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We shall use the notation of Bondy and Murty [2], except that we regard graph:
as having no loops. For k > 2, the 2-regular connected graph of order k is called :
k-cycle and is denoted Cy.

For any graph G and any edge e € E(G), we let G/e denote the graph obtainec
from G by contracting e and by deleting any resulting loops, which are not allowed
For any connected subgraph H of G, let G /H denote the graph obtained from C

by contracting all edges of E(H) and by deleting any resulting loops.
A family of graphs will be called a family. We say that a family ¥ is closed unde

contraction if for any G € ¥ and any connected subgraph H C G, G/H € ¥. Th
family ¥ is closed under edge addition if for any graph G € 7 and any distinc

vertices v,w € V(G), the graph G + vw, obtained by adding a new edge vw to G
is in 7. For a graph G and a family ¥, whenever there is a graph G' € 7 and a se
E' C E(G') such that G = G' — E', we say that G is at most k edges short of bein;
in 7.

For any family C whose members are connected, a C-reduction of G is a grap.

obtained from G by repeated contractions of subgraphs in C until the resultin

graph has no nontrivial subgraph in C. (The only possible trivial subgraph in C i
K;). For example, if C = {Cs},

then the graph G in Figure 1 has two C-reductions. Since C; & C, C is not close

under contraction.
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Theorem 1 [11] ¥ a family C of connected graphs is both closed under contrac-

tion and closed under edge addition, then any graph G has a unique C-reduction.

In [11] we give an example to show that it is not sufficient in Theorem 1 merely

to assume that C is closed under contraction.

Let S and C be graph families closed under contraction, such that all graphs
in C are connected and C-reductions are unique. In this paper, we shall present
interesting examples of such families § and C for which the following equivalence

holds for every graph G:
(1) G € § <= The C-reduction of G is in §.

For most families S, the equivalence (1) holds only if C = {K:}, a trivial case, but

we shall present nontrivial instances of (1). Note that if § = € in (1), then we have

(2) GeC <= The C-reduction of Gisin C

<= The C-reduction of G is Kj.

EXAMPLE 1: AN ILLUSTRATION

Suppose that C is the family of 2-edge-connected graphs, and let G' denote the
C-reduction of G. For any graph G, the set of cut;edges of G is the set of edges of
G', and G' is a forest. If § is the family of graphs with exactly three cut-edges, say,
then (1) is easily verified.

EXAMPLE 2: SPANNING CLOSED TRIALS

Define, for any graph H,
O(H) = {v € V(H) | du(v) is odd}.

A graph H is called eulerian if H is connected and O(H) = 0. We call a graph

supereulerian if it has a spanning eulerian subgraph. By Euler’s Theorem ([2], p-
51) H € SL if and only if H has a spanning closed trail. Denote the family of
supereulerian graphs by SL. Of course, K; € SL.

A graph G is called collapsible if for any even subset X C V(G) there is a
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spanning connected subgraph I'y of G such that O(I'y) = X. We denote the family
of collapsible graphs by CL. Since X may be the empty set in that definition, we

have:

CL c SL.

In [3], we proved that any graph G has a unique CL-reduction, and that

(3) G € SL <= The CL-reduction of G is in SL,
and
(4) G e (L <= The CL-reduction of G is in CL

<= The CL-reduction of G is Kj.

We also proved

Theorem 2 [3] Let G be a graph. If G is at most one edge short of having two
edge-disjoint spanning trees, then G € CL or G has a cut-edge.

Corollary 2A (Jaeger {18]) If G has two edge-disjoint spanning trees, then G €
SL.

Corollary 2B The 2-cycle and 3-cycle are collapsible.

The graph G = K, (t > 1) is two edges short of having two edge-disjoint span-
ning trees. It can be checked that K ¢ CL by letting X (in the definition of CL)
be the two nonadjacent vertices of degree ¢ in K;;. We have conjectured ([3) and
[11]) that the only connected graphs not in C£ that are at most two edges short of
having two edge disjoint spanning trees are contractible either to X 2¢ (1> 1) orto -

K. Any graph with a cut-edge is not collapsible.

The statement (3) follows from the following:

Theorem 8 [3] If H is a graph in CL, then for any graph G having H as a
subgraph,

(5) GeSL < G/H e SL.

That (3) is a consequence of Theorem 3 follows from the fact [3] that in any
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graph G there is a unique set of maximal collapsible subgraphs H,, Ho, ..., H,, and
they are pairwise disjoint. (Note that G is the CL-reduction of itself if and only if
each maximal collapsible subgraph H; is just Ky.) Then (3) is obtained by applying
Theorem 3 to each H; (1 <1 <¢).

The reductions (3) and (4) have been applied by P. A. Catlin and H.-J. Lai to
study S£, CL, and hamiltonian line graphs in a series of other papers (14], [5], [6],
(7], 18], [12], [20], [21], [22], [23]).

EXAMPLE 3: DOUBLE CYCLE COVERS

An instance of the equivalence (1) can be applied to the study of double cycle
covers. It is trivial that if G is a planar graph with no cut-edges, then G has a
family F of cycles, such that each edge of G lies in exactly two of the cycles of
F: let 7 be the family of cycles of G that form the facial boundaries in a planar
embedding of G. It has been conjectured (for a survey, see [19]) that the hypothesis

of planarity can be omitted:

Double Cycle Cover Conjecture If a graph G has no cut-edge, then G has a fam-

ily 7 of cycles such that each edge of G lies in exactly two of the cycles of 7.

Call a graph even if it has no vertex of odd degree. By Euler’s Theorem 2],
a graph is even if and only if it is an edge-disjoint union of cycles. Thus, we can

restate the Double Cycle Cover Conjecture in an equivalent form:

Double Cycle Cover Conjecture, restated: If a graph G has no cut-edge, then

G has a family € of even subgraphs, such that every edge of G lies in exactly two

members of £.

For a given graph G having no cut-edge, what is the smallest cardinality of a
family £ of even subgraphs of G, such that the restated conjecture holds? Clearly,
the smallest such & has || = 2, and this occurs whenever G is an even graph, for £
then comnsists of two copies of G. It is easy to show that any supereulerian graph has
such a family £ with |€| < 3. Bermond, Jackson, and Jaeger ([1], p. 302) showed
that if a graph G has a family £ with || = 4 that satisfies the restated conjecture,
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then there is also a family &' of three even subgraphs of G that also satisfies the
conjecture. For the Petersen graph, the smallest family £ is a family of five even
graphs (all cycles) that together form the desired double cover. Tarsi [30] showed
that if a graph G with no cut-edge has a hamiltonian path, then G has a double

cover £ with |£| < 6 in the restated conjecture.

Define Sy (k > 2) to be the family of graphs G without cut-edges such that G
has a double cover £ of even graphs with |£| < k. Thus,

{even graphs} = §, C S5 =S, C §;,
and it has been conjectured that S5 = {graphs with no cut-edges}. Also,
SL C Sgn{connected graphs}.
It is easy to check that if G is 3-regular, then
Ge Ss < X'(G) =3. .

The following conjecture was made by Tutte [34] for 3-regular graphs, and by
Matthews [25] in its present form:

Conjecture (Tutte-Matthews) If G is a graph, then at least one of the following
holds:

(a) G € 8s;
(b) G has a cut-edge;
{c) G has a subgraph contractible to the Petersen graph.

It is easy to check that (a) and (b) are mutually exclusive. We proved a related

result:

Theorem 4 [10] If a graph G is at most 5 edges short of being 4-edge-connected,
then exactly one of the following holds:

(a) G € Sg;
(b) G has a cut-edge;
(c) G is contractible to the Petersen graph.

A significant portion of the proof of Theorem 4 was a demonstration of the
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following equivalence of the form of (1):

(6) G € S3 <= The (CL U {Cy})-reduction of G is in Ss.

Since CLU{C,} contains all cycles of length at most 4, it follows from the definition
of reduction that the (CL U {C4})-reduction of G has girth at least 5.

EXAMPLE 4: PACKING SPANNING TREES

Define the invariant

2

(7) n(G) = B oG- E) =1’

where F is chosen so that w(G — E), the number of components of G — E, is greater

than 1. Cunningham [13] proved

Theorem 5 Let G be a graph, and let s,t € N. These are equivalent:
(a) n(G) = s/t; |
(b) G has a family 7 of s spanning trees such that each edge of G’

lies in at most ¢ trees of 7.

The case t = 1 of Theorem 5 is due to Tutte {33] and Nash-Williams [26]. It

asserts that |7(G)| is the maximum number of edge-disjoint spanning trees in G.

In [9), it was noted essentially that if
(8) C={G|n(G) zr} v {Ki},
where r > 1 is real, then

(9) G €(C <= The C-reduction of Gisin C

<=> The C-reduction of G is K.

EXAMPLE 5: EDGE-CONNECTIVITY
Let «'(G) be the edge-connectivity of G. For k € N, define

¢ ={G|&(G) 2 k} U {Ky}.
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Then

G e€( <= The C-reduction of Gisin C

<= The C-reduction of G is Kj.

See [9] for more details. Mader [23] gave a different and powerful reduction
method for edge-connectivity, and it has also been applied to problems involving
Example 6 (see e.g., [27]) and to the proof of Theorem 4 [10]. We [9] obtained the
following relation between n and «' that improves upon the widely known result
(a corollary of the Tutte [33] and Nash-Williams [26] Theorem) that a 2k-edge-
connected graph has k edge-disjoint spanning trees. S.-M. Zhan [35] had proved the
“=—=" part of the case k = 2 of this result:

Theorem 6 [9] Let k € N, let G be a graph, and let & be the collection of all
k-element subsets of E(G). Then

k'(G) > 2k <= For any E € &, n(G — E) > k;

and

k'(G) > 2k+1 <= For any E € &, n(G — E) > k.

EXAMPLE 6: EDGE-DISJOINT PATHS

Let k € N. Let Ci be the family of graphs G satisfying the following condition:

For any 2k vertices s1,t1, S2,%2, ..., Sk, tx € V(G) (not necessarily

distinct) there are pairwise disjoint (s;,t;)-paths P; (1 <1 < k).

Trivially, K; € Ci for any k € N. Note, for example, that the 4-cycle is not
in Cq, for its distinct vertices may be labelled si, ss,%1,ts, consecutively. In the

literature, graphs in Cjy are called weakly k-linked. Seymour [28] and Thomassen

[31] have characterized C, by characterizing an infinite family ¥, (say) of graphs
(including the 4-cycle) such that any graph not in C, is contractible to a member

of ¥,. Frank [15] studied Cy for planar graphs.

Conjecture (Thomassen [32]) Let k € N and suppose that G is a k-edge-
connected graph. Then G € Cy if k is odd, and G € Cy_; if k is even.
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Okamura [27], Cypher [14], Enomoto and Saito [15], and Hirata, Kubota and

Saito [17] proved this conjecture for small values of k.

Theorem 7 Let k € N. Let G be a graph and let H be a subgraph of G. If -
H € Cy, then
(10) G el <= G/H € Ck.

Proof: Suppose that k, G, and H satisfy the hypothesis of Theorem 7.

Proof of “==": Suppose G € Cj, and let us, vy, ug, vz, ...., uk, Vx be 2k vertices of

G/H, not necessarily distinct. Let vy denote the vertex of G/H corresponding to

H, i.e., the vertex onto which H gets contracted. Let the 2k-vertices 81,t1,82,t2,

ooy Syt € V(G) satisfy

S = U; if u; # v
s; €V(H) if u; =vg;
ti=v; i v #vm;

t,‘EV(H) if'v,-=vH.

Since G € C,, there are pairwise edge-disjoint (s;,t;)-paths P; (1 < ¢ < k). For
each i, let R; = P; if V(H) nV(P;) = §; but if V(H) NV (P,) # 0, then let R; be
the subgraph of P; consisting of the union of the subpath of F; from s; to the first
vertex of P; in V (H) and the subpath of P; from the last vertex of F; in V(H) to t..
Then in G/H, each R; induces a (u;, v;)-path. Also, since the P;’s are edge-disjoint,
so are the paths in G/H induced by the R;’s. Hence, G/H € Cy.

Proof of “<=": Suppose that G/H € Cj and let s;,t1,55,%2,...., Sk, tx be 2k
vertices of G. As before, let vy be the vertex of G/H corresponding to H. In G/H,

define the vertices

S¢ if Lh ¢ V(H),
S, =

vg if s €V(H);

o { t i t¢gV(H)

vg if ¢ € V(H).
Since G/H € Ci, there are k edge-disjoint paths Q}, @5, ...., @} in G/H, such that
Q! has ends s} and ¢} (1 < ¢ < k). Let I C {1,2,...,k} be the indices such that
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vg € V(Q)). ¥ ¢ I, then Q] induces an (s;,t;)-path P; (say) in G. Butifi € I
then let Q; denote the union of these two paths: the path in G from s; to some
u; € V(H) induced by the (s}, vg)-segment of Q!; and the path in G from some
v; € V(H) to t; induced by the (vg,t})-segment of Q..

Since H € Cy, there are |I| < k pairwise edge-disjoint (u;,v;)-paths R; (say) in
H,where: € I. If 1 € I, then define P; = Q; U R;; recall that P; was already defined
when 7 & I. Then P; is an (s;,t;)-path in G (1 <1 < k), and the P;’s are pairwise
edge-disjoint. Hence, G € C;. O

Corollary For any k£ € N, if G is a graph, then
(11) G € C; <= The Ci-reduction of G is in C;

<= The Cj-reduction of G is K;.
Proof: As with (2), the first equivalence of (11) implies the second. Let G'

be the C,-reduction of G. By definition, G' is obtained from G by a sequence of
contractions of subgraphs H' € C;. Apply (10) at each step in this sequence to
show that the intermediate contractions of G are in Cx. Hence, (10) implies the

first part of (11). O

GENERAL REMARKS

The equivalence (1) becomes more powerful if C can be shown to be a large fam-
ily, because a larger family C yields a smaller family of graphs that are C-reductions.
We conjectured ([9] and [10]) that when § = $L£ in (1) (Example 2), C = CL is the

largest possible value of C. In other words, we conjectured that (3) is best-possible.

Let C be a family of connected graphs satisfying (2). Since the C-reduction &
of any graph G has no subgraph in C, we can ask the extremal question: given a
graph G of order n that has no nontrivial subgraph in C (i.e., that is the C-reduction
of itself), what is the maximum possible number of edges of G? By Example 1, if
C = {2-edge-connected graphs}, then a maximal such graph is a tree, and hence
has n — 1 edges. Let r > 1. If C satisfies (8) of Example 4, then any C-reduction
of order n has arboricity less than r, and so a maximal such C-reduction of order n
has fewer than r(n—1) edges. Since the family C contains no tree or forest (because
r > 1), C is a counterexample to Theorem 6.7 (page 181) of [29]. (Theorem 6.7 of
[29] is valid if | £| is finite, but not if £ = C of (8)).
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