ON THE DIVISORS OF SECOND-ORDER RECURRENCES

PAUL A. CATLIN
Carnegie-Mellon University, Pittsburg, Pennsylvania 15213

A REPRINT FROM

THE FIBONACCI QUARTERLY

VOLUME 12

NUMBER 2

APRIL

1974

ON THE DIVISORS OF SECOND-ORDER RECURRENCES

PAUL A. CATLIN Carnegie-Mellon University, Pittsburg, Pennsylvania 15213

1. INTRODUCTION AND NOTATIONS

is note, we shall give a criterion to determine whether a given prime p divides he second-order recurrence

$$A_{n+2} = PA_{n+1} - QA_n ,$$

rary initial values A_0 and A_1 , and we shall give several applications. rticular case of (1) is the recurrence

$$U_{n+2} = PU_{n+1} - QU_n, \quad U_0 = 0, \quad U_1 = 1.$$

enote by Δ the discriminant $\,P^2$ – $4Q\,$ of the recurrence. The general term $\,U_n^{}$ be denoted by

$$(a^n - b^n)/(a - b) ,$$

$$a = \frac{P + \sqrt{\Delta}}{2}$$

$$b = \frac{P - \sqrt{\Delta}}{2} .$$

integer k(m) such that m divides U_n if and only if $k(m) \mid n$. p will denote a ividing Q. In this paper, we shall be working in the field of integers modulo p.

2. THE CRITERION FOR DIVISIBILITY

 \mathbf{R}_n be the quotient $\mathbf{U}_{n+1} \ / \mathbf{U}_n$ (mod p): i.e., the solution X of

$$XU_n \equiv U_{n+1} \pmod{p}$$
.

unless p divides U_n , in which case the value of R_n will be denoted by ∞ . (All ich have a zero divisor will be denoted ∞ .) If R_n exists and is nonzero, then

$$R_{n+1} \equiv U_{n+2} / U_{n+1} \equiv P - QR_n^{-1} \pmod{p};$$

if $p \mid R_n$ then $R_{n+1} \equiv \infty$; if $R_n \equiv \infty$ then $p \mid U_n$, so $R_{n+1} \equiv P \pmod{p}$.

Theorem 1. (R_n) is a first-order recurrence mod p and is periodic with primitive period k(p).

<u>Proof.</u> We have already shown that (R_n) is a first-order recurrence (3). That it has primitive period k(p) follows from the definition of k and the fact that $R_n \equiv 0$ if and only if $p \mid U_{n+1}$.

The following theorem gives a criterion for determining whether p is a divisor of terms of (A_n) . It is known that if a number m divides some term A_n of (1), then m divides $A_{n+tk(m)}$ for any integer t for which the subscript is nonnegative, and only those terms.

Theorem 2. (Divisibility criterion). p is a divisor of $A_{tk(p)-n}$ (for any t for which the subscript is nonnegative) if and only if

$$A_1/A_0 \equiv R_n \pmod{p}$$
.

Proof. By Eq. (8) of [6].

$$Q^{n}A_{m} = U_{n+1}A_{k(p)} - U_{n}A_{k(p)+1}$$
,

where m + n = k(p). Thus, $p \mid A_m$ if and only if

$$A_{k(p)+1}/A_{k(p)} \equiv R_n ,$$

and it is known that

$$A_{k(p)+1}/A_{k(p)} \equiv A_1/A_0.$$

Furthermore, $p \mid A_m$ if and only if $p \mid A_{tk(p)-n}$, and the theorem follows.

3. APPLICATIONS OF THE CRITERION

It is well known that $k(p)|p-(\Delta/p)$. A proof is given in [4] for the Fibonacci series, and it may be easily generalized to the recurrence (2). For most recurrences, there are many primes p such that $k(p) = p - (\Delta/p)$. In the first two theorems in this section, we consider such primes.

The following result was proved in [1] and [2] for the Fibonacci series.

Theorem 3. If

$$k(p) = p + 1$$

then p divides some terms of (A_n) regardless of the initial values A_0 and A_1 , and conversely.

Proof. It follows from Theorem 1 that if

$$k(p) = p + 1,$$

r any residue class c there is an n such that $c \equiv R_n \pmod{p}$. Therefore, there such that

$$A_1/A_0 \equiv R_n \pmod{p},$$

first part follows by the criterion of Theorem 2. If k(p) is less than p+1 then not esidue class is included in (R_n) , and the converse follows.

heorem 4. p is a divisor of terms of (A_n) for any initial values A_0 and A_1 , exwhen $A_1/A_0 \equiv a$ or b, if and only if k(p) = p - 1. roof. Since

$$k(p) = p - 1,$$

$$(\triangle/p) = 1$$
,

$$R_n \equiv (a^{n+1} - b^{n+1})/(a^n - b^n)$$
.

a (or b) (mod p) then it follows that $a\equiv b$, whence $p\mid \Delta$, giving a contradiction. $n \not\equiv a$ or b. By Theorem 2 and the fact that $n \equiv A_1 / A_0$ for some n when

$$k(p) = p - 1$$

$$A_1/A_0 \not\equiv a \text{ or } b \pmod{p}$$
,

nat p divides terms of (A_n) . If k(p) is less than p-1, then not every residue 1 be included in (R_n) , whence the converse follows.

eorem 5. If

$$A_1/A_0 \equiv a \text{ or } b \pmod{p}$$

livides no term of (A_n) .

of. If

$$A_1/A_0 \equiv a \text{ or } b$$

$$(\Delta/\mathfrak{p}) = 1$$

$$R_n \equiv a \text{ (or b)} \pmod{p}$$

then

$$(a^{n+1} - b^{n+1})/(a^n - b^n) \equiv a \text{ (or b)}$$

so that $a\equiv b$ and $p\mid \Delta$, giving a contradiction. Thus, $R_n\not\equiv a$ (or b) $\equiv A_1/A_0$, and so $p\not\mid A_n$ for any n, by Theorem 2.

4. CONCLUDING REMARKS

Hall [3] has given a different criterion for whether a prime p divides some terms of (1). Bloom [2] has studied the related question of which composite numbers (as well as which primes) are divisors of recurrences of the form (1) with P = 1, Q = -1.

Ward [5] has pointed out that the question of whether or not there are infinitely many primes for which k(p) = p + 1 or p - 1 is a generalization of Artin's conjecture that an integer not -1 or a square is a primitive root of infinitely many primes. For recurrences in which Δ is a square and a or b is 1, the question is equivalent to Artin's conjecture.

REFERENCES

- 1. Brother U. Alfred, "Primes which are Factors of all Fibonacci Sequences," <u>Fibonacci Quarterly</u>, Vol. 2, No. 1 (February 1964), pp. 33-38.
- 2. D. M. Bloom, "On Periodicity in Generalized Fibonacci Sequences," Amer. Math. Monthly, 72 (1965), pp. 856-861.
- 3. Marshall Hall, "Divisors of Second-Order Sequences," <u>Bull. Amer. Math. Soc.</u>, 43 (1937), pp. 78-80.
- 4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Third Ed., Clarendon Press, Oxford, 1954.
- 5. Morgan Ward, "Prime Divisors of Second-Order Recurrences," <u>Duke Math. J.</u>, 21 (1954) pp. 607-614.
- 6. Oswald Wyler, "On Second-Order Recurrences," Amer. Math. Monthly, 72 (1965), pp. 500-506.