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ABSTRACT

For a graph G with distinguished vertices u and v, we give a sufficient
condition for the existence of a (u, v)-trail containing every vertex of G.

In this paper we follow the notation of Bondy and Murty [1], except that the
graph G is simple with n vertices and m edges. For u, v € V(G), a (u, v)-trail
is a sequence xg, €, X, €q, - .., X,_|, €, X, whose terms are alternately vertices
and edges, with e; joining x,_, and x, (I = i = s), where the edges are distinct,
and where u = x, is the origin and v = x, is the terminus. A (u,v)-trail spans
G 1if it contains every vertex of G, and it is closed if u = v. We denote by d(v)
the degree of v in G and by d,,(v) the degree of v in the subgraph H. The
neighborhood of v, denoted N(v), is the set of vertices adjacent to v.

We shall prove the following result:

Theorem 1. Let G be a graph on n vertices, with no vertex isolated, and let
u,v € V(G). If

dx) + d(y) =n (1)
for each edge xy € E(G), then exactly one of the following holds:

(i) G has a spanning (u, v)-trail.
(i) d(z) = 1 for some vertex z & {u, v}.
(iii) G = K, ,_,, u = v, and n 1s odd.
(iv)y G =K, ,_,, u # v, uv ¢ E(G), niseven, and d(u) = dv) =n — 2.
(v) u = v, and u is the only vertex with degree 1 in G.

Theorem 1 is motivated by some recent results on Hamiltonian line graphs.
Harary and Nash-Williams [S5] gave this characterization:

Theorem 2 (Harary and Nash-Williams). Let G be a graph with at Jeast 4
vertices. The line graph L(G) is Hamiltonian if and only if G has a closed trail
that contains at least one vertex of each edge of G.
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Note that the closed trail does not need to be spanning in Theorem 2.

Of course, G has a spanning closed trail if and only if G has a spanning eule-
rian subgraph. Harary and Nash-Williams ([5], p. 705) also gave another char-
acterization of graphs with spanning closed trials. Given a graph G with m
edges, let L,(G) denote the graph on 2m vertices, where each vertex of L(G)
represents an edge-vertex incidence of G, and x, v, € V(Ly(G)) are adjacent
whenever x and y are incidences with a common edge or a common vertex of G.

Theorem 3 (Harary and Nash-Williams). The graph G has a spanning closed
trail if and only if L,(G) is Hamiltonian.

Similarly, G has a spanning open trail if and only if L,(G) has a hamilton

path.
Theorem 2 was recently applied to prove these results:

Theorem 4 (Brualdi and Shanny [2]). Let G be a graph with n = 4 vertices. If
dx) + d(y) = n
for every edge xy € E(G), then L(G) is Hamiltonian.

Theorem 5 (Clark [3]). Let G be a connected graph on n = 6 vertices, and
let p(n) = O for n even and p(n) = 1 for n odd. If

dix) +d(y)=n —1— p(n)
for each edge xy € E(G), then L(G) is Hamiltonian.

It is evident that Theorem 4 follows from Theorems 1 and 2, because
L(K, ,_,) is Hamiltonian, and vertices of degree 1 can be removed from G
inductively until condition (ii) does not apply. '

If we replace the inequality (1) in Theorem 1 by

dx) +d(yy=n — 1,

then exceptional cases would arise. One special exceptional case would be the
five cycle:

G = C;, uv ¢ E(G), u #v.
The others include the following infinite class:
G —u= Ky 5 dw) = 1,d;_,(v) =n — 3, where u # v,n = 5, and

either uv € E(G) with n even, or the distance in G between u# and v is 3,
with n odd.
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The extremal graphs for Theorem 5 have a bridge ¢ such that each compo-
nent of G — e has at least [n/2] vertices.

The graphs G = K, ,_, of Theorem 1 arise in another context, also: if any
edge of K, ,_, is removed, then the connectivity drops from 2 to 1. Among
graphs on n vertices, no others having this minimality property have 2n — 4 or
more edges. See [4] and [6] for details.

Proof of Theorem 1. 1t is clear that the conditions (1) through (v) of the theo-
rem are mutually exclusive.

Suppose that G is the smallest counterexample to the theorem. Let u,v €
V(G) be given.

Let -y, , be a (u, v)-trail of G that has the maximum possible number of ver-
tices, excluding multiplicities. Since G has no isolated vertex, we can show
from (1) that G is connected. Therefore, 7y, , exists. Let A be the vertex set of
Y., Let B = V(G) — A, and denote H = G[B].

We shall use the following lemmas:

Lemma 1. There is no closed trail w in G containing a vertex of A, a vertex
of B, but at most one edge of vy, ..

This result is given in [2, (1) and (2), p. 308], when w is a cycle, as a simple
consequence of the fact that a trail is formed by the union of a trail y and a
cycle w that overlaps 7 in at least one vertex and at most one edge e, where e is
not in the enlarged trail. When w is a closed trial, it is an edge-disjoint union of
cycles, and so the lemma holds. &

Let T denote the subgraph of G[A] that is induced by the edges of y, ,.
Let H' be a component of H = G[B]. Define NH') = {w € A lwx €
E(G) for some x € V(H")}.

Lemma 2. Letz € A, and suppose

yi,y: € NH') N N(@).
Then v,z, y,z € E(I').
Proof. Let y,,y, be as described in the lemma. Suppose that at most one of
y,z, v,z lies in . For i = 1,2, choose x; € N(y;) N V(H"). Let u be the cycle
containing an (x,, x,)-path in H ' and edges of {xy,, .z, zy,, ¥ox,}. By Lemma 1,
with u and vy, ,, we have a contradiction. Thus, both y,z and y,z arein I'. 1§
Lemma 3. Let A and H' be as previously defined. If z € A then

IN(z) N N(H")| = 2.

Proof. Suppose, by way of contradiction, that y,,y,,v; € N(z) N N(H"). By
Lemma 2, v,z, y,z,y,z € E(I).
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Since v, v, (I =i <j = 3) are both adjacent to vertices of the same com-
ponent H' of H, there is a (v, v,)-path v, with a nonempty set X;; of internal
vertices in H'.

We shall use the fact (Euler’s theorem) that a graph has a (u, v)-trail using
every edge of the graph if and only if the graph is connected and each vertex
has even degree, except that disjoint endvertices u and v have odd degree.

Let 1 =i <j = 3. Since v, , contains each edge of I' exactly once, each
vertex of I' has even degree, except that u and v have odd degree in I' if
u # v. Therefore, every vertex of

Ly =@ Uyy) — v, 2

has even degree, except for ¥ and v if u # v.

Thus, V(I';) = A U X;;. If I'; is connected, then its spanning (u, v)-trail vio-
lates the maximality of A. Hence, l“,-,- is not connected, and so the removal of
{zy;, zy,} must separate I, for any choice of i, .

First, suppose that none of {zv,, zy,, zvs} is a bridge of I'. Then in I' — zv,,
both zy, and zy, are bridges. Denote by I'; and I';, respectively, the components
of I' — {zy,, zy,, zy;} that contain, respectively, v, and v,. For some value of
i €{2,3}, y, ¢ V(I')). Thus, zy, is a bridge of I', contrary to our earlier as-
sumption.

Therefore, without loss of generality, we suppose that zv, is a bridge of I'.
Since vy, , contains each edge of I' exactly once, v and v are in separate compo-
nents of I' — zy,. Denote by I', and I', the two components of I' — zy,, where
u € V(') and v € V(I').

Case 1. Suppose uv € E(G). Then uv = zy,, and without loss of generality,
we suppose that u = y, and v = z. Therefore, vy,,y, € V(I')). Observe that [’
and I', are each eulerian.

Pick j € {2,3}. Clearly, v # y,. Since I', is eulerian, I', — zv; has a (z, y))-
trail vy, using every edge just once. Let vy, be the eulerian trail in I',. Then
Y. U y; U vy, forms a spanning (u, v)-trail of G[A U X ], contrary to the maxi-
mality of A.

Case 2. Suppose that uv ¢ E(G). Thus, uv # zy,. Without loss of general-
ity, suppose vy, € V(I',) and z € V(I',). As sections of the (u, v)-trail vy, , form-
ing I', we have a (u, v)-trail y, containing E(I')) and a (z, v)-trail v, containing
ET,).

Since zy,, zy; € E(I',), either

(a) z = v and v has even degree in I',, or
(b) z # v and z has odd degree, at least 3, in I',.

In case (b), since d(z) = 3 in I',, and since v, is a (z, v)-trail on all of E(I')),
there is a number j € {2, 3} such that v # y, and zy, is not a bridge of I',. Then
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', —zv, 18 connected, with exactly two odd vertices (v and v,), and so
I, — zv, has a (v,.v)-trail v! using each edge. A (u,v)-trail on all of A U X,
is formed by 7,,7y,. and y, together, contrary to the maximality of A.

Similarly, in case (a), when z = v has even degree in I',, there 15 a
j € {2,3} such that v # y,and I', — zy, has a (y;. v)-trail v ! containing every
edge. The same combination as before of v, v,. v! contradicts the maximality
of A. This completes the proof of Lemma 3. ¥

Lemma 4. If there is a subset X C V(G) such that G|X] contains an edge,
and such that a bridge of G separates G[X] from G — X, then

n + 1

Xl =
2

Proof. Letxy € E(G[X]). Let dy(z) denote the degree of z in G|X]. By the
hypothesis of Lemma 4 and by (1),

dy(x) + dy(y) = d(x) +d(y) —1=n — 1.
Without loss of generality, suppose dy(x) = dy(y). Then

n + 1
2

Xl =1+ di(x) = |

Proof of Theorem 1 Continued. Let H' be a component of H = G[B],
where H' is chosen to maximize the number s of vertices of

NH') = {y, Y2 .0}

We need an upper bound on &, the number of edges incident with vertices of
N(H'). Since N(H') is an independent set (Lemma 1), we have

k= X ING) N4 = NED S NG Bl )

By Lemma 3, the first sum of (2) is bounded above by
20A] — IN(H ") = 2(A] = 9),

and by Lemma 1 and the choice of H', the second sum of (2) is bounded above
by cs, where ¢ is the number of components of H. Hence,

k= 2(A] —s) + cs,

and some v, € N(H') (1 =i = s) must satisfy
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div) =—=— -2+ ¢.

Kk _ 24
N S

By (1), it follows that

, 24|
n=dx) +dy,)=—-2+c¢ +5s, (3)
s

for any x. € N(jvl-) M B. Therefore,
sn =2A0+ 5T+ s¢ — 25 =2n - )+ 57+ s¢ — 2s
als —2)<s 4+ sc —2c =25 =(s —2)(s + ¢).
and so, if s = 3, then we divide both sides by s — 2 and get
Al + 1Bl =n=s+c=|A+c. 4)

By the definition of ¢, |B| = ¢ follows, for equality holds in (4). Thus,
s = |A], and so N(H') = A, contrary to the maximality of A, unless |A| = 1. If
|A| = 1, then (v) of Theorem 1 holds.

Therefore, s = 2, and we may suppose |A| = 2. Thus, G[A] has an edge. If
s = 1,then G — H' and H' are joined by a bridge, by Lemma 1. By Lemma 4,
V(G —H') = (n + 1)/2. If [V(H')] = 1, then V(H') = {z} satisfies (ii) of
Theorem-1. If |V(H')| = 2, then by Lemma 4, |V(H')| = (n + 1)/2, and so

n=|[VH) + VG -H)=n+1,

a contradiction. Hence, s = 2.
Plug s = 2 into (3) to get

Al + |Bl=n = A + .

By the definition of c, it follows that |B| = ¢, and so H is edgeless. Let x be the
sole vertex of H'. Since s = 2, d(x) = 2. Then (1) forces

dly)=zn -2 (i =1,2)), (5)
and equality must hold in (5), since y,,y, is an independent set. Therefore, G
contains K, ,_, as a spanning subgraph, with {vy,, y,} as one side of the biparti-

tion. The various cases (i), (iii), and (iv) of Theorem 1 follow easily. 1

Note. H.J. Veldman ([7], Theorem 5) proved that if G is a graph satisfying
(1) strictly, then conclusion (i) of Theorem 1 follows when u = v.
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