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a b s t r a c t

Let G be a 2-edge-connected simple graph on n ≥ 13 vertices and A an (additive) abelian
group with |A| ≥ 4. In this paper, we prove that if for every uv 6∈ E(G), max{d(u), d(v)} ≥
n/4, then eitherG is A-connected orG can be reduced to one of K2,3, C4 and C5 by repeatedly
contracting proper A-connected subgraphs, where Ck is a cycle of length k. We also show
that the bound n ≥ 13 is the best possible.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The graphs in this paper are finite and may have multiple edges. The terms and notations not defined here are from [1]
and [17]. Let G be a graph and let V1, V2 be two subsets of V (G) such that V1 ∩ V2 = ∅. We define e(V1, V2) as the number
of edges with one end vertex in V1 and the other one in V2. In particular, when V1 = X and V2 = V (G) − X , we use ∂(X)
instead of e(X, V (G)− X). An n-cycle is a cycle of length n.
Let D = D(G) be an orientation of a graph G. If an edge e ∈ E(G) is directed from a vertex u to a vertex v, then let tail

(e) = u and head(e) = v. For a vertex v ∈ V (G), let

E−D (v) = {e ∈ E(D) : v = tail(e)}, and E+D (v) = {e ∈ E(D) : v = head(e)}.

We write D for D(G)when its meaning can be understood from the context.
Let A denote an (additive) abelian groupwhere the identity of A is denoted by 0. Let A∗ denote the set of nonzero elements

of A. We define:

F(G, A) = {f : E(G) 7→ A} and F∗(G, A) = {f : E(G) 7→ A∗}.

Given a function f ∈ F(G, A), define ∂ f : V (G) 7→ A by

∂ f (v) =
∑
e∈E+D (v)

f (e)−
∑
e∈E−D (v)

f (e),

where ‘‘
∑
’’ refers to the addition in A.

Group connectivitywas introduced by Jaeger et al. [6] as a generalization of nowhere-zero flows. For a graph G, a function
b : V (G) 7→ A is called an A-valued zero sum function on G if

∑
v∈V (G) b(v) = 0. The set of all A-valued zero sum functions

∗ Corresponding author.
E-mail address: yxjcumt@126.com (X. Yao).

0012-365X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.10.023



Author's personal copy

X. Yao et al. / Discrete Mathematics 310 (2010) 1050–1058 1051

on G is denoted by Z(G, A). Given b ∈ Z(G, A), a function f ∈ F∗(G, A) is called an (A, b)-nowhere-zero flow if G has an
orientation D(G) such that ∂ f = b. A graph G is A-connected if for any b ∈ Z(G, A), G has an (A, b)-nowhere-zero flow. In
particular, G admits a nowhere-zero A-flow if G has an (A, 0)-nowhere-zero flow. G admits a nowhere-zero k-flow if G
admits a nowhere-zero Zk-flow, where Zk is a cyclic group of order k. Tutte [16] proved that G admits a nowhere-zero A-flow
with |A| = k if and only if G admits a nowhere-zero k-flow. One notes that if a graph G is A-connected and |A| ≥ k, then G
admits a nowhere-zero k-flow. Generally speaking, when G admits a nowhere-zero k-flow, Gmay not be A-connected with
|A| ≥ k. For example, a n-cycle is A-connected if and only if |A| ≥ n + 1 given in [6, Lemma 3.3] while for any n, a n-cycle
admits a nowhere-zero 2-flow. Thus, group connectivity generalizes nowhere-zero flows.
For an abelian group A, let 〈A〉 be the family of graphs that are A-connected. It is observed in [6] that the property G ∈ 〈A〉

is independent of the orientation of G, and that every graph in 〈A〉 is 2-edge-connected.
The nowhere-zero flow problems were introduced by Tutte in [14–16] and surveyed by Jaeger in [6] and Zhang in [18].

The following conjecture is due to Tutte. Partial results of this conjecture can be found in [6] and others. However, it is still
open.

Conjecture 1.1 (4-flow Conjecture, [15]). Every bridgeless graph containing no subdivision of the Petersen graph admits a
nowhere-zero 4-flow.

For a 2-edge-connected graph G, we define the group connectivity number of G as follows:

Λg(G) = min{k : if A is an abelian group with |A| ≥ k, then G ∈ 〈A〉}.

IfG is 2-edge-connected, thenΛg(G) exists as a finite number. Recently, there have been some degree conditions adapted
to assure the existence of nowhere-zero flows and group connectivity of graphs. Fan and Zhou [5] proved that if G is a simple
graph on n ≥ 3 vertices satisfying for every pair of nonadjacent vertices u and v in G, if d(u)+ d(v) ≥ n, then either G has
a nowhere-zero 3-flow or G is one of the six well-classified exceptional graphs. Fan and Zhou’s result has been generalized
as follows.

Theorem 1.2 (Luo, Xu, Yin and Yu [11]). Let G be a simple graph on n ≥ 3 vertices. If d(u) + d(v) ≥ n for every pair of
nonadjacent vertices, then either Λg(G) ≤ 3, or G is one of the 12 well-classified exceptional graphs.

Theorem 1.3 (Sun, Xu and Yin [13]). Let G be a simple graph on n ≥ 3 vertices. If d(u)+d(v) ≥ n for every pair of nonadjacent
vertices, then either Λg(G) ≤ 4, or G∗ is a 4-cycle.

A contraction [3] of G is the graph G′ obtained from G by contracting a set (possibly empty) of edges and deleting any
loops generated in the process. If G′ is a contraction of G, then we say that G is contractible to G′. When H is a subgraph of G,
the contraction of G obtained from G by contracting each edge of E(H) and deleting resulting loops is denoted as G/H . Note
that each component of H is a vertex of G/H .
For a graphG, defineT to be a set of the subgraphs ofG, which either has two edge-disjoint spanning trees or is isomorphic

to a cycle of length 3. Note that a 2-cycle has two edge-disjoint spanning trees. Let G∗ be the graph obtained from G by
repeatedly contracting non-trivial subgraphs in T until no subgraph in T left. In this case, We say G∗ is the T -reduction of G.
If v ∈ V (G∗) is obtained by contracting a subgraph H ∈ T of G, then H is called the preimage of v and v is called an image
of H . In the rest of this paper, we use G∗ to denote the T -reduction of a graph G. Motivated by the results mentioned above,
we present the following result in this paper.

Theorem 1.4. Let A be an abelian group with |A| ≥ 4, and G a 2-edge-connected simple graph on n ≥ 13 vertices. If for every
uv 6∈ E(G), max{d(u), d(v)} ≥ n/4, then either G is A-connected, or G∗ ∈ {K2,3, C4, C5}, where Ck is a k-cycle. Moreover, if
G∗ ∈ {K2,3, C4}, thenΛg(G) = 5; and if G∗ = C5, thenΛg(G) = 6.

Theorem 1.4 is sharp in the sense that the bound n ≥ 13 cannot be relaxed. Let P10 denote the Petersen graph and let v
be a vertex of P10 and v1, v2, v3 the three neighbors of v. Let P12 denote the graph obtained from P10− v by adding a 3-cycle
u1u2u3u1 and then joining ui to vi by an edge uivi, 1 ≤ i ≤ 3 (See Fig. 1). Then |V (P12)| = 12 and P12 is 3-regular. Thus
P12 both satisfies the degree condition of Theorem 1.4 and can be contracted to P10. By [10, Theorem 3.2],Λg(P10) = 5 and
Λg(P12) ≥ 5 given by [6, Proposition 3.2]. This shows that Theorem 1.4 does not hold when n = 12.
We organize this paper as follows. In Section 2, we present a reduction method that will be used in the proofs. We deal

with the small case when 13 ≤ n ≤ 16 in Section 3. We complete the proof of Theorem 1.4 in Section 4.

2. Reduction method

We first summarize some previous results in the following two lemmas which are used in the proof of Theorem 1.4. For
a graph G, let τ(G) be the maximum number of edge-disjoint spanning trees of G.

Lemma 2.1 ([6–8]). Let A be an abelian group and let H be a subgraph of a graph G. Then each of the following statements holds.
(1) K1 ∈ 〈A〉
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Fig. 1. Graph P10 and Graph P12 .

(2) Suppose that H ∈ 〈A〉. Then G/H ∈ 〈A〉 if and only if G ∈ 〈A〉.
(3) If τ(G) ≥ 2, then G ∈ 〈A〉 for any A with |A| ≥ 4.
(4) Cn ∈ 〈A〉 if and only if |A| ≥ n+ 1, where Cn is a n-cycle.

Lemma 2.2 ([4]). Let n ≥ 3 be an integer. Then

Λg(Kn) =
{
4 if 3 ≤ n ≤ 4,
3 if n ≥ 5.

Let m ≥ n ≥ 2 be integers. Then

Λg(Km,n) =

{5 if n = 2,
4 if n = 3,
3 if n ≥ 4.

Let t be a positive integer and letM be a looplessmatroid. Define a t-packing ofM to be a familyF of bases ofM such that
each element ofM is in at most t bases ofF .MG refers to the cycle matroid of a loopless graph G. Let ηt(G) be the cardinality
of the largest t-packing ofMG. In review of cycle matroid of a graph G, Nash-Williams [12] proved:

Theorem 2.3. If G is a connected loopless graph with at least two vertices, then

ηt(G) = min
F⊆E(G)

⌊
|F |

ω(G− F)− 1

⌋
,

where ω(G− F) denotes the number of components of the graph G− F , and the minimum is taken over all subsets F of E(G) for
which ω(G− F) > 1.

LetM be amatroid on set S and r be a rank function ofM . The notations of g(M), g(X), γ (M) and η(M)was defined in [2]
as follows. If r(M) ≥ 1, we define

g(M) =
|S|
r(S)

and g(X) =
|X |
r(X)

for any X ⊆ S with r(X) > 0.

We define

γ (M) = max
X⊆S
g(X), (1)

where the maximum is taken over all subsets X ⊆ S for which r(X) > 0. Define

η(M) = min
X⊆S

|S \ X |
r(S)− r(X)

,

where the minimum is taken over all subsets X ⊆ S which r(X) < r(S). For simplicity, we use g(G), γ (G), η(G) to denote
g(MG), γ (MG), η(MG), respectively. From Theorem 2.3, we obtain the following result.

Theorem 2.4. Let G be a non-trivial graph and let k be a positive integer. If |E(G)|/(|V (G)| − 1) ≥ k, then G has a non-trivial
subgraph H with τ(H) ≥ k.

Proof. In terms of cycle matroid of a graph G it follows from (1) that γ (G) ≥ |E(G)|/(|V (G)| − 1).
By the definition of γ (G), there is an edge subset X , such that g(X) = γ (G). Let H = G[X]. Since γ (G) = g(X) ≤

γ (H) ≤ γ (G), we must have γ (H) = g(X), and so by [2, Theorem 6], η(H) = g(X) = γ (H) ≥ |E(H)|/(|V (H)| − 1). If
|E(H)|/(|V (H)| − 1) ≥ k, then η(H) ≥ k. By [2, Corollary 5], η1(H) = bη(H)c ≥ k. It follows by Theorem 2.3 that H must
have at least k edge-disjoint spanning trees. �

Lemma 2.5. If G∗ is non-trivial, then 2|V (G∗)| − |E(G∗)| ≥ 3.
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Proof. Applying Theorem 2.4 to G∗, |E(G∗)|/(|V (G∗)| − 1) < 2, which implies that 2|V (G∗)| − |E(G∗)| > 2. We conclude
that 2|V (G∗)| − |E(G∗)| ≥ 3 since |V (G∗)| and |E(G∗)| are both integers. �

Define Di(G∗) = {v ∈ V (G∗) : dG∗(v) = i}. Throughout this paper, we write Di for Di(G∗). We use δ(G),∆(G) and κ ′(G)
to denote the minimum and the maximum degrees of the vertices of a graph G, and the edge connectivity of G, respectively.

Theorem 2.6. If G∗ is non-trivial, then each of the following holds.
(i) G∗ is simple and contains no 3-cycles and no non-trivial subgraphs H with τ(H) ≥ 2.
(ii) δ(G∗) ≤ 3 and

3|D1| + 2|D2| + |D3| ≥ 6+
∑
i≥5

(i− 4)|Di|.

Moreover, if κ ′(G∗) ≥ 2, then

2|D2| + |D3| ≥ 6+
∑
i≥5

(i− 4)|Di|. (2)

Proof. (i) It follows immediately from the definition of T -reduction.
(ii) Applying Theorem 2.4 to G∗, |E(G∗)|/(|V (G∗)| − 1) < 2. Thus,

δ(G∗)|V (G∗)| ≤
∑

v∈V (G∗)

dG∗(v) = 2|E(G∗)| < 4|V (G∗)| − 4,

which implies that δ(G∗) ≤ 3.
Since G∗ is non-trivial, by Lemma 2.5,

4
∑
i≥1

|Di| −
∑
i≥1

i|Di| = 4|V (G∗)| − 2|E(G∗)| = 2(2|V (G∗)| − |E(G∗)|) ≥ 6.

It follows that

3|D1| + 2|D2| + |D3| ≥ 6+
∑
i≥5

(i− 4)|Di|.

When κ ′(G∗) ≥ 2, |D1| = 0 and hence (2) follows. �

Lemma 2.7. If G∗ is a K1, thenΛg(G) ≤ 4.
Proof. It follows from Lemmas 2.1 and 2.2. �

Lemma 2.8. Let G be a simple graph and let H be a subgraph of G. If dG(v) ≥ q for every v ∈ V (H) and ∂(H) < q, then
|V (H)| > q.

Proof. Suppose that |V (H)| = p. We claim that p > 1. Otherwise, let V (H) = {vH}, then q ≤ dG(vH) = ∂(H) < q, a
contradiction. Since G is simple,

p(p− 1) ≥
∑
v∈V (H)

dH(v) =
∑
v∈V (H)

dG(v)− ∂(H) ≥ pq− ∂(H) > pq− q = q(p− 1),

which implies that p > q since p > 1. Thus, |V (H)| > q. �

Lemma 2.9. Let k, c be positive integers. Suppose that G is a 2-edge-connected simple graph on n vertices such that for every
uv 6∈ E(G),

max{d(u), d(v)} ≥ n/c. (3)

Define Y = {v ∈ V (G∗) : dG∗(v) ≤ k}. If n > kc, then |Y | ≤ c + 1.

Proof. Let Y = {v1, v2, . . . , vl} and let H1,H2, . . . ,Hl denote the preimages of v1, v2, . . . , vl, respectively. By the definition
of preimages, H1,H2, . . . ,Hl are vertex-disjoint.
Let X = {x ∈ V (G) : dG(x) < n

c }. We claim that Y contains at most two vertices vi, vj such that V (Hi) ∩ X 6= ∅
and V (Hj) ∩ X 6= ∅. Suppose otherwise that G∗ contains vi1, vi2, . . . , vip, p ≥ 3, such that V (Hik) ∩ X 6= ∅, 1 ≤ k ≤ p.
Take uik ∈ V (Hik) ∩ X . By (3), G[{ui1, ui2, . . . , uip}] ∼= Kp. By Lemma 2.2, G[{ui1, ui2, . . . , uip}] is a subgraph of some Ht for
t ∈ {1, 2, . . . , l}, contrary to that H1,H2, . . . ,Hl are vertex-disjoint.
Thus, we assume,without losing of generality, that each of the preimages of v1, . . . , vq has a vertex in X , where 0 ≤ q ≤ 2

and none of the preimages of vq+1, . . . , vl has a vertex in X . It follows that for each vertex v ∈ V (Hi), dG(v) ≥ n/c , where
q+ 1 ≤ i ≤ l. On the other hand, dG∗(vi) ≤ k, which is equivalent to ∂(Hi) ≤ k for q+ 1 ≤ i ≤ l. Since k < n/c , Lemma 2.8
shows that |V (Hi)| > n/c for q+ 1 ≤ i ≤ l. Since H1,H2, . . . ,Hl are vertex-disjoint, n ≥

∑l
i=1 |V (Hi)| > 2+ (l− 2)n/c. It

follows that l < c + 2− 2c/n. Since l and c are both integers, l ≤ c + 1. �
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Fig. 2. The graph L

3. Graphs with small orders

In this section, we pay our attention to the case when G is a 2-edge-connected simple graph on 13 ≤ n ≤ 16 vertices.
Recall that G∗ is the T -reduction of G. For this purpose, we defineW = {u ∈ V (G) : dG(u) < 4}. For a vertex v ∈ V (G∗)with
dG∗(v) < 4, v is defined to be a vertex of type 1 if the preimage of v has a vertex inW and a vertex of type 2 otherwise.

Lemma 3.1. Let G be a 2-edge-connected simple graph on 13 ≤ n ≤ 16 vertices. If for every uv 6∈ E(G),

max{d(u), d(v)} ≥ n/4, (4)

then n ≥
∑
i≥4 |Di|+2+5(|D2|+|D3|−2). Moreover, if D2∪D3 is an independent set, then n ≥

∑
i≥4 |Di|+1+5(|D2|+|D3|−1).

Proof. Since G is 2-edge-connected, |D1| = 0. We first claim that G∗ contains at most two vertices of type 1. Suppose
otherwise that v1, v2, v3 are three vertices of type 1 in G∗. Let Hj be the preimages of vj where j = 1, 2, 3. By the definition,
V (Hj) ∩W 6= ∅ and pick xj ∈ V (Hj) ∩W for j = 1, 2, 3. Then dG(xj) < 4. By (4), x1x2, x2x3, x3x1 ∈ E(G). This means that G∗
has a 3-cycle, contrary to Theorem 2.6(i).
Let v ∈ V (G∗) be a vertex of type 2 and let H be the preimage of v. By the definition, V (H) ∩W = ∅ and dG∗(v) < 4. It

follows that ∂(H) < 4 and d(u) ≥ 4 for each u ∈ V (H). Applying Lemma 2.8 to H , |V (H)| ≥ 5.
Thus, by the argument above, G∗ contains at least |D2| + |D3| − 2 vertices of type 2. It follows that n ≥

∑
i≥4 |Di| + 2+

5(|D2|+|D3|−2). IfD2∪D3 is an independent set, then G∗ contains atmost one vertex of type 1. Thus, we similarly conclude
that n ≥

∑
i≥4 |Di| + 1+ 5(|D2| + |D3| − 1). �

Lemma 3.2. Let G be a 2-edge-connected simple graph on 13 ≤ n ≤ 16 vertices. If for every uv 6∈ E(G),max{d(u), d(v)} ≥ n/4,
then either G∗ ∼= K1 or

3 ≤ |D2| + |D3| ≤ 4. (5)

Proof. If G∗ ∼= K1, we are done. Thus, we assume that G∗ 6∼= K1. By Theorem 2.6(i), G∗ is simple and hence |V (G∗)| ≥ 3. Since
n/4 > 3, by Lemma 2.9, G∗ has at most 5 vertices of degree at most 3, that is, |D2| + |D3| ≤ 5.
If |D2| + |D3| ≤ 2, let |D2| + |D3| = t and

∑
i≥4 |Di| = n1. Then 2|E(G

∗)| ≥ 4n1 + 2t and |V (G∗)| = n1 + t . Since t ≤ 2,
we have 2|V (G∗)| − |E(G∗)| ≤ 2n1 + 2t − (2n1 + t) = t ≤ 2, which is contrary to Lemma 2.5. So far, we have proved that
|D2| + |D3| ≥ 3.
Suppose that |D2|+|D3| ≥ 5. Applying Lemma 3.1 to |D2|+|D3|, n ≥

∑
i≥4 |Di|+2+5(|D2|+|D3|−2) ≥ 3×5+2 = 17,

contrary to the condition 13 ≤ n ≤ 16. �

Theorem 3.3. Let G be a 2-edge-connected simple graph on 13 ≤ n ≤ 16 vertices. If for every uv 6∈ E(G),max{d(u), d(v)} ≥
n/4, then G∗ ∈ {K1, C4} or G∗ is isomorphic to the graph L, where C4 is a 4-cycle (see Fig. 2).

Proof. It sufficient to show our theorem for the case when G∗ 6= K1. By (2) and (5),

|D2| ≥ 2+
∑
i≥5

(i− 4)|Di|. (6)

In order to complete our proof, we need to show the following claims.
Claim 1.∆(G∗) ≤ 4.
If∆(G∗) ≥ 7, then by (6), |D2| ≥ 2+ (∆(G∗)− 4) ≥ 2+ 3 = 5, contrary to (5). If∆(G∗) = 6, then by (5) and (6),

4 ≥ |D2| + |D3| ≥ |D2| ≥ 2+ |D5| + 2|D6| ≥ 2+ |D5| + 2 ≥ 4, (7)

which implies that |D6| = 1, |D5| = 0, |D3| = 0 and |D2| = 4. It follows that |V (G∗)| = 5 and ∆(G∗) = 6, which ensure
that G∗ cannot be simple, contrary to Theorem 2.6(i).
If∆(G∗) = 5, then by (5) and (6),

4 ≥ |D2| + |D3| ≥ |D2| ≥ 2+ |D5|, (8)

which forces that |D5| ≤ 2.
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Suppose first that |D5| = 2. By (8), |D3| = 0 and |D2| = 4. Applying Lemma3.1 toW = D2, n ≥ |D4|+|D5|+2+5(|D2|−2),
which implies that |D4| ≤ n − |D5| − 2 − 5(|D2| − 2) ≤ 16 − 2 − 2 − 10 = 2. If |D4| = 0, let u1, u2 ∈ D5. In this case,
|V (G∗)| = 6. Thus, for i = 1, 2, ui is adjacent to all other vertices of G∗. It follows that G∗ contains a 3-cycle, contrary to
Theorem 2.6(i). Thus, |D4| = 2 or 1. Let S = D4 ∪ D5. Note that G∗ has no cycle of length at most 3. If |D4| = 2, then |S| = 4
and |E(G∗[S])| ≤ 4. Thus, 8 ≥ ∂(D2) = e(D2, S) = ∂(S) =

∑
v∈S dG∗(v)− 2|E(G

∗
[S])| ≥ 10+ 8− 8 = 10, a contradiction.

If |D4| = 1, then |S| = 3 and |E(G∗[S])| ≤ 2. Thus, 8 ≥ ∂(D2) = e(D2, S) = ∂(S) ≥ 10+ 4− 4 = 10, a contradiction.
Then suppose that |D5| = 1. Since the number of the vertices of odd degree is even, by (8), |D3| = 1 and |D2| = 3.

Since ∆(G∗) = 5, |V (G∗)| ≥ 6, which implies that |D4| ≥ 1. Applying Lemma 3.1 to |D2| + |D3| = 4, n ≥ |D5| +
|D4| + 2 + 5(|D2| + |D3| − 2), which implies |D4| ≤ n − |D5| − 2 − 5(|D2| + |D3| − 2) ≤ 16 − 1 − 2 − 10 = 3. If
|D4| = 1, then |V (G∗)| = 6. It follows that the vertex in D5 must be adjacent to every other vertex. Since δ(G∗) ≥ 2,
|E(G∗[D2 ∪ D3 ∪ D4])| ≥ 1 and G∗ contains a 3-cycle, contrary to Theorem 2.6(i). Thus, |D4| = 2 or 3. Recall that G∗ has no
cycle of length at most 3. Let S = D3 ∪ D4 ∪ D5. If |D4| = 2, then |S| = 4 and |E(G∗[S])| ≤ 4, thus, 6 ≥ ∂(D2) = e(D2, S) =
∂(S) ≥ 5|D5|+4|D4|+3|D3|−2|E(G∗[S])| ≥ 5+3+8−8 = 8, a contradiction; if |D4| = 3, then |S| = 5 and E(G∗[S])| ≤ 6
given by Turàn Theorem, thus, 6 ≥ ∂(D2) = e(D2, S) = ∂(S) ≥ 5|D5|+4|D4|+3|D3|−2|E(G∗[S])| ≥ 5+3+12−12 = 8,
a contradiction.

Claim 2.∆(G∗) 6= 4.
Suppose otherwise that∆(G∗) = 4. By (5) and (6),

4 ≥ |D2| + |D3| ≥ |D2| ≥ 2. (9)

On the other hand, |D3| is even and hence |D3| = 2 or 0.

Case 1. |D3| = 2.
By (9), |D2| = 2. Applying Lemma 3.1 to |D2| + |D3| = 4, n ≥ |D4| + |D5| + 2 + 5(|D2| + |D3| − 2), which implies that

|D4| ≤ 16 − 2 − 10 = 4. If |D4| = 1, then |V (G∗)| = 5. Then the vertex in D4 is adjacent to every other vertex of G∗. Since
δ(G∗) ≥ 2, |E(G∗[D2 ∪ D3])| ≥ 1 and then G∗ contains a 3-cycle, contrary to Theorem 2.6(i).
Suppose that |D4| = 2 or 3. Let S = D3 ∪ D4. If D4 = 2, then |S| = 4 and |E(G∗[S])| ≤ 4. Thus, 4 ≥ ∂(D2) = e(D2, S) =

∂(S) ≥ 8+ 6− 8 = 6, a contradiction. If |D4| = 3, then |S| = 5 and |E(G∗[S])| ≤ 6. Thus, 4 ≥ ∂(D2) = e(D2, S) = ∂(S) ≥
12+ 6− 12 = 6, a contradiction.
Finally,we assume |D4| = 4. If |E(G∗[D4])| ≤ 3, then 10 ≥ ∂(D2∪D3) = e(D2∪D3,D4) = ∂(D4) ≥ 4|D4|−2|E(G∗[D4])| ≥

16 − 6 = 10, which implies that D2 ∪ D3 is an independent set of G∗. Applying Lemma 3.1 to |D2| + |D3| = 4,
n ≥ |D4| + |D5| + 1 + 5(|D2| + |D3| − 1) ≥ 1 + 4 + 15 = 20, contrary to n ≤ 16. Thus, |E(G∗[D4])| = 4 and hence
G∗[D4] is a 4-cycle. It follows that ∂(D2 ∪ D3) = e(D2 ∪ D3,D4) = ∂(D4) = 16 − 8 = 8. Thus, 2|E(G∗[D2 ∪ D3])| =∑

v∈D2∪D3
d(v) − ∂(D2 ∪ D3) = 4 + 6 − 8 = 2. This implies that E(G∗[D2 ∪ D3]) contains exactly one edge e. If e has one

end in D2, then there exists a vertex v in D3 with N(v) ⊆ D4 since |D3| = 2. Thus, G∗ contains a 3-cycle, which is contrary to
Theorem 2.6(i). Therefore, {e} = E(G∗[D3]). Since G∗ has no 3-cycle, G∗ is the graph L in Fig. 2.

Case 2. |D3| = 0.
It follows from (5) that 3 ≤ |D2| ≤ 4. Assume first that |D2| = 3. Since∆(G∗) = 4, |V (G∗)| ≥ 5 and |D4| ≥ 2. If |D4| = 2,

let v1, v2 ∈ D4. In this case, |V (G∗)| = 5 and for each i = 1, 2, vi is adjacent to all other vertices of G∗. It follows that G∗
contains a 3-cycle, contrary to Theorem 2.6(i). Thus, we may assume that |D4| ≥ 3. If |E(G∗[D2 ∪ D3])| = 0, then D2 ∪ D3
is an independent set. Applying Lemma 3.1 to D2 ∪ D3, n ≥ |D4| + 1 + 5(|D2| − 1) and hence |D4| ≤ 16 − 10 − 1 = 5. If
|D4| = 3, then |E(G∗[D4])| ≤ 2. Thus, 6 ≥ ∂(D2 ∪ D3) = e(D2 ∪ D3,D4) = ∂(D4) ≥ 12− 4 = 8, a contradiction. If |D4| = 4,
then |D4| = 4 and |E(G∗[D4])| ≤ 4. Thus, 6 ≥ ∂(D2 ∪ D3) = e(D2 ∪ D3,D4) = ∂(D4) ≥ 16 − 8 = 8, a contradiction. If
|D4| = 5, then |E(G∗[D4])| ≤ 5. Thus, 6 ≥ ∂(D2 ∪ D3) = e(D2 ∪ D3,D4) = ∂(D4) ≥ 20− 12 = 8, a contradiction.
Thus, |E(G∗[D2

⋃
D3])| ≥ 1. It follows that ∂(D4) = ∂(D2 ∪ D3) = ∂(D2) ≤ 4 since |D2| = 3, which implies that

2|E(G∗[D4])| ≥ 4|D4| − 4. Since |V (G∗[D4])| = |D4|, |E(G∗[D4])|/(|V (G∗[D4])| − 1) ≥ 2. Applying Theorem 2.3 to G∗[D4],
G∗[D4] contains a subgraph H with τ(H) ≥ 2, contrary to that G∗ is the reduction of G.
Now, we assume that |D2| = 4. If |D4| = 1, then |V (G∗)| = 5. Thus, the vertex in D4 is adjacent to all other vertices of G∗.

It follows from δ(G∗) ≥ 2 that G∗[D2] contains edges and thus G∗ contains a 3-cycle, contrary to Theorem 2.6(i). Thus, we
have |D4| ≥ 2. If |E(G∗[D2])| = 0, then D2 is an independent set. Applying Lemma 3.1 to D2, n ≥ |D4| + 1+ 5(|D2| − 1) and
hence |D4| ≤ 16 − 15 − 1 = 0, contrary to the hypothesis that ∆(G∗) = 4. Thus, |E(G∗[D2])| ≥ 1. Applying Lemma 3.1 to
D2, |D4| ≤ 16− 10− 2 = 4. If |D4| = 4, then |E(G∗[D4])| ≤ 4. In this case, 6 ≥ ∂(D2) = e(D2,D4) = ∂(D4) ≥ 16− 8 = 8,
a contradiction. If |D4| = 3, then |E(G∗[D4])| ≤ 1 and 6 ≥ ∂(D2 ∪ D3) = e(D2 ∪ D3,D4) = ∂(D4) ≥ 12 − 2 = 10, a
contradiction. Thus. |D4| = 2. Recall that |E(G∗[D2])| ≥ 1. If two vertices in D4 are not adjacent, then each vertex is adjacent
to both end vertices of an edge in E(G∗[D2]). Then G∗ has a 3-cycle, contrary to Theorem 2.6(i). Thus, two vertices in D4 are
adjacent. In this case, G∗[D2] has only one edge. Thus, D2 has a vertex adjacent to both vertices in D4, which implies that G∗
also has a 3-cycle, contrary to Theorem 2.6(i).
We are ready to complete the proof of our theorem. By Claims 1 and 2, ∆(G∗) ≤ 3. If ∆(G∗) = 3, then by (5) and (6)

|D3| = 2 and |D2| = 2 since |D3| is even. Then |V (G∗)| = 4 and G∗ has a 3-cycle, which is contrary to Theorem 2.6(i). If
∆(G∗) = 2, then |E(G∗)| = |D2| = |V (G∗)|. ThenG∗ is a cycle. By (5), |D2| ≤ 4. SinceG∗ contains neither 2-cycle nor 3-cycles,
it is a 4-cycle. �
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4. Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Theorem 3.3 tells us that Theorem 1.4 holds or G is isomorphic to the
graph L in Fig. 2 for the case when n ≤ 16. Thus, we present here the complete proof of Theorem 1.4.

Lemma 4.1. Λg(L) ≤ 4, where L is the graph in Fig. 2.

Proof. Let L0 be the subgraph of L induced by {v1, v2, v3, v4, v5, v6}. Then L0 is isomorphic to a K3,3. By Lemma 2.2 or by [9,
Theorem 1.5], Λg(K3,3) ≤ 4. L/L0 contains 2-cycles. We repeatedly contract these 2-cycles until no 2-cycle left and the
resulting graph is K1. It follows thatΛg(L/L0) ≤ 4 from Lemma 2.1 and thusΛg(L) ≤ 4. �

Theorem 4.2. Let G be a 2-edge-connected simple graph on n ≥ 17 vertices. If for every uv 6∈ E(G), max{d(u), d(v)} ≥ n/4,
then G∗ ∈ {K1, K2,3, C4, C5}, where Ck is a k-cycle.

Proof. Since n ≥ 17, n/4 > 4. If G∗ = K1, we are done. Thus, assume that G∗ 6= K1. Since G∗ is 2-edge-connected, by
Lemma 2.9,

|D2| + |D3| + |D4| ≤ 5. (10)

Utilizing (2) and (10), we have

|D2| ≥ 1+ |D4| +
∑
i≥5

(i− 4)|Di|. (11)

In order to complete our proof, we need to establish the following claims.
Claim 1.∆(G∗) ≤ 6.
If∆(G∗) ≥ 9, then by (11), |D2| ≥ 1+ (∆(G∗)− 4) ≥ 1+ 5 = 6, contrary to (10). If∆(G∗) = 8, then |D8| ≥ 1. By (10)

and (11),

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + |D5| + 2|D6| + 3|D7| + 4|D8| ≥ 5,

which implies that |D2| = 5 and |Di| = 0 for 3 ≤ i ≤ 7. In this case, |D8| = 1. It follows that |V (G∗)| = |D2| + |D8| = 6. As
∆(G∗) = 8, G∗ cannot be simple, contrary to Theorem 2.6(i).
Suppose that∆(G∗) = 7. By (10) and (11),

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + |D5| + 2|D6| + 3|D7| ≥ 4, (12)

which shows that |D7| = 1, |D6| = 0 and |D4| + |D5| ≤ 1.
If |D5| = 1, then by (12) |D3| = |D4| = 0 and |D2| = 5. Thus |V (G∗)| = |D7| + |D5| + |D2| = 7. On the other

hand, ∆(G∗) = 7. It follows that G∗ is not a simple, which is contrary to Theorem 2.6(i). Thus, |D5| = 0. Since the number
of all vertices of odd degree in G∗ is even, it follows from (10) and (12) that |D3| = 1, |D4| = 0 and |D2| = 4. Thus,
|V (G∗)| = |D7| + |D3| + |D2| = 6. On the other hand,∆(G∗) = 7, which also implies that G∗ cannot be simple, contrary to
Theorem 2.6(i).
Claim 2.∆(G∗) ≤ 5.
By Claim 1,∆(G∗) ≤ 6. Suppose otherwise that∆(G∗) = 6. By (10) and (11),

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + |D5| + 2|D6|, (13)

which implies that 1 ≤ |D6| ≤ 2.
If |D6| = 2, then by (13), 5 ≥ |D3| + |D2| ≥ |D2| ≥ 1+ |D4| + |D5| + 4 ≥ 5, and thus |D3| = |D4| = |D5| = 0, |D2| = 5.

Therefore |V (G∗)| = |D6| + |D2| = 7. Let D6 = {v1, v2}. Then vi is adjacent to all other vertices of G∗, for i = 1, 2. It follows
that G∗ contains a 3-cycle, contrary to Theorem 2.6(i).
Thus we may assume that |D6| = 1. By (10) and (11),

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + |D5| + 2|D6| ≥ 1+ |D4| + |D5| + 2. (14)

Then |D4| + |D5| ≤ 2. Since |D2| ≥ |D4| + |D5| + 3, by (10), 5 ≥ |D2| + |D4| ≥ 2|D4| + |D5| + 3 and hence |D4| ≤ 1.
Let S = D4 ∪ D5 ∪ D6. Then |S| ≤ 3. Assume that |S| = 3. By (14), |D2| = 5, |D3| = 0. Since G∗ contains neither 3-cycles

nor 2-cycles, |E(G∗[S])| ≤ 2. In this case, ∂(S) =
∑

v∈S dG∗(v)−2|E(G
∗
[S])| ≥ 4+5+6−4 = 11. On the other hand, since

|D2| ≤ 5, ∂(D2) =
∑

v∈D2
dG∗(v)− 2|E(G∗[D2])| ≤ 10, which contradicts ∂(S) = e(S,D2) = ∂(D2).

Thus, |S| ≤ 2. Since |D2| + |D3| ≤ 5, |V (G∗)| ≤ 7. Then the vertex in D6 is adjacent to all other vertices in G∗. Since
δ(G∗) ≥ 2, G∗[D5 ∪ D4 ∪ D3 ∪ D2] contains an edge. Thus, G∗ contains a 3-cycle, which is contrary to Theorem 2.6(i).
Claim 3.∆(G∗) ≤ 4.
By Claim 2,∆(G∗) ≤ 5. Suppose, to the contrary, that∆(G∗) = 5. In this case, from (10) and (11), we have

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + |D5|, (15)

which implies that |D5| ≤ 4.
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Assume first that |D5| = 4. By (15), |D4| = |D3| = 0 and |D2| = 5. Since G∗ contains neither 3-cycles nor 2-cycles,
|E(G∗[D5])| ≤ 4 and ∂(D5) =

∑
v∈D5

dG∗(v) − 2 ∗ |E(G∗[D5])| ≥ 20 − 8 = 12. On the other hand, ∂(D2) ≤ 10. This
contradicts ∂(D5) = e(D5,D2) = ∂(D2).
Assume then that |D5| = 3. By (15), 5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + 3 ≥ 4. Since the number of the vertices of odd

degree in G∗ is even, |D4| = 0, |D3| = 1 and |D2| = 4. Let S = D3 ∪ D5. Then |S| = 4. Since G∗ has no 3-cycles nor 2-cycles,
|E(G∗[S])| ≤ 4. Thus,

8 ≥ ∂(D2) = e(D2, S) = ∂(S) =
∑
v∈S

dG∗(v)− 2 ∗ |E(G∗[S])| ≥ 15+ 3− 8 = 10,

a contradiction.
Next, assume that |D5| = 2. By (15), 5 ≥ |D2| + |D3| ≥ |D2| ≥ 1+ |D4| + 2 ≥ 3. Let S = D3 ∪ D4 ∪ D5. Since the number

of the vertices of odd degree in G∗ is even, |D3| = 2 or 0. In the former case, by (15), |D4| = 0. Thus |D2| = 3 and |S| = 4.
Since G∗ does not have any cycle of length at most 3, |E(G∗[S])| ≤ 4. Thus, 6 ≥ ∂(D2) = e(D2, S) = ∂(S) ≥ 10+ 6− 8 = 8,
a contradiction. In the latter case, |D3| = 0. By (10) and (15), 5 ≥ |D2| + |D4| ≥ 1+ 2|D4| + 2 and thus |D4| ≤ 1.
If |D4| = 1, then by (15) |D2| = 4 and |S| = |D3| + |D4| + |D5| = 3. Since G∗ does not have any cycles of length at

most 3, |E(G∗[S])| ≤ 2. Thus, 8 ≥ ∂(D2) = e(D2, S) = ∂(S) ≥ 14 − 4 = 10, a contradiction. Thus, |D4| = 0. In this case,
V (G∗) = D2 ∪D5. Since∆(G∗) = 5 and G∗ is simple, |V (G∗)| ≥ 6 and hence |D2| ≥ 6− 2 = 4. By (15), |D2| ≤ 5. If |D2| = 4,
then |V (G∗)| = 6. Let D5 = {v1, v2}. For each i = 1, 2, vi is adjacent to all other vertices in G∗. Thus, G∗ contains a 3-cycle,
contrary to Theorem 2.6(i). Suppose that |D2| = 5. Since G∗ does not contain any cycle of length at most 3, G∗ ∼= K2,5.
Let V (G∗) = {v1, v2, . . . , v7}, where D2 = {v3, v4, . . . , v7} and D5 = {v1, v2}, and let Hi denote the preimage of vi for
i = 1, 2, . . . , 7.
Define X = {x ∈ V (G) : dG(x) < n/4}. By the given degree condition, if x1, x2 ∈ X , then x1x2 ∈ E(G). Note that D2 is

an independent set of G∗. Then there is at most one vertex, say v3 in D2, such that V (H3) ∩ X 6= ∅, that is, V (Hj) ∩ X = ∅
for j = 4, 5, 6, 7. It follows that each vertex in Hj has degree at least n/4 for j = 4, 5, 6, 7. On the other hand, dG∗(vj) =
2 < n/4, which is equivalent to ∂(Hj) < n/4 in G. Applying Lemma 2.8 to Hj for j = 4, 5, 6, 7, |V (Hj)| > n/4. Then
n = |V (G)| =

∑7
i=1 |V (Hi)| > 4(n/4)+ 3 = n+ 3, a contradiction.

Finally, assume that |D5| = 1. Let S = D2 ∪ D3 ∪ D4. It follows from (10) and ∆(G∗) = 5 that |S| = 5. Thus, v ∈ D5 is
adjacent to each vertex in S. On the other hand, since δ(G∗) ≥ 2, G∗[S] contains edges. It follows that G∗ contains a 3-cycle,
contrary to Theorem 2.6(i).
We are ready to complete the proof of Theorem 4.2. By Claim 3, ∆(G∗) ≤ 4. First, suppose that ∆(G∗) = 4. By (10),

|V (G∗)| ≤ 5. If |D4| ≥ 2, let v1, v2 ∈ D4. For each i = 1, 2, vi is adjacent to all other vertices of G∗. Thus, G∗ has a 3-cycle,
contrary to Theorem 2.6(i). If |D4| = 1, v ∈ D4 is adjacent to all other vertices of G∗. On the other hand, since δ(G∗) ≥ 2,
G∗[D2 ∪ D3] contains edges. It follows that G∗ contains a 3-cycle, contrary to Theorem 2.6(i).
Next, suppose that∆(G∗) = 3. It follows from (10) and (11) that:

5 ≥ |D2| + |D3| ≥ |D2| ≥ 1 (16)

which implies that |D3| ≤ 4. Since the number of the vertices of odd degree is even, |D3| = 4 or 2. In the former
case, by (16), |D2| = 1. Note that G∗ does not have any cycle of length at most 3. Then |E(G∗[D3])| ≤ 4 and hence
2 ≥ ∂(D2) = e(D2, S) = ∂(D3) =

∑
v∈D3

d(v) − 2|E(G∗[D3])| ≥ 12 − 8 = 4, which is a contradiction. In the latter
case, |D2| ≤ 3. If |D2| = 3, then G∗ ∼= K2,3. If |D2| ≤ 2, then |V (G∗)| ≤ 4. Since G∗ is 2-edge-connected and |D3| = 2, it is
easy to verify that G∗ contains a 3-cycle, contrary to Theorem 2.6(i).
Finally, assume that ∆(G∗) = 2. Then |E(G∗)| = |D2| = |V (G∗)|. Since G∗ is 2-edge-connected, G∗ is a cycle. By (10),

|D2| ≤ 5. If |D2| ≤ 3, then G∗ is a cycle of length at most 3, which is contrary to Theorem 2.6(i). If |D2| = 4, G∗ is a 4-cycle. If
|D2| = 5, G∗ is a 5-cycle. �

The proof of Theorem 1.4. Let A be an abelian groupwith |A| ≥ 4. By Theorems 3.3 and 4.2, G∗ ∈ {K1, C4, C5, K2,3}, or is the
graph L in Fig. 2. In the latter case, G is A-connected by Lemma 4.1. If G∗ is K1, then Lemma 2.7 shows that G is A-connected.
If G∗ ∈ {K2,3, C4}, then by Lemmas 2.1 and 2.2,Λg(G) = 5. If G∗ = C5, then by Lemma 2.1,Λg(G) = 6. �
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