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Abstract

Catlin, P.A., J.W. Grossman, A.M. Hobbs and H.-J. Lai, Fractional arboricity, strength, and principal
partitions in graphs and matroids, Discrete Applied Mathematics 40 (1992) 285--302.

In a 1983 paper, D. Gusfield introduced a function which is called (following W.H. Cunningham, 1985)
the strength of a graph or matroid. In terms of a graph G with edge set E(G) and at least one link, this
is the function 7(G) = Ming_gq | AA@(G - F) ~ ©(G)), where the minimum is taken over all subsets F
of E(G) such that @(G - F), the number of components of G — F, is at least @(G) + 1. In a 1986 paper,
C. Payan introduced the fractional arboricity of a graph or matroid. In terms of a graph G with edge set
E(G) and at least one link this function is 7(G) = MaXyce |E(H)/(| V(H)! — w(H)), where H runs over
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all subgraphs of G having at least one link. Connected graphs G for which y(G) = n(G) were used by A.
Rucinski and A. Vince in 1986 while studying random graphs.

We characterize the graphs and matroids G for which ¥(G) = n(G). The values of y and 7 are
computed for certain graphs, and a recent result of Erdés (that if each edge of G lies in a C;, then
IE(G)1=¥1V(G)l - 1)) is generalized in terms of 7.

The principal partition of a graph was introduced in 1967 by G. Kishi and Y. Kajitani, by T. Ohtsuki,
Y. Ishizaki, and H. Watanabe, and by M. Iri (all of these were published in 1968). It has been used since
then for the analysis of electrical networks in which the two Kirchhoff laws and Ohm’s law hold,
because it often allows the currents and voltage drops in the network to be completely computed with
fewer measurements than are required for either of the Kirchhoff laws used alone. J. Bruno and L.
Weinberg generalized the principal partition to matroids in 1971, and their generalization was refined
independently by N. Tomizawa (1976) and by H. Narayanan and M.N. Vartak (1974, 1981). Here we
demonstrate that y and 7 are closely related to the principal partition and can be used to give a simple
definition of both the principal partition and the more recent refinements of it.

We use the notation of Welsh [26] and (for graphs) Bondy and Murty [1]. In
particular, given a matroid M on set S, for any subset X of S, we use M. X for the
contraction of M to X, and M| X for the restriction of M to X. In addition, we
adopt M/X for M. X“. We let N stand for the set of positive integers and R stand
for the set of real numbers. To avoid unnecessary repetition, a matroid labeled M
will always be on a set S and will always have rank function g. For simplicity, we
suppose all matroids and graphs in this paper are loopless.

In a matroid M with oM >0, we define

S X
g(M)=|——l and g(X)=1—‘ for any XC S with 0X>0.
oS oX

Following Narayanan and Vartak [16], we call g(M) the density of the matroid M.
We let

Y(M) =max g(X),
XcS

where the maximum is taken over all subsets X C S for which o.X>0. Let us say that
X’C S achieves the value y(M) if g(X)=y(M). We note that, if X’C S achieves the
value y(M), then . X’'=X’, for otherwise expanding from X" to its closure would
increase |X’| without changing o.X".

We further define

. [S\X]
n(M)=min ———,
xcsoS—o0X
where the minimum is taken over all subsets X C S for which o X <0S. In cases where
no confusion is possible, for any X C S, we use p(X) and n(X), respectively, to
denote p(M | X) and n(M | X).
The function # was introduced for graphs in reciprocal form by Gusfield in 1983
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[9]. He said that 7(G) ‘‘can be used as a measure of vulnerability’’; the smaller the
value of 7(G), ‘‘the more vulnerable is the graph to large amounts of disconnection
for few edge deletions”’. This function was generalized and extended to matroids by
Cunningham [6]. Followig Cunningham, we refer to n(M ) as the strength of
matroid M.

The function y was introduced implicitly by Tomizawa [23] and independently
(and more explicitly) by Narayanan and Vartak [15,16]. Extending the Narayanan
and Vartak term ‘‘density’’, we say that a matroid M for which y(H)=<g(M) for
every restriction H of M (equivalently, for which y(M)=g(M)) is uniformly dense.
Uniformly dense graphs were discussed in a 1986 paper by Rucinski and Vince [21],
where they were used to help prove a theorem about random graphs. They proved
that, for every rational number r= 1, there is a uniformly dense graph G for which
y(G)=r. A similar result was shown at about the same time by Payan [20].

The two functions y and # are closely connected through the dual of the matroid,
as is shown by our first theorem.

Theorem 1. For any loopless matroid M on set S, having loopless dual M*,

y(M)
M*)=———"—,
nM*) SO -1
and equivalently,
n(M)
M*)=——"—.
M) PV —1

Proof. Applying the formula o*X = | X| ~0S+0XC (see [26, p.35]), we have

S\X
n(M*)= min __l_\_‘_
xcs o0*S—o0*X
o*X #0*S
: | X
= mn —————=
xcs | X -0X©
o*X+#0*S
. | XC|/0X €
= min e e
xcs | X|/(0X ™)1
QXC>0
. 1
= min <1+————>
Xcs | X|/(eX)—1
0X>0

1
+
(maxycs ox>o0 |X|/(©X))—1

=1

__¥M)
y(M) -1
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The other formula is algebraically equivalent to the first one. [

Let ¢ be a natural number, and let M be a loopless matroid. A family is a set in
which elements may appear more than once. Let us define a t-packing of M to be
a family & of bases of M such that each element of M is in at most ¢ bases of &.
We let ,(M) be the cardinality of the largest t-packing of M. Dually, let us define
a t-covering of M to be a family & of independent sets of M such that each element
of M is in at least  members of %. Then we let y,(M) be the cardinality of the
smallest ¢-covering of M.

In 1961, Nash-Williams [17] and Tutte [24] independently proved:

Theorem 2. If G is a connected loopless graph with at least two vertices, then

n(G)= min LLJ
: FCEG) | w(G-F)—1 ]

where the minimum is over all subsets F of E(G) for which w(G-F)>1.
In 1964, Nash-Williams published the dual theorem [18]:

Theorem 3. If G is a connected graph with at least two vertices, then

y,(G) = max lrﬂl
1 HeG | |[VH)| -1 |’

where the maximum runs over all subgraphs H of G having at least one link.

These two theorems were extended to matroids in 1965 by Edmonds [7] (but see
also Lehman [13, p.710]). By replacing each element of the matroid M with ¢
parallel elements, and then applying the Edmonds extension, we have immediately:

Theorem 4. Let M be a matroid on S with rank function o. Let s,t € N, with s=t.
Then

(1) M has a t-packing of cardinality s if and only if n(M)=s/t; and
(i) M has a t-covering of cardinality s if and only if y(M)=<s/t.

Corollary 5. Let M be a loopless matroid on S and let te N. Then

Y(M) =[ty(M)] (1)
and

n(M)=|mM)]. (2
The definitions of p(M) and n(M) give

S
non << on. 3)
oS
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In our next theorem, we shall determine when equality holds in (3).

Nash-Williams [18] introduced y,, which is now called arboricity. Following this
lead, we call y(M) the fractional arboricity of M. This corresponds to Payan’s ar-
boricité rationnelle [20]. We note that y(M) is a fraction, and further it is an impor-
tant dividing point in the following sense: If s/t= y(M), then there is a family & of
s bases of M such that each element of S is in at least ¢ of the bases in #. However,
if s/t<y(M), then no such family & exists.

In the following definition, we shall use S; to denote the underlying set of
matroid H;. Given the matroid M, we construct a sequence of matroids
(Hy, H,, ..., H}) by the following rules:

Q) Hy=M;

(ii) for i=1, if the set S; has a subset X; with n(X;)>n(H,), then let H; ;=
H;/(6X;), where (0X;) is the closure of X, in H;;

(iii) H, has no loops and no subset X such that n(X)> n(Hy).

Since 7n(X;) is defined, X;#0 and so S, is strictly contained in §;. But pX;=
o(a(X})); since n(X;)>n(H,), it follows that ¢.X;#S;. Hence S;,;#0, and thus H;
exists by the finiteness of M. We call H, an n-reduction of M, and we use M, to
denote any n-reduction of M (we show later that M, is unique). When M =M,, we
say that M is n-reduced.

Theorem 6. Let M be a loopless matroid on set S with rank function o. The follow-
ing are equivalent:
(a) y(M)eS=|S| (i.e., M is uniformly dense).
(b) n(M)eS=1S|.
(©) M) =n(M).
(d) M is n-reduced.
(e) There is a function f:{1,2,...,0S} — R such that
(1) f(r)/r=f(25)/(0S) for 1=r=pS,
(i) f(eS)=1S], and
(iii) |X|=f(eX) for every X C S with 0X>0.
(f) For any positive integers s and t such that y(M)=s/t, there is a family ¥ of
s bases of M such that each element of S is in exactly t bases in &.
(g) For any positive integers s and t such that n(M)=s/t, there is a family & of
s bases of M such that each element of S is in exactly t bases in &.
(h) Thereis ate N and a family & of bases of M such that & is both a t-covering
and a t-packing.

Proof. ((¢) = (a) and (¢) = (b)). These follow from (3).
((f) = (h) and (g) = (h)). These implications are immediate from the definitions.
Next, choose ¢ € N such that ry(M) and tn(M) are integers, and set g=y,(M) and
h=n,(M). By (1) and (2),

tyM)=yM) and tn(M)=n,(M). 4)
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Thus, by the definitions of y,(M) and n,(M), there is a family & = {By, B,, ..., B,}
of bases of M such that each x e S is in at least t members of &, and there is a family
#'={B|,B;,...,B,} of bases of M such that each x& S is in at most 7 members
of #'.

((a) = (h)). Suppose (a) holds. By (4) and (a),

14
ty(M)eS =y, (M)oS= ;} |Bi| z1]S| =ty(M)eS.

Equality must hold, and so & is a family of g bases such that each x € S is in exactly
t members of %. Thus (h) holds.

((b) = (h)). The proof of this is similar to that of the previous case.

((h) = (¢)). By (h), & is both a t-covering and a ¢-packing of cardinality s. Then
by Theorem 4 and (3), '

n(M)z%z y(M)= (M),

which implies equality. Thus (c) holds.

((h) = (). Let s and ¢ be positive integers such that y(M)=s/t. Then by formula
(4), y,=s. Thus there is a family & of g=s bases of M such that each element of
S is in at least ¢ of the bases. But by (h) = (¢) = (a), y(M)=S|/0S. Hence each ele-
ment of S is in exactly ¢ bases of &, which is (f).

((h) = (g)). The proof of this is similar to that of the previous case.

((c) = (d)). For the sake of contradiction, suppose that (c) holds but that S has
a subset X such that 7(X)>n(M). By definition and (3), we have

M)z y(X) = n(X)>nM),

contrary to ().
((d) = (b)). Suppose that M is n-reduced. Choose X C S such that | X| is minimized
with respect to the condition that

_1s\x|

M)y=—""_,
n(M) 0S—oX

For the sake of contradiction, suppose o X#0. Then we can find X; € X such that

| X \X)|
X ) =————.
oX —o0X,
Since M is n-reduced, n(X)=<n(M) and so we have
IS\X| =[S\ X[ +[|X\ X,
=nM)(@S - oX)+n(X)eX-oX))
=n(M)(@S—oX+0X—-0X))

=n(M)(eS —eX)).
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Since we have (X)) C a(X)#S, it follows from the definition of n(M) that

IS\ X
nM)=——-—-,
oS- oKX,

contrary to the minimality of |X|. Thus we must have 0X =0. Since M is loopless,
it follows that X =0, and thus (b) holds.
((@) = (¢)). We have (S| =y(M)oS. Define f on {1,2,...,08} by

f(r)=max | X|.
oX=r

Then by definition, |S|=/(0S) and | X|<f(0X), for all XCS. But also

IO _ v Ky 2181 _f@S)
r ox=r 0X oS oS
((e) = (a)). By (e), we have, for each X C S with oX>0,
| X <f(QX)<f(QS)=ﬁ
0X  oX T oS oS’

Since y(M) is the maximum of these | X|/(0X), we have

_Isl

and (a) follows. [

In the corollaries, we usually apply condition (e) with f(r)/r nondecreasing.
Corollary 7. Let M be a matroid on set S. If there are constants a and b such that
a>0, a+b=<0, and

|S| =aoS+a+b, (5)
and such that every nonempty subset XC S satisfies

| X|<apX+a+b, (6)
then y(M)=n(M)=|S|/gS.

Proof. Apply (e) = (c) of Theorem 6 with f(r)=ar+a+b. Then

f(r)y ar+a+b a+b
= =a+ :
r r r

Since a>0 and a+ b =<0, we have J(r)/r is nondecreasing. [J

Corollary 7 is particularly valuable when applied to graphs, as in part (a) of Cor-
ollary 8. Recall that the rank of the cycle matroid of a graph G with vertex set V(G),
edge set £(G), and number of components w(G) is |V (G)| — w(G).
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Corollary 8. The set of graphs G satisfying

|E(G)]
[V(G)] - w(G)

G =n(G) =

includes:
(a) plane triangulations;

(b) nontrivial complete graphs; and
(¢) cycles.

Proof. (a) A plane triangulation G (i.e., a plane graph whose faces are all triangles)
satisfies (5) and (6) with a=3, b= -6 (see [1, pp. 144-145]).

(b) Apply (e) = (¢) of Theorem 6 with f(r)=r(r+1)/2.

(c) Apply (e) = (c) of Theorem 6 with f(r)=r when r<n-1 and f(n—1)=n,
where n=|V(G)|. O

We next determine the behavior of ¥ and # under restriction and contraction,
respectively. The purpose of the closure operation ¢ here is to ensure that contrac-
tions produce no loops.

Lemma 9. Let M be a matroid on S, and let X CS.
(@) If oX>0, then y(M)=p(M | X); and
(b) if aX#S, then n(M)<n(M/(gX)).

Proof. By the definition of y, we have

_ T 7] _
y(M)=max — =max — = p(M | X).
oT>0 0T oT>0 OoT
TcX

Further, using [26, p. 62, formula (1)],

. IS\T]
n(M)=min
7cs 0S—oT
S\T
< min ISAT]

oxcTcs 0S—0oT

— min IS\ oX|~|T\oX|
oxcTes [0S-0(6X)] - [o(TUaX) - 0(0X)]

=n(M/(aX)),

where all of the minima are taken over those subsets 7CS such that the
denominators are not zero. [

It is easy to see, for any set X C S with 0X>0, that (X )<n(cgX). Using this and
the previous lemma, we have:
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Lemma 10. If XS and if n(X)>n(M), then

n(M/(6.X)) =n(M). (7
Proof. By the previous observation, we may assume that X= oX. Since
n(S)=n(M), by hypothesis X #S. By (b) of Lemma 9, we have

M/ X)zn(M). (8)

Choose TC S such that 08>9T and n(M)(eS—oT)= IS\ T|. Define T,=TNX
and T,=TN XC. Then

NMYeS~oT)=|S\T|=|[X\T,|+|x\T|. ©)
Since the rank function is semimodular,

oTUX)-oX<oT~oT, (10)
If 0X> 0T, then by the definition of n(X) and by hypothesis,

X\ T\ = n(X )X -oT)>n(M)(oX —oT)).
If oX=0T;, then

(X \Ti|=n(X)eX ~oT))=n(M)(oX - oT)).
Thus
X\ Ty |z n(M)(oX -oT)),
with equality only if 0X=pT,. We substitute this into (9) to get
nM)eS—oT~oX+0T))=|XC\ Ty, (1D
with equality only if oX=0T;.
Let oy denote the rank function on the contraction M/X. Then by (10), we have
ox X —0xTy=0S~0X —(o(TU X) - 0X)
20S—-0X—-0oT+0T,. (12)
By (11) and (12),
nM)ex X ~o0xT)=|XC\ Ty, (13)
with equality only if 0X=poT,. If oX=pT,, then since 08S>0T, (12) yields
QXXC—QXT2>O, $0 (13) and the definition of n(M/X) imply
[ X\ T

QXXC_QX T,
If oX>pT,, then the inequality in (13) is strict, so QXXC—QXT2>O, and

nM)=

=nM/X). (14)

>n(M/X).

But this second case is impossible by (8), s0o 0 X =0T, and (14) and (8) together im-
ply (7) and thus the lemma. [
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Theorem 11. There is only one n-reduction My of matroid M. Further, M, satisfies
(M) = n(My). (15)

Proof. First, (15) is immediate from Lemma 10. Now, suppose X and Y are subsets

of S and suppose 7(Y)>n(M). Then, letting o, be the rank in the minor M/cX,
in M/ocX

2(Y\oX)= min (Y \aX)\Z|
zcv\ox 01(Y\aX)—-0,Z
. | Y \(eX U Z)|
= min
Zcy\oXx oY —0(cXUZ)
=n(Y)
>n(M)
=n(M/cX).

Now suppose an n-reduced minor M, of matroid M is produced by contracting
subsets of S in the order of a sequence €=(X},X>,...,Xs). To show that the -
reduced matroid is unique, it suffices to show that every element of |J X; must be
contracted in any sequence €’ of contractions leading to an n-reduced minor M, of
M, for then by symmetry every element in the subsets of S in €’ must be contracted
in forming M,. So suppose Y is a maximal subset of X; which remains uncon-
tracted in M,. Since n(X;)>n(M) in M/X,/X,/---/X;_,, the above computation
shows that 7(Y)>n(M), contrary to the definition of the n-reduced matroid M,.
The theorem follows. [

Using Theorem 4, it is also possible to show that the only elements contracted in
forming M, are those in subsets X of S for which 7(X) >n(M) before any contrac-
tions are carried out.

Suppose loopless matroid M has loopless dual M* and has components
M, M,,...,M, such that M=M,+M,+ -+ M, (see [26, pp.70-73]). In the
following proof we partition S into sets S}, S,, ..., S, such that M; is a matroid on
S; for each i, and for any X C S, use X; to represent XN S;. Then we have

oX=0X,+0X5+ - +0X. (16)

Theorem 12. For a loopless matroid M with loopless dual and with components
Ml,Mz, ...,Mk, both

(@) y(M) = max {r(My)},
and
b (= min {n(M)}.

<i<k

=l=
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Proof. We may suppose k=2. Let I={1,2,...,k}. By definition, we can find XC S
with

_1SI-1X]

S oS-oX'

Set a;=|S;| - | X;| and b;=9S; - 0X; for all i. Clearly ¢;=0 and b,=0 for all i. Fur-
ther, b;>0 for some value of / since oS—0X>0. Let A={iel: b;>0}. Without
loss of generality, we may suppose that n(M,)=min{n(M,)}. Pick meA to
minimize a,,/b,, . Using (16) and [10, Theorem 1, p. 14],

n(M)

n(M) = Lier % Liea G an
Zielbi ZieA bf bm
On the other hand, by (16) we can find Y; C S, such that

11| =11 IS| = YU \S)|
(M) = S
e oSi—eYy  Ti | 0S;-oY -T¥ , 08
_ISI-1vuG\S)| _
oS—-o(Y;U(S\S))

This proves (b). The proof of (a) is immediate using Theorem 1 and duality. O

2 N(M,,) = n(My).

n(M).

Recently, Erdos [8] asked for a brief proof of the result that if every edge of a
graph G is in a triangle of the graph, then |E(G)| = (| V(G)| -~ w(G)). The next
theorem provides a generalization of Erdds’ result.

Theorem 13. Let M be a matroid on a set S, let F be a family of matroids, and let
B be a base of M. If each element of B is contained in a restriction of M isomorphic
to a member of ¥, then

nM)=z= inf n(H).
He#

Proof. Let M, B and & satisfy the hypotheses of the theorem. Let
b= inf n(H), (17
He#

and suppose for the sake of contradiction that
b>n(M). (18)

Let M, be the n-reduction of M, and pick an element e, of M, such that e, € B.
Then e, lies in some restriction H of M isomorphic to an element of %. In M,, let
H, be the image of the restriction A under the sequence of contractions that map
M to M, (and that thus define the 7-reduced matroid M,). Then e, S,, where S,
is the underlying set of M,. Thus, by Lemma 9,

n(Ho) = n(H). 19
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By (19), (17), (18), and (15), n(Hy)=n(H)=b>nM)=n(M,). Hence, H, con-
tradicts part (iii) of the definition of M,, for H; is a restriction of M. Therefore
(18) is false, and the theorem follows. [

We have immediately from this and the definition of #:

Corollary 14. Let M be a matroid, let B be a base of M, and let & be a family of
matroids. If each element of B is contained in a restriction of M isomorphic to a
member of &, then

|S|= < inf ;7(H)>QS.
He#

The result of Erdos is immediate from Corollary 14, since 7(K;)=23/2.

We next describe the principal partition of a matroid. This has been described
before, and the description of it given by Tomizawa [23] implicitly employed the
function y. However, we believe the following development is of value because the
coordination of x# with y which we use produces an easier and clearer explanation
of the partition.

There are four different partitions of set S of matroid M that have been called
“‘the principal partition’’. They are:

(1) A partition of E(G) into three parts relating to values of y greater than 2,
equal to 2, and less than 2.

(2) An extension of (1) to matroids and simultaneously a refinement of the part
relating to values of y greater than 2 into parts relating to values of y greater than
each of the integers k=2.

(3) A further refinement of (2) to allow fractional values of .

(4) A final refinement of each of the parts produced in (3) in a way to be de-
scribed at the end of this paper.

We will fully describe the third of these, called ‘‘the principal partition into ir-
reducible minors’’ by Tomizawa [23] and called ‘‘the P-sequence’’ by Narayanan
and Vartak [16]. For convenience, we will call this third partition the principal parti-
tion of the matroid. Roughly, the principal partition of matroid M is a decomposi-
tion of S into subsets, each of which becomes the underlying set X of a uniformly
dense matroid upon contraction of a particular subset of S followed by a restriction
to X. (The principal partition will be more completely defined after Theorem 19.)
We will describe the other three versions of principal partition in terms of this one
after we have completed its definition.

To begin this development, we will connect y with the work of Tomizawa [23].
For a matroid M on set S, let us define I, (M) by

I, (M)=max (| X| —koX).
XcsS

For X ¢S, we let I(X)=TI,(M|X). Since |0| —kod=0, clearly I};(M)=0.
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Lemma 15. Let M be a loopless matroid, and let k = y(M). Then I (M)=0. Fur-
ther, for any set X C S, g(X)=k if and only if X achieves the maximum in I (M)
and X#0.

Proof. Suppose I (M)>0. Then there is a subset X’ of S such that | X'| ~
koX'>0. Since M is loopless, 0X'>0, so |X'|/0X’>k, contrary to the choice of
k. Next, let g(X)=k. Then |X|/oX=k, so |X|-koX=0 and X#0. Conversely,
suppose that X'#0 achieves the maximum in (M), and suppose that g(X)+#k.
Then g(X)<k=y(M) by the definition of y. Thus | X|/0X <k, which gives
| X| —koX <0. But then X does not achieve the maximum, a contradiction. [J

Next we show that g and y can be used to provide a lattice of restrictions of
matroid M. This theorem and its proof exactly parallel a similar theorem and proof
of Tomizawa [23, p.3]; they are included here, first, because their setting in
Tomizawa is complicated and, second, because they are needed here for com-
pleteness.

Theorem 16 [23]. Let M be a loopless matroid on set S, and suppose
8(X,)=g(X,) =y(M) for subsets X|,X,CS. Then

g(X U Xy) = y(M).
Further, if o(X,NX,)>0, then

(X, NX,)=y(M).
Proof. By hypothesis, X, and X, are nonempty and both achieve the maximum in
the definition of y(M). Let k=y(M). By Lemma 15, for ie {1,2}, we have

[(X) = |X;| —koX; and I (X,)=T(X3)=I(M)=0. Hence, applying the sub-
modularity of o,

F(X,UX) + DX, 0 X,)

= max {|X|-koX}+ max {|X|-koX}
XcX,UX, Xcx\Nx

=X UXo| — ko(X; U X5) + [ X, N.X,| — ko(X; N X7)
=X + [ X5 = k(e(X, U X;) + o(X, N X3))

= | X |+ [ X;] — k(e(X)) + 0(X3))

= (X)) + T3 (X5)

=0.

But  I(X,UX;)=maxy, x,ux, (|X] —koX)=maxycs (| X|—koX)=I,(M)=0.
Similarly, I.(X;NX5)<0. Thus we have 0=I,(X\UXy)+ 1 (X;NX,)=0, and
equality throughout follows. The theorem follows by applying Lemma 15
again. [
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It follows from Theorem 16 that the subsets X of S for which g(X) = y(M) form
a distributive lattice with (perhaps) the zero removed. Thus there is only one max-
imal subset U of S for which g(U)=y(M). We will use the symbol U for this set
from now on.

Theorem 17. Let M be a matroid on set S. Let X be any subset of S such that
y(M)=|X|/0X. Then n(X)=y(X)=yM).

Proof. Notice that

y(X)=max {|Y|/eY}<max {|Y|/oY}=y(M)=|X|/oX=y(X).
YcX Ycs
Thus we have equality throughout, and #(X)=p(X) by Theorem 6. [

Corollary 18 (Catlin [5]). For any matroid M on set S,
y(M)= max n(M | X).
Xcs

oX< oS

Also,
nM)= min pM.X).
Xcs
oM. X)>0

Proof. By Theorem 17, y(M)=n(U), so max n(X)=y(M). But y(M)=p(X)=zn(X)
for all subsets X of S, and the first part of the corollary follows. The second part
is just the dual statement of the first part. [

Theorem 19. Let M be a matroid on set S, and let U be the maximal subset of S
such that g(U)=y(M). If U#S, then y(M/U)<y(M).

Proof. Suppose otherwise. Then in M/U there is a maximal set X achieving the
value of p(M/U). By Theorem 17, X is a subset of UC such that
nM/U) | X)=y((M/U) | X)=y(M/U). Let H=(M/U)|X. Suppose y(H)=s/t
for positive integers s and ¢, and (using Theorem 6(f)) let & be a set of s bases of
H such that each element of X is in exactly ¢ bases in %. Suppose y(M)=u/v for
positive integers u and v, and let &’ be a set of u bases of M | U such that each ele-
ment of U is in exactly v of the bases.

Given a fraction a/b and integer k>0, if we have a set of a bases such that each
element is in exactly b bases, then by duplicating bases we can get a set of ak bases
such that each element is in exactly bk bases. Hence, let ¢’ be a common multiple
of ¢t and v, and let 5" and u’ be positive integers for which there is a set #” of s’ bases
of H such that each element of X is in exactly ¢’ of these bases, and there is a set
F" of u’ bases of M | U such that each element of U is in exactly ¢’ of these bases.
Because y(M/U)=y(M), we have that s'=u’.
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Make a one to one assignment of u’ bases B of F” to the bases B;" in #”. Then,
in M| (UU X) the sets B/ UB]” with i€ {1,2,...,u’} constitute a set of u’ bases of
M | (UU X) such that each element of M| (UU X) is contained in at most ¢’ of these
bases. Hence, by (3) and Theorems 4 and 6,

gM | (UUX)=n(M]| (UUX))2%=%=y(M)=g(MI Uy,

contrary to the choice of U. This contradiction establishes that y(M/U)<yM). O

Given a loopless matroid M on a set S, define sequences (U;, U, ..., U,) and
(N}, N,, ...,N,) in two steps as follows: Let M| =M and S§;=S. Let i=1.
Step 1. Let U, be the maximal subset of S; such that g(U;)=y(M;). Let N;=
M;| U;.
Step 2. If U;#S;, then let M;,=M;.(S5;\U)), and let S;,, =S;\ U;. Replace i
with i+1 and go to Step 1. But if U;=S;, then let n=1/ and stop.
The sequence (U,, U,_1, ..., U;) is precisely Tomizawa’s ““partition of M into ir-
reducible minors’’.
According to Narayanan and Vartak [16], a P-sequence of matroid M on set S
"is an ordered partition of S into a sequence (Py, Py, .-, Py) such that
(a) (M] Uisk P)). P, is uniformly dense for k=1,2,...,n; and
) g(M | U, P)-P)>g(M|U,., P). P,) whenever k<r.
They showed [16, Theorem 11] that, if the P-sequence exists, then it is unique.
We show next that the sequence (Uj, U,, ..., U,) is a P-sequence for any matroid
M. :

Theorem 20. Let M be a matroid on set S. The sequence (U,, Uy, ..., U,) defined
above is a P-sequence, in which P;=U; for each i€ {1,2, sy N}

Proof. As defined, (U}, Us, ..., U,) is a partition of S. Thus it will suffice to verify
(a) and (b) of the definition of P-sequence. But (M | Ui<x P)). Pr=N, for each k,
and N, is uniformly dense, verifying (a). Further, by Theorems 6 and 19, g(Ny) =
YN > Y(N,) =g(N,). U

The term ‘‘principal partition’’ was first used and defined for graphs in 1967 (see
the survey paper [25, pp. 118-119]). Three distinct approaches to it were investigated
in 1967 and published in 1968 by Kishi and Kajitani [12], by Iri [11], and by Ohtsuki,
Ishizaki and Watanabe [19]. For a particularly clear description of the Kishi and
Kajitani approach, see [22, Chapter 11].

To describe their principal partition, labeled (1) in our eaerlier list, let M be the
cycle matroid of a graph G, and define subgraphs G, G,, and G, as edge-
generated subgraphs of G as follows: Let

G1=G[UU,-],
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where the union is over all U; for which

(. (O u)|u)>2

If there is a k such that
Uk> = 2,

((90)

let G, be formed by contracting the edges of Uj]-‘z'lI U; and restricting the resulting
graph to the edges in Uy. Finally, form G, by contracting the edges of U U; where
the union is over all U; for which

y <M. <,-Q,- Uj> U,-> <2.

In any case for which the stated set is empty, let the corresponding G;, i€ {0,1,2}
be the empty graph.

The significance of this principal partition, in the case that G is the graph of an
electrical network is this: We wish to measure currents in some branches and voltage
drops across other branches and to choose these branches in such a way that as few
measurements as possible are made while still being able to use Kirchhoff’s laws and
Ohm’s law to completely determine the currents in and voltage drops across all net-
work branches. Now, in G, the complement of a spanning forest is larger than the
forest. Thus the number of measurements in this part is minimized by measuring
voltage drops on a spanning forest and using Kirchhoff’s voltage law and Ohm’s
law to determine the remaining voltage drops and currents in G,. In G,, the com-
plement of a spanning forest is smaller than the forest, and in G, they are the
same. Hence the number of measurements in GoU G, is minimized by measuring
currents in the complement of a spanning forest and using these and the already
determined values in G, with Kirchhoff’s current law and Ohm’s law to determine
the remaining voltage drops and currents. If both G, and G, are nonempty, the
total number of measurements as described is less than is needed for either of the
Kirchhoff laws used alone throughout the network.

Bruno and Weinberg generalized a refinement of the Kishi and Kajitani principal
partition to matroids in 1970 and 1971 [3,4]. Their work thus provided the second
version of the principal partition, in which, instead of dividing the sequence
(U, U,,...,Uy)at 2, as in Kishi and Kajitani, the division points are at all possible
integer values. Bruno and Weinberg also showed how the principal partition can be
used to classify the graphs for the Shannon two-person switching game [2], and they
used their refinement to give an alternative statement of Edmonds’ Cospanning-Sets
Theorem [7].

The Bruno and Weinberg generalization was further refined independently by
Tomizawa (1976) [23] and Narayanan and Vartak [14-16], as has already been
described. They refined it further, in a manner that is best described by paraphras-
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ing Tomizawa, and thus gave the fourth and final version of the principal partition.
We say that a matroid M on set S is atomic [16], or strongly irreducible [23], if
(M \ X)< y(M) for every proper subset X C S. The Tomizawa and Narayanan and
Vartak refinement subdivides each of the matroids based on the sets in the sequence
(Uy, Uy, ..., Uy) into a sequence of strongly irreducible matroids.

To describe this refinement, we first recall that, by Theorem 16 those sets
X ¢ U;, for which g(X)=y(N;) form a distributive lattice under union and intersec-
tion, with perhaps the zero omitted. Adjoin zero to this lattice and let
®=S,,S,,...,S=U,) be a longest chain in the lattice. For each je {1,2,...,k}, let
T,=5;\S;_,. Narayanan and Vartak [16, p.230] show that N; \S T;is unlformly
dense for each j. By this and the maximality of the chain, each of the matroids
N; \ S;. T; is strongly irreducible. Further, the resulting partition of U; is unique if
the ordermg is not considered. By carrying this partition out on each of the matroids
N, we refine the principal partition of the matroid M into strongly irreducible
minors.

We have thus shown the connection between the functions y and #, and we have
shown how these two functions can be used together to describe and clarify the prin-
cipal partition of a matroid.
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