New Sufficient Conditions for s-Hamiltonian
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Abstract: A graph G is s-Hamiltonian if for any § C V(G) of order at
most 8, G — S has a Hamiltonian-cycle, and s-Hamiltonian connected if for
any S C V(G) of order at most s, G — § is Hamiltonian-connected. Let
k> 0,3 > 0 be two integers. The following are proved in this paper: (1)
Let k > s+ 2and s € n— 3. If G is a k-connected graph of order n and if
max{d(v) : v € I} > (n+s}/2 for every independent set I of order k—s such
that I has two distinct vertices z,y with 1 < |[N(z)NN(y)| < a(G)+s—1,
then G is s-Hamiltonian. (2) Let k > s+ 3 and s <n—-2 IfGisa
k-connected graph of order n and if max{d(v) :v € I} > (n+ s+ 1)/2
for every independent set I of order & — s — 1 such that I has two distinct
vertices z,y with 1 < |[N(z) N N(y)| € a(G) + s, then G is s-Hamiltonian
connected. These extended several former results by Dirac, Ore, Fan and
Chen.
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1 Introduction

Graphs considered here are simple and connected. Undefined notations
and terminologies here can be found in [1]. For a graph G, we use V(G),
E(G@), 6(G) and a(G) to denote its vertex set, edge set, minimal degree
and indepehdence number, respectively. If v € V(G) and H is a subgraph
of G, then Ng(v) denotes the set of vertices in H that are adjacent to v
in G. Thus, dg(v), the degree of v relative to H, is [Ng(v)|. We also
write d(v) for dg(v) and N(v) for Ng(v). If C and H are subgraphs of
G, then No(H) = Uyev(mnyNe(u), and G — C denotes the subgraph of G
induced by V(G)—=V(C). Let P = z125 - - - T, denote a path of order m. To
emphasize the end vertices of the path P, we also say that P is an (z1, Zm)-
path. Define N} (u) = {zi41 € V(P) : z; € Np(u)}. So if zm € Np(u),
then |N#(u)| = |Np(u)| — 1. Two vertices are consecutive in P if they
are the ends of an edge in- E(P). Thus, each pair of vertices z;, ;41 are
consecutive in P for any i € {1,---,m — 1}. When 1 <i<j<m, we
use [z;,z;] to denote the section z;Tit1---z; of P and [z;,;] to denote
the section z;z;_1--z; of P. If there is an (z1,Zm)-path P* in G such
that V(P) € V(P*) and [V(P*)| > [V(P)|, then we say that P* extends
P. Let C =z, -x,,7; be a cycle. Define Nc';"(H) ={z;41 € V(C):2; €
Nc(u)}, where the subscriptions are taken by modulo m. Two vertices are
consecutive in C if they are the ends of an edge in E(C). If there is a cycle
C* in G such that V(C) ¢ V(C*) and |V(C*)| > |[V(C)|, then we say that
C* extends C.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-
connected if for every pair of distinct vertices u,v € V(G), G has a spanning
(u,v)-path. A graph G is s-Hamiltonian if for any § C V(G) of order at
most s, G — S has a Hamiltonian-cycle, and s-Hamiltonian connected if for
any 8§ C V(G) of order at most s, G — S is Hamiltonian-connected.

The following sufficient conditions to ensure the existence of a Hamil-
tonian cycle in a simple graph G of order n > 3 are well known.

Theorem 1.1 (Dirac [4]) If 5(G) > n/2, then G is Hamiltonian.



Theorem 1.2 (Ore (8]) If d(u) + d(v) > n for each pair of nonadjacent
" wertices u,v € V(G), then G is Hamiltonian.

Theorem 1.3 (Fan [6]) If G is a 2-connected graph and if max{d(u), d(v)} =
n/2 for each pair of vertices u,v € V(G) with d{u,v) = 2, then G 1s Hamil-

tonian.

Theorem 1.4 (Chen [2]) If G is a 2-connected graph and if max{d(u), d(v)} >
n/2 for each pair of vertices u,v € V(G) with 1 < |N(u)NN{v)| < {G)—1,
then G is Hamiltonian. :

Theorem 1.5 (Chen et al [3]) If G is a k-connected (k > 2) graph and if
max{d(v) : v € I} > n/2 for every independent set I of order k such that
I has two distinct vertices z,y with d(z,y) = 2, then G is Hamiltonian.

Zhao et al recently proved Theorem 1.6 below, which unified and ex-
tended the above theorems.

Theorem 1.6 (Zhao et al [9]) If G is a k-connected (k > 2) graph of order
n and if max{d(v) : v € I} > n/2 for every independent set I of order k
such that I has two distinct vertices z,y with 1 < [N(z)NN(y)] £ a(G) -1,
then G is Hamiltonian. ' SR

" In this paper, we shall obtain sufficient conditions for s-Hamiltonian
graphs and s-Hamiltonian connected graphs, respectively, as shown below.

Theorem 1.7 Let k, s be two integers with k > s+2 and 0 < s <n-3. If
G is a k-connected graph of order n and if maz{d(v) : v € I} > (n+s)/2 for
every independent set I of order k — s such that I has two distinct vertices
z,y with 1 <IN(z) N N(y)| € a(G) + s — 1, then G is s- Hamiltonian.

Theorem 1.8 Let k, s be two integers with k> s+3 and0 < s<n-—-2. If
G is a k-connected graph of order n and if maz{d(v) :v € I} 2 (n+s+ 1)/2
for every independent set I of order k — s — 1 such that I has two distinct
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vertices z,y with 1 < |N(z) N N(y)| € «(G) + s, then G is s-Hamiltonian
connected.

Note that Theorem 1.6 is a special case of Theorem 1.7 when s =
0. Applying Theorem 1.8 to the case when s = 0, we get the following
corollary.

Corollary 1.9 If G i3 a k-connected (k > 3) graph of order n and if
maz{d(v) :v € I} 2 (n + 1)/2 for every independent set I of order k—1
such that I has two distinct vertices T,y with 1 < [N(z) " N@)| £ a(G),

then G is Hamiltonian—connected.

The following Lemma 1.10 is very important for the proof of the main

theorems. A proof can also be found in [10].

Lemma 1.10 Let G be a connected graph, F = z1 - .z (1) be a longest
path (or cycle) inG and H be a component of G—V(F). If z;,z; € Nrp(H)
with 1 < i< j <m, then |

(i) zir1zi41 € E(G);

(ii) N(zs1) NV (H) =0;

(ii) N (H) U {z} is an independent set of G, where T € V(H).

Theorem 1.7 and Theorem 1.8 will be proved in the following two sections,
respectively.

2 Proof of Theorem 1.7

Throughout this section, let k,s denote two integers with k > s + 2 and
0<s<n—3 : ' '

Lemma 2.1 [5] Let G be a graph and P =z, Tn be a H amiltonian-path
of G. If d(z1) + d(zn) 2 1, then G contains o Hamiltonian-cycle.

[ R



Lemma 2.2 Let G be a k-connected graph of ordern, S C V(G) be a vertex
set of order s, C = 1+ TmT1 be a cycle of G — S with [V(C)} < n—3s
and H be a component of G — S —V(C). Then G — S contains a cycle C”
extending C, if one of the following holds:

(i) there exist two distinct vertices z;,z; € V(C) with Ti41,Tj+1 € Ng (H)
such that d(z;+1) > (n+ 8)/2 and d(z;41) = (n + 8)/2, or |
(ii) there ezists a vertex ziv1 € NS (H) and a vertez y € V(H) such that
d(ziy1) = (n+5)/2 and d(y) = (n+ s)/2. -

Proof: Since the proof when (ii) holds is similar to the probf when (i)
holds, we only present the proof of the lemma assuming (i) holds. Let
z;,z; € V(H) (possibly z = z) be such that zjz;,z;z; € E(G) and
let P be an (z},z;)-path in H. Then G[V(C U P)] has a Hamiltonian-
pa.th P = [mi—l—l:ijP [a:,;,xl][a:m,mj+1]. Let H = G — V(S uCu H)
If NHI(331'+1) M NHf($j+1) ?é @, let z € NHf(Iq;_i_l) N NHf(.'IIj;}_l) and then
G — S has a cycle C* = z[z;41,2]P [zi, 21][®m, Tj+1]2 extending C. Now
suppose that N (2i41) O Ngr(zj41) = 0 and so dg (zig1) + da (Tj41) £
|V(H)|. If Ng_p(zi+1) U Nu_p(zj41) # O, without loss of generality,
let y € Ny_p(ziy1) U Ng_p(z;j+1) and yziy; € E(G) and let P” be
an (z,y)-path in H. So G — 5 has a cycle C* = 2 P [Tig1, Zm])[T1, T3)
extending C. Now we can suppose that Ny_p(ziy1) U Ng—p(zj41) = 0
and so dg_p(xiy1)+dg_p(z;+1) = 0. By (i) of Lemma 2.2, both d(z;41) >
(n+5)/2 and d(z;41) > (n + 8)/2. Thus, -

dpe(zis1) +dpe(zjr1) = d(@ip1) +d(zs41)
—(dsurruE-py(Tis1) + dsurroE-p)(Ti+1)
> n+s-2s—|V(H) = |V(P)]

By Lemma 2.1, G[V(CU P)] contains a Ha.miltonian—cycle C* extending C.
a

Lemma 2.3 Suppose that G satisfies the hypothesis of Theorem 1.7. Let
S C V(G) be a vertex set with |S] =s' < s, C = z1---zmz1 be a longest
cycle of G— 8 with |V(C)| < n—s' and H be a component of G—S—V(C).
- Then
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(i) INc(H)| 2 k= s; .
(i) if c € V(H),z; € V(C) are such that zz; € E(G), then 1 < IN(z) N
N(zip1)| € a(G)+s-1;

(1) d(z) > (n + s)/2 for each = € V(H) with |Nc(z)| > 1.

Proof: (i) Since C = z; - - Tmz; is a longest cycle of G— S with V(C)| <
n— s, it follows that H # @ and V(C) — Nc(H) # 0. By the facts that
Ng(H)US separates H and G—H—(SUNg(H)) and that G is k-connected,
we have [No(H)| +|5] > k and so [Nc(H)| > k-8 >k —s.

(ii) By Lemma 1.10 (iii), N} (H) U {z} is an independent set and so
INc(H)| = INZ(H)| £ a(G) — 1. Tt follows that 1 < |[N(z) N N(zit1)| £
INc(H)U S| < a(G)+8 —1<a(G)+s~1.. :

(iii) Suppose, to the contrary, that there exists an & € V(H) with
|Nc ()| > 1 and with d(z) < (n + 5)/2. Let z; € N¢(z). By Lemma 1.10
(iii) and by the fact that |[NZ& (H)| = |[N¢(H)| = k—s, G has an independent
set J = J'U{z} of order k—s with z;41 € J' C N&(H). By (ii), 1 < |N(z)n
N(zi31)| < o(G) + s ~ 1. Hence by the hypothesis of Theorem 1.7 and by
the fact. that d(z) < (n + s)/2, there must exist an z;41 € J' satisfying
d(z141) > (n+8)/2. By (i), ING(H)| = |[Nc(H)| 2 k — s > 2, and so there
exists an z;41 € NG (H) — {z141}. Since z;41 € NX(H), z; € Nc(H) and
we may assume y € V(H) with yz; € E(G) (possible y = z). By (ii), we
have 1 < [N(y)NN(zj41)| < a(G)+s—1. Similarly, G has an independent
set J; = J{U{y} of order k—s, where z;11 € J| € N (H)—{zi14+1}. By the
hypothesis of Theorem 1.7, there exists a z € J; such that d(z} = (n+ s)/2.
Consequently, either z € N (H), whence by Lemma 2.2 (i), G — S has a
cycle C* extending C; or z = y, whence by Lemma 2.2 (ii), G — 5 has a
cycle C* extending C. In either case, a countradiction to the assumption
that C is a longest cycle of G — S is obtained. O

Proof of Theorem 1.7 Let G be a graph satisfying the hypothesis of
Theorem 1.7. Suppose, to the contrary, that G is not s-Hamiltonian. Then
there exists a vertex set S C V(G) with |S| = ¢’ < s such that G — 5 does
not have a Hamiltonian-cycle. By the fact that k~s' > k—52>2,G— 5



is 2-connected. We may assume that
C =1z, - Ty, is a longest cycle in G — S. (1)

Then |V(C)| < n—s'. Let H be a component of G — S — V(C). By Lemma
2.3 (i), we have |[Nc(H)| > k — s > 2. Choose z;,z; € Ng(H) to be such
that . :

X N Neg(H) =0, and | X| is minimurm, - (2)

where X = {:r,;+1,---,$j;1}. Then |X| > 0. Otherwise, there exist
vi,¥iv1 € V(H) such that z;y; € E'(G),m,;_{_ly,;_,_l e E(G) (y; and yi+1
might be the same vertex). Let Pf;[yi,'yiﬂ] be a (y;,yir1)-path in H.
Then C* = [x1, z;|Prlyi, vi+1][ig1, Tmlz1 is a cycle extending C, contrary
to (1). By Lemma 2.3 (iii), for each vertex z € V(H) with |N¢(z)| > 1,
d(z) > (n+s)/2. Since N(z)U{z} C V(H)UNc(H)US for each z € V(H),
|[V(H)| + |Nc(H)| +|S| =2 (n+s)/2+ 1, and then

n—g

VE) + INe(E) > 222 11 3)

Claim 1. G — § - V(C) has only one component H = G— 8§ —V{(C) and
| X| < |V(H)|.

Proof. Suppose, to the contrary, that G — § — V(C) has at least two
components. Assume that H is the component with the smallest order and
let H* = G—-S—V(CUH). Since |V(H)| is minimized, |V (H)| < |V(H*)|.
It follows by (3) and |N¢(H)| > 2 that

V(O = INc(H)| _ n—|V(H")| - — (V(H)| + |Nc(H)])

N ] No ()]
o (=821 |V(H")| _ [VH)| +|Nc(H)| -2~ [V(HY)|
B I[Nc(H)] B |INc(H))|
|V(H)| = |[V(H")| + |Nc(H)| -2 (4)
|[Nc(H) |[Nc(H)|

Then as [V(H)| < |[V(H*)|, (4) implies |X| < 1, contrary to the fact
that |X| > 0. Hence, H is the only component of G — § — V(C). Since
|Nc(H)| 2 2, we have that | X| < |V(H)|. ]

Choose =i,z € V(H) with z;z; € E(G),z;z; € E(G) to be such that

Y7

"|V(P')| is as large as possible, where P’ is an (z,2})-path in H. Then
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C' = [x1, i) P'[z;, Tm]Z1 i5 & cycle such that
V(C)\ X € V(C') and |V(C)| is maximized. (5)

By (5), C" is a longest path containing V (C)\ X and so by applying Lemma
9.3 and the argument on C to C', it follows that G— S —V(C’) has only one
component H' and that H' = G[X U V(H — P')]. By (2) and the fact that
|X| >0, H— P’ =0. Otherwise, H' is conmected while G[X U(H — P')] is
disconnected, a contradiction. Therefore P’ is a path of order |V(H)|. By
the fact that |X| < |V(H)|, we have V() = [VO) = 1X]+ \V(H)| >
|V (C)|, contrary to (1). This completes the proof of Theorem 1.7, ]

3 Proof of Theorem 1.8

Lemma 3.1 Let G be a graph and P =21+ Tn be o Hamiltonian-path of
G. If d(z1) + d(zn) 2+ 1, then for any edge € = T;iTi+1 € E(P), G has
o Hamiltonian-cycle C such that e € E(C).

Proof: Let T = {z;| z1zj41 € E,zj41 € V(P)}. Then

|T0N($n)1 = |T|+|N(zn)| - [TUN(@a)| 2n+1=(n=1) =2

That means there exists z; € TNN(zn)—{=zi}, and so G has a Hamiltonian-
cycle C = [z1, %] [Zn, Ti+1]21. Clearly, E(P) — {zjzjy1} C E(C), and so
e = z;Ti+1 € B(C). Thus the lemma holds. O

Lemma 3.2 Let G be a k-connected graph of ordern, S C V(G) be a vertezr
set with|S|=¢ <5, P=21-" ' Tm be a path of G— S with V(P)<n-—s
and H be a component of G =5 - V(P). Then G — S contains a path P*
eztending P, if one of the following holds:

(i) there exist two distinct vertices T;, Tj € V(P)'with‘$i+_1,mj+1 in Np(H)
such that d(zip1) = (n+s+1)/2 and d(zj41) = (n+s+1)/2, or

(ii) there etists a verteZ Tiy1 € N#(H) and a vertez y € V(H) such that
d(zis1) > (n+s+1)/2 and d(y) > (n+s+1)/2. '



Proof: Since the proof when (ii) holds is similar to the proof when (i)
holds, we shall only present the proof of the Lemma 3.2 assuming (i) holds.
Let z},z; € V(H) with z{z;, ziz; € E(G) and let P’ be an (%, z{)-path
in H. Define G1 to be the graph obtained from G by adding a new edge
T1Zm if 212 & E(G) and to be G if z10m € E(G). Then we have an
(Tit1,Zj+1)-path P, = (Zit1, 2] P'[Ti, 1] [Tm, Tj41] With V(P) =V(P)U
V(P') in Gy. Moreover, 1T, is an edge of P;. Let H*=G-V(SUPU
H) If Ng- (171‘+'1) N Ny (.’Bj+1) #* @, let z € Ny- (:1:.;+1) N Ny« (:t:j+1) and
then G[V(P) U {z}] has a Hamiltonian-cycle C such that z1zm € E(C).
Therefore, C — {x1ZTm} is an (21, Tm)-path in G —§ which extends P. Now
suppose that Ng«(zi41) N Ng+(zj+1) = 0 and so we have dy- (ziy1) +
dy-(zig1) < [V(H")|. ¥ Ng_p(zi1) UN-_p(Tj41) # @, without loss of
generality, let ¥ € Ng_p/(%iv1) U Ng_pi(z;41) and yzip1 € E(G) and let
P” be an (z!,y)-path in H. So G — § has a path P* = (21, 2] P [Xig1, Zml]
extending P. Now we can suppose that Ng_p/ (1) UN P (zj41) =0
and so dg_p/ (Tit1) + dg-pr (xj41) = 0. Since d(ziy1) = (R+s+1)/2 and
d(zj+1) > (n+ s+ 1)/2, we have B

dp, (Tir1) + dp, (€541) = d(@i1) +d(z41)
~(dsugeu(—p)(Ti+1) + dsur-uE-pP) (Z5+1))
> nds+1-2s—|V(H")| 2 |V(P)|+1.

By Lemma 3.1, G1[V(P1)] contains a Hamiltenian-cycle C such that z1 T, €
E(C), and then C — {z1Z} is an (21, 2m)-path P* in G- § extending P.
O ‘ .,

By a proof similar to that for Lemma 2.3, we obtain the following lemma.

Lemma. 3.3 Suppose that G satisfies the hypothesis of Theorem 1.8. Let
S C V(G) be a vertez set with |S|=¢ <'s, P =1z1--Tm be a longest path
of G — 8 with |V(P)| < n—s' and H be a component of G — S — V(P).
Then \

(i) INp(H)| 2 k- 5;

(i) if c € V(H),z; € V(P) with zz; € E, then 1 < |N(z) N N(zit1)| <
a(G) + s; |

(i) d(z) > (n+ s + 1)/2 for each = € V(H) with |[Np(z}| 2 1.
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Proof of. Theorem 1.8 Let G be a graph sa.tlsfymg the hypothesis of
Theorem 1.8. Suppose, to the contrary, that G — § is not Hamiltonian-
connected for some vertex set § C V(G) with [S| = s’ < s. Then there
exists a pair of vertices, say z and y, such that G — S does not have a
Hamiltonian (z,y)-path. Since k —s' > k— s > 3 G — S is 3-connected
and we can choose

P =z125 2, to be a longest (z,y)-path in G — S, (6)

where T = 21,y = Zy,. Then |V(P)] <n—35'. Let H bea component of
G - 8§ —V(P). By Lemma 3.3 (i), we have |[Np(H)| > k — s > 3. Choose
z;,T; € Np(H) to be such that |

XN Np(H) =0 and |{X| is minimum, (7)

where X = {z;41,---,2;_1}. Then |X| > 0. Otherwise, there exist
i, Yi+1 € V(H) such that z;y; € E(G),zir19i41 € E(G) (v and 3y .
might be the same vertex). Let Pylyi,y: + 1] be a (y;,vi+1)-path in
H. Then P* = [ml,xi]PH[@-,y,-+1][a:i+1,a:m] is an (z1, Zm )-path extend-
ing P, contrary to (6). By Lemma 3.3 (iii), for each vertex z € V(H)
with [Ne(z)| 2 1, d(z) > (n + s + 1)/2. Since for each z € V(H),

N(z)U{z} C V(H)UNp(H)US,
IV(H)|+ |Np(H)| 2 (n~5')/2+ 3/2. (8)

By a proof similar to that for the Claim 1 in the proof of Theorem 1.7, we
get the following.

Claim 2. G — S — V(P) has only one component H=G-8- V(P) and
1 X| < [V(H)|.

Choose z},z;" € V(H) with zj,z; ¢ V(H) to be such that |V (P')]

is as large as possible, where P’ is an (z!,z z;)-path in H. Then P* =
(1, i) P'[z}, 2] is a path such that
V(P)\ X C V(P*) and |V(P*)| is maximized. (9)

By (9), P* is a longest path containing V(P)\ X and so by applying Lemma
3.3 and the argument on P to P*, it follows that G — § — V(P*) has only
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one component H’ and that H' = G[X U V(H — P')]. By (7) and the fact
that |X| > 0, H — P' = 0. Otherwise, H' is connected while X U (H — P')
is disconnected, a contradiction. Therefore, P’ is a path of order |V (H)|-
By the fact that | X| < |V(H)|, we have [V(P*)| = [V(P)| - {X|+|V(H)| >
|V (P)|, contrary to (6). This completes the proof of Theorem 1.8. [ ]
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