = \emptyset. \quad (2)$$

Claim 3. For any $z \in V(D)$, $(y, z) \notin A(D)$.

By contradiction, we assume that for some $z \in V(D)$, we have $(y, z) \in A(D)$. Then $P^{(6)} = x u_1 y z$ is a P_4 in D. Since $D \in F(P_4, 8)$, we have $|A(D)[V(P^{(6)})]| \geq 8$.

By Observation 3.1 (A) and by (2), we have $\{(u_1, x), (y, u_1), (y, x)\} \cap A(D) = \emptyset$. It follows that $|\{(z, u_1), (u_1, x)\} \cap A(D)| \geq 1$.

Suppose first that $\{(z, u_1), (u_1, x)\} \subseteq A(D)$. If $z \notin V(S)$, then $S \cup \{(y, z), (z, u_1), (u_1, y)\}$ violates the maximality of S. If $z \in V(S)$, then $S \cup \{(z, u_1), (u_1, z)\}$ violates the maximality of S. We have $|\{(z, u_1), (u_1, z)\} \cap A(D)| = 1$. Since $D \in F(P_4, 8)$, therefore, we have $|A(D)[V(P^{(6)})]| \geq 8$.

Thus $\{(z, y), (z, x), (x, z), (x, y), (u_1, y), (y, x)\} \subseteq A(D)$. Since
\[\{(z, u_2), (u_1, z)\} \cap A(D) = \emptyset \], we consider just two subcases.

Subcase 3.1. \((z, u_1) \in A(D) \) but \((u_1, z) \notin A(D) \).

If \(z \notin V(S) \), then \(S \cup \{(y, z), (z, u_1), (u_1, y)\} \) violates the maximality of \(S \). Hence we assume that \(z \in V(S) \). The dipath \(P'(7) = v_2yzu_1 \) is a \(P_4 \) in \(D \). By Observation 3.1((A) and (C)) and by (2), we have \(\{(u_1, z), (y, u_1), (u_1, v_2), (y, u_1), (y, v_2)\} \cap A(D) = \emptyset \). It follows that \(|A(D[V(P'(7)])]| < 8 \), contrary to the assumption that \(D \in F(P_4, 8) \). This contradiction indicates that Subcase 3.1 does not occur.

Subcase 3.2. \((u_1, z) \in A(D) \) but \((z, u_1) \notin A(D) \).

Note that \(P(9) = u_1zv_1 \). Since \(D \in F(P_4, 8) \), we have
\[|A(D[V(P(9)])]| \geq 8. \]

By Observation 3.1((A) and (C)) and by (2), \(\{(u_1, x), (u_1, v_1), (u_1, u_1), (z, u_1)\} \cap A(D) = \emptyset \), and so \((z, v_1) \in A(D) \).

Recall that \(Q \) is a shortest \((x, y)\)-dipath in \(S \) as defined in (1). The dipath \(P(9) = u_1zv_1v_2 \) is a \(P_4 \) in \(D \), where \(v_2 = y \) when \(Q = xv_1y \). Since \(D \in F(P_4, 8) \), we have \(|A(D[V(P(9)])]| \geq 8 \). By Observation 3.1 (C) and by (2), \(\{(u_2, u_1), (v_1, u_1), (v_2, u_1), (z, u_1)\} \cap A(D) = \emptyset \), where \((u_1, v_2) \notin A(D) \) when \(v_2 \neq y \) and \((y, v_1) \notin A(D) \) when \(v_2 = y \). These imply that \(|A(D[V(P(9)])]| < 8 \), contrary to the assumption that \(D \in F(P_4, 8) \).

4 Lower bound of \(h_k \)

For a given integer \(k > 1 \), let \(h_k \) denote the smallest integer such that every strong strict digraph in \(F(P_k, h_k) \) is supereulerian. It is known that \(k < h_k \leq k(k - 1) \). In this final remark section, we would present a lower bound of \(h_k \) for \(k \geq 5 \), as stated below.
Proposition 4.1 For $k \geq 5$, $h_k \geq k^2 - 4k + 8$.

Proof. For each integer $k \geq 5$, we shall show that there exists an infinite family of nonsupereulerian strong digraphs in $\mathcal{F}(P_k, k^2 - 4k + 7)$.

Let M' be a complete digraph isomorphic to K^*_{k-1} with vertex set \(\{z, u_1, u_2, \ldots, u_{k-3}, y\} \) and set $z_0 = y$. Let M be the digraph obtained from M' by deleting all the arcs (z_j, z) from M', where $0 \leq j \leq k - 3$. Let $Q = xuy$ be a dipath and $H_i = xuv_i, 1 \leq i \leq \ell$ be dipaths. Define $D_\ell = M \cup Q \cup \left(\bigcup_{i=1}^{\ell} H_i \right)$, as depicted in Figure 3. It is routine to verify that $D_\ell \in \mathcal{F}(P_k, k^2 - 4k + 7)$. By Lemma 3.1 with $A = D([x])$, $B_1 = D([u])$, $B_2 = D([v])$, we conclude that D_ℓ is nonsupereulerian.

We conclude this section with the following conjecture.

Conjecture 4.1 For every integer $k \geq 5$, $h_k = k^2 - 4k + 8$.

Acknowledgment. The research of Juan Liu is supported by NSFC grant (NSFC 61363020).

References

digraphs with given local structures, Information Processing Letters,

to be supereulerian, J. Graph Theory, 79(1), (2015) 8-20.

eulerian graphs, J. Graph Theory, 1, (1977) 79-84.

2008.

[8] P. A. Catlin, Supereulerian graphs: a survey, J. Graph Theory, 16,
(1992) 177-196.

digraphs and related topics—a survey, Combinatorics and graph theory'
53-69.

Mathematics, Tel Aviv University, 1993.

[12] G. Gutin, Connected (g,f)-factors and supereulerian digraphs. Ars

[14] Y. Hong, Q. Liu and H.-J Lai, Ore-type degree condition of supereu-

300
