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ABSTRACT

Let G be agraphandlet e}, ez € E(G). If G has two edge—disjoint spanning
trees, then either G has a spanning trail whose first edge is e; and last edgeis
ez, or {ej, e3} is an edge cut of G such that both components of G — {ej, ez}
contain at least one edge. This strengthens a result of S.—M. Zhan.
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1. Notation

We shall use the notation of Bondy and Murty [1], except where noted otherwise.
We forbid loops but allow multiple edges in graphs. An edge—cut X of a connected
graph G is called essential if at least two components of G - X contain at least one
edge. The symmetric difference of sets R and S is denoted RAS.

Let e1,e2 € E(G). A trailin G whose first edge is €1 and whose last edge is €2
is called an (eq, ep)—trail. An (ey, ep)-trail T is called a spanning (e1, ex)-trail if
V(T) = V(G) and if every edge of G is incident with an internal vertex of T. For
vi,v2 € V(G), a trail in G whose origin is v; and whose terminus is vy is called a
(v, vo)-trail, and it is a spanning (v1, vo)—trail if it contains every vertex of G.

The line graph of a graph G is the graph L(G) with E(G) as its vertex set, where
e and ey are adjacent vertices in L(G) whenever they are adjacent edges in G.

2. The Problem

S.-M. Zhan [11] proved the following result:
207
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Theorem 1 (Zhan [11]) If G is a 4—edge-connected graph, then for any edges
e], e2 € E(G) there is a spanning (e}, e2)~trail in G.

A graph G is Hamilton—connected if for every pair of vertices vj, v of G, thereis
a Hamilton (v, v2)—pathin G. Combination of Theorems 1 and 2' gives this result:

Corollary 1A If a graph G is 4-edge—connected, then L(G) is Hamilton—

connected.

In this paper we shall improve on Theorem 1 by using a weaker hypothesis. An
exceptional case arises.

Zhan [11] emphasized Hamilton paths in L(G), as in Corollary 1A, and he did not
state Theorem 1 in the form given above. However, Theorem 1 can be obtained asa

case of Theorem 4 of [11].
Harary and Nash—Williams [5] demonstrated this relationship between trails in G

and Hamilton cycles in L(G):

Theorem 2 (Harary and Nash-Williams [5]) Let G bea graph of order at least 4.
Then L(G) is hamiltonian if and only if G has a closed trail I" such that each edge of

E(G) has at least one end in V().

(In Theorem 2, V(I') need not equal V(G), and so I’ may not be a spanning trail.
Also, we regard a single vertex as a closed trail.) A slight change in the proof of

Theorem 2 gives:

Theorem 2' Let G be a graphand let ej, ez € E(G). Then L(G) has a Hamilton
(e], e2)-path if and only if G has an (ey, ez)-trail whose internal vertices contain at

least one end of each edge of G.

For any k € N, it is a consequence of a theorem of Tutte [10] and Nash—Williams

[8] thata 2k-edge—connected graph has k edge-disjoint spanning tress (see, €.8-, {7]
or [4]). For the case k =2 (the case of interest for this paper), Zhan (in the proof of
his Lemma 6 [11]) proved the “=" part of the next result:

Theorem3 (Catlin [3]) Let ke N,let G béagraph with |E(G)] 2k, and let & be

the family of all k—element subsets of E(G). Then G is 2k-edge—connected if and
only if for any E € &, the graph G —E has k edge-disjoint spanning irees.

We shall prove the following result which, by Theorem 3 with k = 2, is stronger

than Theorem 1:
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Theorem 4 Let G be a graph and let e}, e2 € E(G). If G has two edge—disjoint
spanning trees, then exactly one of the following holds:

(a) G has a spanning (ej, ez)—trail;

(b) {e}, e2} is anessential edge—cut of G.

Corollary 4A Let G be a graph of order at least 3 containing two edge~disjoint
spanning trees. Then L(G) is Hamilton—connected if and only if L(G) is 3-connected.

The proof of Theorem 4 appears in subsequent section, and it requires Theorems 8
and 9 and an application of the following reduction method. Corollary 4A is proved by
combining Theorems 2' and 4.

3. The Reduction Method

For any graph H, define
O(H) = {odd-degree vertices of H}.
Let G be a graph, and let S be an even subset of V(G). An S-subgraph I' of G
is a subgraph I' € G such that both
om=S
and
G -E() is connected.

We call G collapsible if G has an S—subgraph for every even set S ¢ V(G). The -

family of collapsible graphs is denoted CL. If G e CL, then we can set S = O(G) in
the definition and see that G — E(I') is a spanning eulerian subgraph of G, and hence
that G has a spanning closed trail, by Euler's Theorem. ({11, p- 51). Of course,
Kj € CZ, and any nontrivial graph in C£ must be 2-edge-connected.

For any graph G, define
F(G) = 2[w(G - E) - 1] - IEL
G) g ax [ox( )~ 1]
Thus, F(G) =0 if and only if G has two edge—disjoint spanning trees (see {8], [9], or
(10]). Let F(G) denote the minimum number of edges that must be added to E(G) in

order to create a graph with two edge—disjoint spanning trees.
Proposition For any graph G, F(G) = F(G).
The proof of this proposition appears later.

Theorem 5 (Catlin [2]) If a graph G satisfies F'(G) <1 (equivalently, F(G) <1),
then exactly one of the following holds:

(a) GecCL; 1

(b) G has a cur-edge.
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Corollary SA (Jaeger [6]) If F(G) = 0 then G has a spanning closed trail.

Let H be a connected subgraph of G and let S < V(G). Let G/H denote the
graph obtained from G by contracting H to a vertex called vy in G/H. Contractions
are defined so that E(G/H) = E(G) — E(H). Define .

[s-van if |S AV(HD))| s even;
\s-va U (va) if [s AVHE)] is odd.
We shall need the following result:

SH=

Theorem 6 (Catlin [2]) Let G be a graph, let H be a subgraph of G, and let
ScV(G). If He CL, then G has an S—subgraph if and only if G/H has an

(S/H)-subgraph.

Corollary 6A [2] If H isacollapsible subgraph of G, then
GecL « G/He CL.

Corollary 6B [2] If H isa collapsible subgraph of G, then G has a spanning
closed trail if and only if G/H has a spanning closed trail.

For a graph G, let Hi, Hp, ..., Hc be the maximal collapsible subgraphs of G.
We proved in [2] that these Hj's are uniquely determined and pairwise vertex—disjoint.
Each vertex of G is in some Hj (1 €i<c), because Kj e CL. Let G' denote the

graph of order ¢ obtained from G by contracting each H; to a distinct vertex
(1<i<c). Wecall G' the reduction of G. If G has no nontrivial subgraphin CZ,
then we call G reduced. We also proved [2] that the reduction of G is reduced.
Examples of reduced graphs include forests and Ko, (t22). By Corollary 6B, G has
a spanning closed trail if and only if the reduction G' has a spanning closed trail.

4. Associated Results

Lemma 7 ([2], Lemma 1) Let H be a graph and let S c V(H) have evenly many
vertices in each component of H. Then thereis a subgraph I' C H such that o) =S.

Proof Let Py, P, ..., Pm be m=1IS/2 pathsin H that join the vertices of S in
distinct pairs. Thus, each x € S is an end of exactly one of the m paths. Define T" by
the rule that e € E(") if and only if e lies in an odd number of the paths Pj

(1<i<m). U

We say that an edge € € E(G) is subdivided when itis replaced by a path of length

7 whose internal vertex, denoted v(e), has degree 2 in the resulting graph. The
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process of taking an edge ¢ and replacing it by that length 2 path is called subdividing

e. Foragraph G and edges ey, e2 € E(G), let G(e1) denote the graph obtained from

G by subdividing e, and let G(ej, e2) denote the graph obtained from G by

subdividing both e; and ej. Thus, :
V(G(e1, e2)) - V(G) = {v(e1), v(e2)}.

Theorem 8 Let G be a graph and let e, e2 € E(G). If G has edge—disjoint
spanning trees I'y and I'2 such that e}, ez € E(I'1), then G has a spanning (e], e2)-
trail.

Proof  Suppose that G, ej, e, 'y, and 'z satisfy the hypothesis. Denote
H =G - E(). Since E(I")) c E(H), H is connected, and so by Lemma 7, there is a
subgraph I' of H(ej, €2) such that
o) = O(G) v {v(e1), v(e)}.
It follows that
O(G(e1, e2) — E(M)) = {v(e), v(e2)},
and hence G(ey,e2) — E(I) has an Euler trail joining v(e1) and v(e2). This Euler trail

induces a spanning (ej, e2)-trailin G. O

Note that Theorem 1 follows from Theorem 8 and the case k =2 of Theorem 3. If
G satisfies the hypothesis of Theorem 1, then by Theorem 3, edge-disjoint spanning
trees ' and T2 can be chosen so that ej, e2 € E(I'1), and so the hypothesis of
Theorem 8 is satisfied. This is essentially the method used by Zhan [11] to prove
Theorem 1.
In Theorem 4, we consider a graph G having two edge—disjoint spanning trees, say
Ty and T2 To apply Theorem 8, we would want to know whether I'y and I'> can be
chosen so that e}, e € E(I'7). This motivates the following definition and theorem.
Let G be a graph and let e1, e2 € E(G). An (e, e2}-forbidden subgraph Go 1s
any subgraph Gg of G such that
(i) {e1,ez} isanedge-cutof Go; and
(i) F(Gg) =0.
An {ej, ey }—forbidden subgraph will also be called a forbidden subgraph if there 1s no

confusion about the values of e; and e3.

Theorem 9 Ler G be a graph, and let e],e2 € E(G). If F(G)=0 andif G has no
{e], ea)~forbidden subgraph, then G has 2 edge-disjoint spanning trees I'1 and I
such that ey, ep € E(I'y]).



212

P. A. Catlin and H.-J. Lai

Of course, if e; and ep are parallel edges in G, then Gg = G[{ey, e2}] isa
forbidden subgraph. If {ej, ez} isanedge—cutof G andif F(G) =0, then Gy=G
is a forbidden subgraph. In these two cases, it is obvious that the conclusion of
Theorem 9 fails. There are other instances when forbidden subgraphs cause the

conclusion of Theorem 9 to fail. -

Theorem 10 Let G be a graphandlet ej,e3 € E(G). If F(G) =0 andif G has
no {ey, ea}—forbidden subgraph, then G(ej, e3) € CL (i.e., the reduction of G(ej, e2)
is Kj).

5. Proof of Theorem 9

Lemma 11 Let G be a graph and let H be a connected subgraph of G. If F(H) =0
and F(G/H) = 0, then H has edge-disjoint spanning trees, say Uy and Uj, and G/H
has edge—disjoint spanning trees, say T; and Ty. The pair (I';, I'2) with
It = GIE(U;) VE(T))] (i,j € {1,2}) is a pair of edge—disjoint spanning trees of G.

Proof Suppose F(H) =0 and F(G/H) = 0. By the theorem of Tutte [10] and
Nash-Williams [8], H and G/H each have two edge—disjoint spanning trees. These
trees can be combined as indicated to form the trees I'; and I'; thatspan G. O

Lemma 12 If G is a counterexample to Theorem 9 with
(1) IV(G)] + |E(G)] minimized,
then for any proper nontrivial subgraph H of G, F(H) >1.

Proof By way of contradiction, suppose that G is a counterexample to Theorem 9
that satisfies (1), and let H be a nontrivial proper subgraph of G with
2 F(H) = 0.
It follows from (2) that H is connected.
Since G is a counterexample to Theorem 9,
3) F(G) = 0.
By (3), G has two edge—disjoint spanning trees, and thus G/H does also.
Therefore,

) F(G/H) =0

Case 1 Suppose that IVH) <IV(G)l and (e, ez} "EH) =2.

Suppose, by way of contradiction, that Ggq is a subgraph of G/H with F(Gg) =0
and with {ej, ez} as an edge—cut, i.e., that Gg is a forbidden subgraph of G/H.
Since G satisfies the hypothesis of Theorem 9, G is not a subgraph of G, and so the
vertex vy of G/H corresponding to H mustbe in Gg. By (2) and F(Gg) = 0, both
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H and Gg have two edge—disjoint spanning trees. But then F(G[E(Gg) v E(H)]) =0
and {ej, ez} is an edge—ut of G[E(Gp) v E(H)]. Thus, G[E(Gp) v E(H)] isa
forbidden subgraph of G, contrary to the assumption that G is a counterexample.
Therefore, G/H has no forbidden subgraph, and since G is a smallest
counterexample to Theorem 9, G/H has edge-disjoint spanning trees I"; and I'2 with
e1, e2 € E(I'1). Since F(H) =0, Lemma 11 implies that Iy and I"2 induce edge-
disjoint spanning trees I'; and I'; of G with e}, ez € E(I'1). Thus, G satisfies the

conclusion of Theorem 9, a contradiction.

Case 2 Suppose the IV(H)I <IV(G)! and !{e}, e2} NnEM)I = 1.
Without loss of generality, suppose that
e1 € E(H) and e¢p ¢ E(H).
Let vy be the vertex of G/H onto which H is contracted. By (2), there are edge—
disjoint spanning trees U; and Up of H, with e € E(Uy); and by (4) there are edge—-
disjoint spanning trees T; and Tz of G/H with ez € E(T}). By Lemma 11, G has
the edge—disjoint spanning trees
[ =GIE(T) EU)] (11<2).
Thus, I'} and I'; satisfy the conclusion of Theorem 9, a contradiction.

Case 3 Suppose that H is a proper subgraph of G (possibly a spanning subgraph),
such that e, ez € E(H).

No forbidden subgraph Hg exists in H, for otherwise Hg would be a forbidden
subgraph of G, and G would not be a counterexample.

Since H has no forbidden subgraph, (2) and the minimality of G imply that the
proper subgraph H has edge~disjoint spanning trees, say U; and Up, with e}, ez ¢
E(Uj). If H is a spanning subgraph of G, then I'j =Uj and I'; = Uy satisfy the
conclusion of Theorem 9. If H is not a spanning subgraph of G, then by Lemma 11
and since F(G/H) =0, E(U;) and E(Uj) are contained in edge—disjoint spanning trees
I’y and Iy, say, of G, where ej,ep ¢ E(I'1). Again G satisfies the conclusion of

Theorem 9, contrary to our assumption.

Case 4 Suppose that H is a spanning proper subgraph of G and that e; ¢ E(H) for
some ie {1,2]}. :

Define G'= G —e¢;. Since H is a spanning subgraph of G', G' has two edge-
disjoint spanning trees, say I'1 and Iz, and since neither contains ej, there is no loss of
generality in assuming that e, epg € E(I'y). Thus, G satisfies the conclusion of

Theorem 9, a contradiction.
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Proof of Theorem 9 By way of contradiction, let G and f{e;, e2} bea
counterexample of Theorem 9 satisfying (1), i.e., a smallest counterexample. By
Lemma 12, if G" is a proper nontrivial subgraph of G, then
&) ' F(G") 2 1.

" Since G is a counterexample to Theorem 9, G has no (ej, ez}—forbidden
subgraph, and so

G - {ey, e} is connected.
Hence, G has a spanning tree T with
E(T) < E(G - {ey, e2)).

Let Fy, Fy, ..., Fc be the o(G - E(T)) =k components of G —E(T).

If G- E(T) is aforest, then G is exactly k — 1 edges short of having two edge-
disjoint spanning trees, and so 0 = F(G) =k — 1. Therefore,k =1 and so I'i=T and
I, = F; are spanning trees that satisfy the conclusion of Theorem 9.

Therefore, we suppose that G - E(T) is not a forest, and hence that at least one
component Fj hasacycle. If F; has at least one cycle, then we call Fj acyclic
component (1 <i<k). Define

o(T) = lrgxsr?( {IE(F)! : Fj is a cyclic component of G — E(T)}.

Choose a spanning tree T of G- (e, e2} so that

6) o(G - E(T)) is minimized
and, subject to (6), so that
)] o(T) is minimized.

Let H be a cyclic component of G - E(T) with
[EH)I = o(T).
Let Ty, T2, ..., Tm denote the components of T[V(H)], and denote
Vi=V(Tp) (1<1<m).
Set H* = G[V(H)]. Since H is cyclic component, [E(H)! 2 1V(H)I, and so

8) IEH*) = [EH) + E [E(T;)!

1=1

v

IVE)! + (IV(H)! — m)
2IV(H)I — m.
Let E be a subset of E(H®) such that F(H™) = 2[w(H* - E) - 1] - [El. If H' is any
component of H* —E, and E' a subset of E(H') such that
FH) = 2[oH -E) - 1] -IE1,

1t

then

F(H*) 2 2[o(H"—-(EVE)-1]1-IEUEI
2[wH" - E) + oH - E) - 2] - [El - IE'
2[wH" - E) - 1] - El + 2[w(H - E") - 1] - {E'
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= F(H") + F(H),
and hence F(H') = 0. Using (5), we conclude that every component of H*-E is
trivial, implying that E = EH*) and FE®) =2[VHI-1] - [E(H")I. Again by (5),

) IE(H*) = 2IV(H")I-2-FH") < 2AVH"I - 3.
Combination of (8) and (9) gives
(10) m 2 3.

For i,je {1, 2, ..., m}, denote
Yij = {uve EH):ue Vive Vj),
and denote
Y=U Y,
1]

Since H is connected, Y = @.

Case ] Suppose Y — (e}, e2} # @. Therefore, Y — {eq, ez} has an edge z1z2, say,
and without loss of generality, suppose that zj € V) and zz€ V2. Let C be the
unique cycle of T +z1z2. There are edges ujvy, u2v2 € E(T) with uj& V(H) and
vie Vi (1£1<2).

IA Suppose that z1z is a cut-edge of H.

Since H is cyclic, one of the components of H—z)z2 has a cycle. Without
loss of generality, we assume that the component of H —z)2z; containing z) has
acycle. Then

T=T+z122-uVv2
is a spanning tree of G — {e}, ez} such that
o(TY<o(T)-1 and (G -E(T)) = o(G—-E(T)),
contrary to (6) and (7).

1B Suppose that zjzy is not a cut—edge of H. Hence, H-z122 1s connected.
Define
T = T+ z1z2—upv2
Then
oG -E(T") = o(G-E(M) -1,
contrary to (6). ‘

Case2 Suppose that Y c (e1, e2}. Since H is connected, (10) forces Y = {ey, e2},
m =3, and H[V], H[V2], and H[V3] must all be connected. Therefore, each G[Vj]
is an edge—disjoint union of the spanning connected graphs Tj and H[Vj] (1 <1< 3),
and hence F(G[V;])=0. By (5) with G" = G[Vj], this forces G[Vij] =K1 (1= 1< 3).
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Hence, H is acyclic, a contradiction. This completes Case 2 and the proof of
Theorem 9. O

6. Proof of Theorem 10

Let G, e, and e satisfy the hypothesis of Theorem 10. The hypothesis of
Theorem 9 holds, and so G has two edge~disjoint spanning trees, say T and U, such
that

e, ez ¢ E(T).
If eje E(U) orif ep € E(U), then F(G(e, €2)) <1 and hence by Theorem 5,
G(ey, e2) € CL. Thus, assume that ey, e3 € E(U). To prove G(ei, e2) € CL, we must
prove that G(ej, e3) has an S-subgraph T, for any even set S < V(G(ey, €2)). Let S
be an even subset of V(G(eq, €2)).

Case 1 Suppose that v(ej), v(ez) € S. By Lemma 7, there is a subgraph I' in T
with O(") =S. Since E(I) c E(G(ej, e2)) and since U(ey, €2) is a spanning tree in
G(ey, e2) —E(), I' is an S—subgraph of G(ey, €2).

Case 2 Suppose v(ey), v(e2) e S. By Lemma 7, U(e1, e2) has a subgraph I' with
O() =S. Then T is a spanning tree of G(ej, e2) — E(I') — {v(e1), v(e2)}, and since
d(v(ep)) =1 (1 <i<2) in G(ep, e2) — E(N), the subgraph Gf(ey, €2) — E(I') 1s
connected and spans G(eq, €2). Therefore, I' is an S—subgraph of Gf(ey, €2).

Case3 Suppose that v(e;) € S and v(ep) ¢ S. Let C be the unique cycle of T +e2
in G. Then C—-ep contains an edge, say e3, that joins the two components of U - e3
in G. Define the edge—disjoint spanning trees
T=T+ey-e3,U =U-ep+e3.

Thus, e; € E(U"), ex € E(T'), and S ¢ V(U'(e1)). By Lemma 7, U'(e;) has a
subgraph I" such that O(I) =S. Then G(ey) — E(I') is a spanning connected subgraph
of G(e1) containing €3, and so G(ei, e2) — E(I') is a spanning connected subgraph of
G(ey, e2). Hence I' isan S—subgraph of G(eq, e2).

The case v(e;) € S, v(ez) € S is similar. This proves Theorem 10. O
7 . Proof of Theorem 4

Lemma 13 Let G be a graph, let H be a subgraph of G, let S be a subset of
V(G), and let R be an even subset of V(H). If H € CL, then G has an S—subgraph
ifand only if G has an (S A R)-subgraph.
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Proof Suppose G,H, R, and S satisfy the hypothesis. Since H e €L, Theorem 6
implies these two equivalences:
G has an S-subgraph < G/H has an (S/H)-subgraph;
G has an (S A R)-subgraph < G/H has an ((S A R)/H)-subgraph.
By the definition of S/H and since R is an even subset of V(H),
S/H = (S A R)/H,

and Lemma 13 follows. O

Proof of Theorem 4  Suppose that G and (ej, ez} satisfy the hypothesis of
Theorem 4. Thus, F(G) = 0.

Suppose that G has no {ej, ep}-forbidden subgraph. By Theorems 9 and 8, G
has a spanning (e, e)—trail, and (a) of Theorem 4 holds.

Next, suppose that G has an {ej, ep}-forbidden subgraph, say Ggp. If {e}, e2}
is an edge—cut of G, then either (b) of Theorem 4 holds, or one component of G —
{e1, ez} is a single vertex. In the latter case, Corollary SA implies (a) of Theorem 4.
Suppose henceforth that {e1, ez} is not an edge—cut of G.

Let G; and Gy be the two components of Gp — {ej, e2}. Since Gy isa
forbidden subgraph, F(Gg) =0, and so Gg has two edge—disjoint spanning trees. It
follows that each component G; and Gy of Gg - {e1, €2} has two edge—disjoint

spanning trees, and so

(11) F(Gy) = F(Gyp) =0.
By (11) and Theorem 5,
(12) G1,Ga e CL.

Since {ej, ez} is not an edge—cut of G, it follows that G —ep is 2-edge—connected.
Also, F(G) =0 gives F(G-e3) < 1,andso G -ej € CL, by Theorem 5. By setting
S =0O(G - e2) in the definition of CL, we see that G — e3 has a spanning eulerian
subgraph H, say. Define e; = x1x3 and ez = yyp, where

X1, ¥1 € V(Gy) and x», y2 € V(Gy).

Case 1 Suppose that €1 € E(H).
Then H - e has an eulerian (x1, xp)-trail that spans G — {ey, e2}. Define
I=G-{e1,e2) ~-E(H),
and set S = O(G - {ey, e2}) A {x1, x2},1.e.,, S =0O(G - {e1, e2}) AO(H —e;). Then
I' is an S-subgraph of G - {ey, €2}, and ' is the complement of H-e¢; in G-

{e1,ea}. Set
r=|lene} i xa#ys
%) if x=y2
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Then by Lemma 13, by (12), and since R is an even subset of V(Gp), it follows that
G - {e1, 2} hasan (S A R)-subgraph I", say. Note that I is the complement in
G - {e], e2) of a spanning connected subgraph H', say, where

O(H) = O(H - e1) AR = {x1, y2}.
By Euler's Theorem ([1], p. 52), H' contains an eulerian (Xj, yp)—trail that spans
V(G - {ej, e2])). By adding e; and e to this trail, we extend it to a spanning
(eq, ep)—trail of G.

Case 2 Suppose that e; ¢ E(H).
We imitate Case 1. Define
I'=G - {e1, e2} - EH),
and
S =0(G - {ey, €2,
so that T is an S—subgraph of G- {e1, €2} and T isthe complement in G- ey, ez}

of H. Set _
R = {er,e2) i xa#y2
7] if x2=vy2

By Lemma 13, by (12), and since R = {x3, y2} isaneven subset of V(G3) (set R=0
if x2 =y»), it follows that G — (e1,e2} hasan (S A R)-subgraph I that is the
complement in G — {ey, e2} of a spanning (x2, y2)-trail. By adding e at xz and e
at yp, we extend this trail to form a spanning (e1, e7)-trail in G. This completes the
proof of Theorem 4. Q

8. Proof of Proposition

In [3], we used the terminology
St = {GIF(G) <1},
where t>0, and we proved that if a graph G has a subgraph H with 2 edge—disjoint
spanning trees, then
13) F'(G) = F'(G/H).
(In [3], this was expressed by saying that Sy is the "kernel” of Szt where
t = F(G), and where "kernel" is defined in [3].) We shall now also show
(14) F(G) = F(G/H),
when H 1is a subgraph of G having two edge-disjoint spanning trees. Let
E" < E(G/H) be such that
F(G/H) = 2[o((G/H) - E") - 1] - IE"L.
Since E" ¢ E(G/H) ¢ E(G),
F(G/H) 2{o((GH)-E") - 1]-[E"
2[(G -E™) ~ 11— IE"l £ F(G)
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Hence,

(15) F(G/H) < F(G)

Suppose next that the subset E' ¢ E(G) is minimized, subject to
(16) F(G) = 2[o(G-E)-1]-IE\

Let

Eij={ee€ E'|bothendsof e arein V(H)} and E; =E'-E;.
Since H has two edge—disjoint spanning trees,
an F(H) =0,
by a theorem of Tutte [10] and Nash—Williams [8]. By (16) and (17),
FG) = 2[e(G-E) -~ 1] -IE'
= 2[X(G - Ep) — 1] - 1Eal + 2[@(H - Ey) - 1] - [Ey!
< 2[(G - Ep) - 11 - E2l+ F(H) < F(G)
By the minimality of E', E} =@ and E'=Ej. Hence E' ¢ E(G/H) and so
(18) FG) = 2[(G-E) - 1] -IE!
< 2[o(G/H-E") - 1]1-IEl £ F(G/H).
Combination of (15) and (18) yields (14).
The arboricity a(G) of a graph G is the minimum number of edge—disjoint
spanning trees whose union is G. Nash-William [9] Toved

) |E(H)]
AG) = max V)= 1

where the maximum is taken over all nontrivial subgraphs H of G. In [3] (Theorem
11), we used this to show that if no nontrivial subgraph H of G has two edge-disjoint

k4

spanning trees, then a(G) < 2.
By way of contradiction, suppose that G is the smallest graph with F(G) # F'(G).
If G has a nontrivial subgraph H that contains two edge—disjoint spanning trees, then
by (13) and (14),
F(G/H) = F(G) # F(G) = F(G/H),
contrary to the minimality of G. Thus, G has no nontrivial subgraph containing two
edge—disjoint spanning trees, and it follows that a(G) < 2, by prior remarks.
Since the arboricity of G 1is at most 2, the definition of F'(G) yields
F(G) = 2(0V(G)l - 1) —IE(G)I.
Let E be a subset of E(G) that attains the maximum in the definition of F(G):
F(G) = 2[(G-E)-1]-1El,
and let Hjp, Hp, ..., Hc be the ¢ = o(G ~ E) components of G - E. To prove
F(G) = F(Q), it suffices to prove that each H; (1 £i1<c) is a K}, because this would
imply ¢ = (G - E) =IV(G)I - 1. Since no nontrivial subgraph of G has two edge—
disjoint spanning trees, it suffices to prove that H; has two edge-disjoint spanning
trees, for then H; must be trivial. By way of contradiction, therefore, suppose that Hj
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does not have two edge-disjoint spanning trees. By the theorem of Tutte (10} and
Nash—Williams [8], F(H;) > 0, and so there is a subset X ¢ E(H;) such that
2[w(H; - X)-1]1-1XI>0.
Then
2[w(G-(EuX)-1] - EUXI
= 2[w(G -E)- 1+ oH;-X) - 1] - IEI-1XI
= F(G) + 2[wH; ~X) - 1] - IXI > F(G),

a contradiction. As already remarked, the Proposition follows. U
9. Examples

The hypothesis of Theorem 4, that G has two edge-disjoint spanning trees, is
equivalent to the statement F(G) = 0. The three connected graphs illustrated in Figure 1
have F(G) = 1. For the designated edges €] and e, each fails to satisfy the conclusion
of Theorem 4, except when {e], e3} is an essential edge-cut in the first graph. Also,
each has no Hamilton (ej, ep)—path in its line graph, except for the first one when the

small circle represents a lone vertex.

GO (=
G

Figure 1: Three graphs with no spanning (e}, e2)—trail

In each graph of Figures 1 and 2, a circle denotes a subgraph having two edge-
disjoint spanning trees, and if the circle is large, that subgraph is necessarily nontrivial.

In Figure 2, we give a typical example of a graph G with F(G) =0 that has an
{e1, e2]—forbidden subgraph Gg such that Go# G and Gop # G[{e1, ep}], where G
has no edge—disjoint spanning trees I'y and I'z suchthat ej,e2 € E(1). In this
figure, Go = G[V(G1) L V(G2)], and €1 and e2 are not parallel.
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Figure 2

For the graph G of Figure 2, the reduction of G(ej, €2) is Kp 3, which is not
collapsible. Thus, the hypothesis in Theorem 10 that G has no {ej, ez}-forbidden
subgraph is needed. We conjecture that if that hypothesis were omitted from Theorem
10, then the reduction of G (in the conclusion of Theorem 10) would be either K; or
K3 (t22). This would follow from a conjecture of Catlin, that if a connected graph G
satisfies F(G) = 2, then the reduction of G is either K, Kp,or Kpp (t21).

Let t>3 and let G; denote the graph containing parallel edges e; and e; such
that Gy(ej, e2) is Kz Then F(Gy) =0 and G; satisfies (a) of Theorem 4.
However, every spanning (e, ep)-trail in G is open (respectively, closed) if t is odd
(respectively, even). Thus, even when e and e are adjacent and F(G) =0 and (a)
of Theorem 4 holds, we cannot guarantee that there is always a closed (resp., open)
spanning (e1, ex)-trailin G.

Call the graph G essentially 3-edge-connected if for any e, ' € E(G), at most one
component of G — (e, €'} has an edge. A corollary of Theorem 4 is that if F(G) =0
and if G is essentially 3-edge—connected, then G has a spanning (ey, ep)-trail, for
any ej, ez € E(G). However, this corollary does not appear to be sharp, because it
may be possible to substitute F(G) £1 for F(G) =0 in the hypothesis. It would not
be possible to substitute F(G) < 2, though, because G = Kj; (t 2 3) satisfies
F(G)=2, and G is essentially 3—edge-connected but does not have a spanning
(e1, e2)—trail when t is odd and e; and e, are incident with a common divalent vertex
of G.

Theorem 1 and Corollary 1A are best—possible iﬁ the sense that 3—edge-
connectedness would not suffice. Let G be obtained by attaching ten disjoint copies of
K4 to Petersen graph, with just one K4 attached at each vertex of the Petersen graph.
Since the Petersen graph is not hamiltonian, there are edges of G (in a common Ky)
such that G has no spanning (e, ep)-trail.
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