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Abstract

We study the initial-boundary value problem for the general non-
isentropic 3-D Euler equations with data which are incompatible in the
classical sense, but are ”rarefaction-compatible”. We show that such
data are also rarefaction-compatible of infinite order and the initial-
boundary value problem has a piece-wise smooth solution containing
a rarefaction wave.

1 Introduction

In the study of the initial-boundary value problems for hyperbolic systems,
in particular, for Euler system of equations in gas-dynamics, the smooth-
ness of both the initial and boundary data does not guarantee the existence
of a classical solution. A necessary condition to the existence of a smooth
solution is the compatibility of such data. In order the solution to be dif-
ferentiable of higher order, the higher order compatibility of the data is
required, see, e.g., [3, 16, 18]. Similarly, for certain free boundary value
problems involving shock wave, rarefaction wave or contact discontinuity of
Euler equations, the data are also required to be compatible, often of very
high order, [1, 2, 4, 6, 10, 13, 14].

The compatibility is a set of conditions on the initial and boundary data
at the points of intersection of the boundary with the initial manifold. They
consist of the algebraic restrictions at the intersection on the values of data,
together with their normal derivatives of high order (depending upon the
order of compatibility). Usually, such conditions are complicated and very
tedious to verify explicitly.
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In this paper, we study the initial-boundary value problem for the gen-
eral 3-D Euler equations with data which are incompatible in the classical
sense. The data may contain a jump discontinuity at the intersection of the
initial and boundary manifolds. For such data, there could exist no classical
solution. It was established in [12] that a piece-wise solution containing a
shock wave exists if the data are “shock-compatible”. In this paper, we are
looking for a piece-wise smooth solution containing a rarefaction wave under
the simple assumption on the data, see conditions (A1-A3) in Theorem 1.1.
We will call such data which satisfy (A1-A3) as "rarefaction-compatible”.
Similar to the situation for free boundary value problems studied in [4, 11],
even though such data are incompatible in the classical sense, the com-
patibility issue involving rarefaction wave becomes much simpler. It turns
out that the conditions (A1-A3) would automatically imply the rarefaction
compatibility of infinite order for smooth initial and boundary data, similar
to the case of shock waves in [12]. Taking advantage of such fact, we are
able to show the existence of the piece-wise smooth solution containing a
rarefaction wave under the conditions (A1-A3).

As the most important example of quasi-linear hyperbolic system, the
Euler equations for compressible non-viscous flow in 3-D space can be writ-
ten as follows:

Op + O0z(pu) + 9y(pv) + 9:(pw) = 0,

O(pu) + 0z(p + pu?) + 0y (puv) + 0 (puw) = 0,

B (pv) + du(puv) + dy(p + pv*) + 8 (pvw) = O, (1.1)
A(pw) + 9 (puw) + y (pvw) + 9 (p + pw?) = 0,

O (pE) + 0x(pEu + pu) + 0y(pEv + pv) + 0.(pEw + pw) = 0,

where (p, p, e) are the density, pressure, and the internal energy of the fluid,
(u,v,w) is the velocity in the (z,y, z) direction, and F = e+ %(uQ—H)Z +w?).
For convenience, we will consider the gas to be polytropic, with p = A(S)p?
with v > 1.

One of the simplest and natural initial-boundary value problems for the
Euler system (1.1) describes the gas flow bounded by a solid wall z = 0 with
given initial status (p,u,v,w,e):

(1.2)

(pvuavvwve)(07x7y7 Z) = <p07u071)07w0760)<x7y72) in x > 07
u(t,0,y,2) =0, on t>0.

In order to have a smooth solution for the problem (1.1)(1.2), one will
obviously need the initial data (pg, ug, vo, wo, €g) to be compatible, see e.g.,



[16]. The continuity of the solution requires the zero-order compatibility
uo(0,y,2) = 0. (1.3)

If one wants the solution belonging to C*, the higher order compatible con-
ditions are required, which consist of algebraic relations imposed upon wg
and its derivatives dug(j < k) at = = 0.

If (1.3) is not satisfied, i.e., if the data is not compatible in the classical
sense, then one cannot expect to have a continuous solution. However, there
could be other solutions which are only piece-wise smooth. In this paper,
we will study the initial-boundary value problem for (1.1) with data which
is not compatible in the classical sense, but admits a piece-wise solution
containing a rarefaction wave.

Let (Hy, H1, Ha, H3) be vectors defined as follows:

p pu pu pw
pU p+ pu2 puv puw
Ho=|pv |, H1= puv , Hy=| p+pv* |, H3= pow
pw puw pow p+ pw2
pE (pE +p)u (pE +p)v (pE + p)w

Then system (1.1) can be written briefly as
0:Hy + 0, H1 + 8yH2 + 0,H3 = 0.

Introducing the unknown vector of functions U = (p, u, v, w, S) where S
is the entropy of the flow, it is well-known (see e.g., [7, 17]) that for smooth
solutions, the system (1.1) is equivalent to the following system

( g]t)—i-(u,v,w)-Vp—i—chV-(u,v,w) =0,
p%ﬁ%—p(u,v,w)-Vu%—% =0,
pgz + p(u,v,w) - Vo + g}; =0, (1.4)
p%+p(u,v,w)-Vw+% =0,
aaf-k(u,v,w)-VS:O,
with ¢? = pj(p,S) > 0.

System (1.4) can be further rewritten into the following symmetric form

LU = AOOtU+A1(U)8IU+A2(U)8yU+A3(U)OZU =0, (1.5)



where

s 0000 &= 1 0 0 0
0 p 0 0O 1 pu 0 0 O
A= 0 0 p 00|, 4= 0 0 pu 0 0|,
0 00 p O 0 0 0 pu O
0 00 01 0 0 0 0 w
p”? 0 1 0 0 p“’? 0 0 1 0
0 pv 0 0 O 0O pw 0 0 O
A= 1 0 pv 0 O, A3=| 0 0 pw 0 O
0 0 0 pv O 1 0 0 pw O
0 0 0 0 w 0 0 0 0 w

The matrix Ay [A1(U) + As(U)€ + A3(U)n) has two simple eigenvalues
A+ and one triple eigenvalue Ag:

Ao =u—v€—wn—c\/1+&+n?,

Ao =u — v€ —wn, (1.6)

A =u—v€—wn+cy/1+8+n?,

with Ao < Ao < Ay

We will consider a more general initial-boundary value problem, for
which (1.2) is a special case. Let = = b(t,y,2) be a smooth surface in
(t,z,y, z) space with b(0,0,0) = b, (0,0,0) = b,(0,0,0) = 0. Denote by(y, z) =
b(0,y, z). For the Euler system (1.1), consider the initial-boundary value
problem in the domain bounded by the moving solid boundary x = b(y, z, t)
and the initial plane t = 0:

0yHo(U) + 0, H1(U) + 0yH2(U) 4+ 0.H3(U) =0,
U(O,IE,y, Z) = U()(x,y,Z) in > bO(y’ Z)? (17)
w—0b —byv—bw=0, on x=>b(t,y,z), t>0.

Obviously, (1.1)(1.2) is the special case of (1.7) with b = 0.
The main result of this paper is the following

Theorem 1.1 For the initial-boundary value problem (1.7), assuming that
there exists a constant state (p;,p;) such that the following condition (Al-
A3) is satisfied at the origin (0,0,0) on T' = {z = by(y, 2)}:



(A1) [b(0,0,0)] < co,
(A2) 0 < ug(0,0,0) — by(0,0,0),
(A3) u0(07 0, 0) - bt(Ov 0, 0) < %(CO + C]),

where
= ‘ A= ‘
1 = Pplipr.pr)> €0 = Pprl(po.po) at (0,0,0)>

then the problem (1.7) admits a piece-wise smooth solution near the origin
in the domain x > b(t,y,z), t > 0, containing a rarefaction wave emanating
from the intersection manifold I'.

Remark 1.1 1. The assumption (A1) in Theorem 1.1 is a necessary
condition. Otherwise, the problem (1.7) is not well-posed. In partic-
ular, for the fixed boundary x = 0 in (1.2), the condition is trivially
satisfied.

2. The assumption 0 < up(0,0,0) — b,(0,0,0) < %(co +¢) in (A2-A3)
ensures the existence of a rarefaction wave without a vacuum state.
Here, ¢; is sound speed for the state (py,pi,b:(0,0,0)) which can be
connected to the given state Uy by a rarefaction wave, see [17]. This is
indeed nothing else but the 0-order rarefaction compatibility condition.
For the special case of fixed boundary x = 0 in (1.4), the condition
becomes simply 0 < ug < %(Co +¢).

3. The case of up(0,0,0) — b,(0,0,0) = 0 is the 0-order compatibility
condition for the existence of a classical solution. And the case of
u0(0,0,0)—b:(0,0,0) < 0 is studied in [12], where a solution containing
a shock wave is obtained.

In the following, Section 2 will be devoted to the formulation of the
problem and the construction of an approximate solution of infinite order.
The problem will be tranformed in Section 3 by introducing new coordinates
in (1.7) to to expand the rarefaction wave and to flatten both the boundary
x = b(t,y,z) and the rarefaction wave surface z = (t,y,z). The linear
stability of the transformed equivalent problem will be derived in Section 4
by combining the results from [1, 3, 16]. Then the existence of a piece-wise
smooth solution containing a rarefaction will be established in Section 5 by
iteration.



2  Rarefaction wave solution and its approximation

From the solid wall condition u —b; —b,v —b,w = 0 on the moving boundary
x = b(t,y, z) in (1.7) and the condition u((0,0,0) > b:(0,0,0) in the assump-
tion (A2) in Theorem 1.1, it is obvious that the data for the initial-boundary
value problem (1.7) is not compatible in the classical sense and hence (1.7)
admits no classical smooth solution. Therefore we have to look for a piece-
wise smooth solution which contains, in the specific case of (A2-A3), a right
propagating rarefaction wave.

Specifically, a rarefaction wave solution for (1.7) is formulated [1] as a
set of smooth functions (U, U, x, U) near the origin (0,0,0,0) such that

o (U, U,,U,) satisfies (1.7) separately in each of the corner domains
(Q,Q,, Q) defined by (see Figure 2.1):

Q=1{bty, 2) <z <x (ty,2)t>0},
Q ={x"(t,y,2) <z < xH(t,y,2),t >0}, (2.1)
Qo ={x"(t,y,2) <z, t > 0};

with b(0,y,2) = bo(y, 2) = x (0,9, 2) = x(0,¥, 2).

x=0b(t,y,z
VD )

L-‘r L= X+(t,y72)

Figure 2.1: Shock wave solution for (1.7)

e = = x(t,8,9,2),(1 < s < 2) is a parametrization of the domain ,
with
x(t 1y, 2) =x"(ty.2), x(t2,y,2) =x" (v, 2);
In addition, x = x(¢,s,y,2), (1 < s < 2) is a family of characteristics
issuing from I' for each s € [1,2], such that

det |A1 — xt — xyA2 — x:A43| =0, (2.2)

or more specifically,
xt = A+(Ur; V), (2.3)

where A1 (U; ¢) is the maximal eigenvalue in (1.6).



e Let the function W (t, s,y, z) be defined by:

W(t,s,y,z) = Ur(t,x(, 5,9, 2),y,2), (2.4)
then W (t,s,y, z) satisfies

ow oW ow
ot + Ag + Aj 82)

dy
ow
+(A1 — x¢ — xyA2 — XzAs)E =0.

Q?WEXS(

(2.5)

Since the surface & = x*(¢,y, 2) is characteristic for (1.7), the function
U, is uniquely determined in Q. by the initial data Uy(x,y,z). To find
the rarefaction wave solution, one needs only to determine the functions
(U, W, x).

In summary, the rarefaction wave solution is the set of functions
Ul(t,x,y,z), W(t,s,y, z), x(t, s,y, z) satisfying, in addition to (2.3),

LU =0 in Q,
_ (2.6)
W =0 in 1<s<?2.
by —u—vby —wb, =0, at = =b(t,vy, 2); (2.7)
x(t, Ly, 2) = x"(t,y,2),
t,2 =xT(t
X(t,2,y,2) = X" (t,y, 2), (2.8)

Wit 1,y,2) = U(t, x(t,1,y,2), y, 2),
W(t,2,y,2z) = U(t, x(t,2,y, 2),y, 2).
Finally, we have the initial conditions at I':
bo(y, ) = x(0,s,9,2) =0, (2.9)
with the assumption as in [1]
Xs =(t,s,y,2)t with y(t,s,y,2z) > 6 > 0. (2.10)

The set of functions (U%, x%, W) is called an approximate solution of
order k if near t = 0,

LU = O0(tF), in Q

LWe=0(F) in 1<s<2

X¢ = A (U V) = O(tF), in Q,,

by — u® — v, — we, = O(tF), on x =b(t,y,z), t > 0.

(2.11)
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Obviously, the existence of the k-th order approximate solution is equiv-
alent to the fact that all the derivatives at ¢ = 0 up to the order of k for
(U, x*, W) can be uniquely determined by the equations in (2.11) along
the initial sub-surface x = b(0,y, z). For this, we have the following

Theorem 2.1 Under the assumptions (A1)-(A3) in Theorem 1.1 and let
b(t,y,z2),Up(x,y,z) € C*, then for the initial-boundary value problem (1.7)
with rarefaction wave configurations (2.6)-(2.9), all the derivatives of (U, x, W)
at t = 0 can be uniquely determined from (2.11) at the intersection I' : z =
b(0,y, z), and consequently, there exists an infinite order approximate solu-

tion (U%, x*, W?).

To prove Theorem 2.1, we need to show that Vk > 0, all the derivatives
up to the order k of (U, x¢, W) can be uniquely determined at z = b(0, y, z).
We prove this inductively.

The 0-order compatibility contains no derivative of (U,W). The
existence of 1-D plane rarefaction wave (U, x¢, W) follows directly from the
conditions (A2-A3), see e.g., [17].

For the first order compatibility, we need to show that the first order
derivatives of (U, x¢, W) can be uniquely determined at T

Following the approach in [1], see also [11], let H(v,n) be the matrix
satisfying

_ A0
H 1<A1 — XyAQ - XzAg)H = <0 Ab> <é d) s (212)
where the superscript b denotes the last four rows.
From (2.5) we have
H_l(Wt + AQWy + A3WZ)
= _H_l(Al —x¢d — A2Xy - ASXZ)WS/XS

(2.13)
_(xt—X O (0 0
—< « *)Ws/Xs—(* « Ws/Xs‘
Then the first row becomes
(H Y (Wi 4+ AW, + A W,)E = 0. (2.14)

Multiplying (2.13) by xs and then differentiating with respect to t, we
have

thH_l(Wt + A2Wy + ABWz) + XS(H_l(Wt + A2Wy + ABWZ))t

(2.15)
+(d = X)) H "Wy + (d — x¢)(H " W), =
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Since ys = 0 at t = 0, consequently

Xts (H- LWy + AW, + AsW,))°

FOA = xo) (H'W) + (A — i) (H'W); =0,

or

Xos (H (W, + AW, + A5 W)

FO = ) (HTW)Y)y + (HIW)E - 5 = %, (2.16)

here * stands again for the known terms. Therefore, the value of (H~'W;)®
at any s € [1,2] can be uniquely determined by its value at s = 2. On the
other hand, the value (H~'W;)! is determined from (2.14). Hence the value
of all the components of H~'W; are uniquely determined, and so are all the
components of Wj.

Once Wy is known, we can obtain yy; by differentiating (2.3) with respect
to t:

Xtt = AWWt — Aant - ACXZt' (217)

Since the tangential derivatives of U, and U coincide on z = x(t, 1,y, 2) =
x1(t,y, z), the value of the tangential derivative D,U = (0 + x1:0;)U is also
known. Therefore

D,p=%, Dyu=%, D,p==x% Dow=x Dw=x, (2.18)

with
D, =0+ (u+¢)0y = D¢ + ¢Oy,

since at the origin x1(0,0,0) = u + c.

Because x1¢ = Ay is an eigenvalue for the system (1.5), only two of the
first three relations in (2.18) are independent. Hence (2.18) consists of only
four independent relations for (p, u,v,w,p) which we denote as

D.p=x%, D.p==x% Dw=x Dyw=:x*. (2.19)
At the origin (0,0,0,0), the interior equations in (1.1) become

Duyp + pOzu = x,

Dyu+ %Bxp = %,

D,v = x, in Q (2.20)
Dyw = *,

Dyp + pc?0,u = *.



From the boundary condition in (1.7) on 2 = b we have
Dyu = x, (2.21)

The linear system (2.17), (2.19)-(2.21) consists of eleven equations for
the eleven variables (x4, U, Uy), where U = (p,u,v,w,p). They can be
simplified as follows.

Since vectors (D,, D,,) span (0, 0;), hence (vy, vz, wy, w,) can be elimi-
nated from (2.19) and (2.20). Also from (2.17), x1 can be eliminated.

From (2.21), Dyu is known, and hence d,p is given by the second equa-
tion in (2.20). Since D,p is given from (2.19), so (p¢, pz) can be eliminated.

Then 0yu is known from the last equation in (2.20). Combining this
with (2.21), (u,uy) are uniquely determined. And finally, (p¢, pz) can be
uniquely determined from (2.19) and (2.20). This finishes the proof of the
first order compatibility.

For the k-th order compatibility, we apply 8{“*1 to (2.17), apply the
tangential derivatives DF~! to (2.19), and apply the tangential derivatives
DF=1 to (2.20) and (2.21). Evaluating the resulting equations at the origin
yields 11 linear equations

OF T x = 0F (A Wi — Apxye)- (2.22)
DFp =%, DFp=x DFy=x DFuw=x. (2.23)
DEp + pDE10,u = *,
DFy + %Dﬁflazp = %,

DFy = x, (2.24)
DFw = %,
DEp + pc? DE10,u = *.

DEy = . (2.25)

For (2.22)-(2.25), there are 11 independent variables
oFtlx, DFU, DFlo,U.
By the same argument as in the first order compatibility, the 5 variables
af“x, DZ’U, ij_l@xv, Dﬁw, Dﬁ_lﬁxw

can be eliminated immediately from (2.22)-(2.24). Straightforward compu-
tations further eliminate the two variables D¥p and D¥=19,p from (2.23)
and (2.24).
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DFy is given from (2.25), and DE~19,u is known from (2.24). Hence
(DEp, DE=19,p) are also uniquely determined.

Once (DEU,DF=19,U) are given, by the interior equation (2.20) and
induction, we can determine all the derivatives (Déc*j U, DEIaiu ) for
j=23,...,k

This concludes the proof of the k-th order compatibility and therefore
Theorem 2.1.

3 Transformation and Reformulation

To establish the existence of the piece-wise smooth solution containing a
rarefaction wave in Theorem 1.1, we first perform a singular coordinates
transformation to reformulate the problem as in [1]. The purpose of the
transformation is to change the angular domains €2, £2,. into standard cylin-
drical domains with fixed boundary, see also [1, 2, 4, 10, 12].

Denote

Qi ={(t,2,9,2):t>0,j<i<j+1} (j=0,1). (3.1)
Let ¢U) (t,%,7, ) be defined on Qj as

(
(

)= (1—-2)b(t,y,2) +Tx (L, 9, 2),
)= (.2 — 3,3, 2). (3:2)

!

(=]

)
)

Sy SR

ST
Sy &
N

IS

¢( I ) 7y7
¢(1 Y ) I 7@7

IS

Then we have

¢ (¢,0,y,2) = b(t,y, 2),

¢O (t717y7z) :¢(l)( 717y7z) :X_(t?y7z)7 (3'3)
o (t,2,y,2) = xF(t,y, 2).
For ¢ > 0, the transformations
v=oV(0,8,§,2), y=9, 2= % t=1 (j =0,1,2) (3.4)

are bijections from Qo to 2, and from Ql to Q,. See Fig. 3.1.
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Figure 3.1: rarefaction wave configuration on (t~, Z) plane

With the transformation (3.4), the system (1.5) of interior differential
equations becomes in the new coordinates (%, Z, , %)

AO(U(j))aEU(j)_i_Al (U(j))3jU(j)+A2(U(j))3gU(j) +A3(UMo:U) =0, (3.5)

with
_ 1
- 0z¢

Because 0;¢ = O(t), the system (3.5) is singular at ¢ = 0 with order #. To
formally remove this singularity, let (see also [2, 4, 12])

Al(U(j))

A (UD)) — Ag(UD) g — Ax(U)) 5 — A3(U(j))¢2} :

t=r7, with 9;=¢"70;. (3.6)
The transform (3.6) changes the domain Q; (j = 0, 1) into w;:
wj={(1,3,9,2): j<i<j+1, 7> —o0, (§,2) € R*}.
In the coordinates (7, %, 7, ), the system (3.5) becomes

LOWD, ¢0)) = 0,00 4 A,(UD)9,U)
(3.7)
+e7 Ay (U)oU) + ™ A3(UD)a:UY) =0,

(A1 (UD)—e "¢, Ag(UD)) =5 Ax(UD))— ¢z A5(U))). (3.8)

J‘ﬁ‘(‘b
)

&
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We notice that with the coordinates transform (3.6), the th-weighted
integration in the domain §2; becomes the hyperbolic (1 + 1)-weighted inte-
gration in wj:

/ MUY, z, 5, 2)|*didzdydz = / Oy O (7, 7, 5, 2) [Pdrdididz.
i wj

To simplify the notation, we will drop the tilde in the new coordinates
in the following and replace 7 by t. Therefore, the initial-boundary value
problem containing a rarefaction wave can be formulated as the following
boundary value problem in the domains w; (j = 0,1) for the unknown
functions (UY)(t, z,y, 2), pU) (t, z,y,2)) (j = 0,1) satisfying:

e Interior equations:

LOUD o) =0  inw;(j=0,1); (3.9)
e On the solid boundary = = 0:
BOWUO) = ey — u® 4 0Obgy, + wVb,; (3.10)
e Continuous boundary conditions for rarefaction waves at © = 1, 2:
UO(t,1,y,2) =UWD(t,1,y, 2),
UD(t,2,y,2) =U"(t,2,y, 2), (3.11)
6Ot 1,y 2) = oV (t, 1,9, 2);
with U (t,2,y, z) given;
e Rarefaction wave structure:
8(t2,5,2) = A (U0 =61, —o), G2
0x 0V (t,z,y,2) = y(t, z,y, z)e! with v > 6§ > 0;
e “Initial” condition:
(UG — o) gl — ¢al)y = O(e™) at t = —o0, (313)

¢(j)<—OO,I‘,y,Z) = bO(y7 Z) (j = 07 1)

Therefore, in order to prove Theorem 1.1, we need only to prove the
following

Theorem 3.1 There ezists a C™ solution (UY), 1)) to the boundary value
problem (3.9)-(3.13) near t = —co.

Theorem 3.1 will be proved by linear iteration of (3.9)-(3.13) near the
approximate solution (U*U), ¢2(7)),
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4 Linearization and Energy Estimate

Because of the loss the regularity in the estimates for the linearized rar-
efaction wave, the Nash-Moser iteration will be used to prove the existence
of the rarefaction wave solution. The proof proceeds here along the same
approach as in [1, 4].

Let U = (U®,UM) and ¢ = (¢, ¢()). We will construct a sequence of
smooth approximate solutions (U® + Uy, ¢* + ¢y,), (n = 0,1,2,...) near the
C*° approximate solution (U?, ¢*) established in Theorem 2.1, and show its
convergence in an appropriate space to the required solution of the problem
(3.9)-(3.13).

Let {6, } be the sequence defined by

0y >1, 0, = \/9[2)4-%, An:9n+1—9n. (4.1)

The sequence {A,} is decreasing with

1 1
<A, = /02 -0, < —. 4.2
30, — " O + O < 20, (42)
Let (Uo, ¢0) = (0,0) and
Uni1 = Un + AnUn, dni1 = ¢n + Apoon (n=0,1,2,...), (4.3)

where U,, and qﬁn will be the solution of an appropriate boundary value
problem for a linear hyperbolic system specified as follows.

4.1 Interior Equation

(U, M))).

Denote .Z(U, ¢) = (LU, 40), £1) .
U, ¢), introduce a new variable V/

For the linearization of £ (U, ¢) at (
(see [1]):

-~ Ug

V=U--2 4.4

% (4.4)

The linearized operator ¢(U, ) (U, ¢) of L(U, ¢) at (U, ¢) can be written
as
¢

(U, ¢)(U,¢) = L' (U ¢)V + B(U,¢)V + o

Lo, 2U, ),  (4.5)
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where the operators £’(U, ¢) and B(U, ¢) are defined as

LU, ¢) =0+ €' Ay (U) 0, + et A3(U) 0,
el (4.6)

E(Al(U) — e — ¢y A2(U) — 6. A3(U)) 0.

B(U, ¢) = 5%MU@+&MU@+6&W¢> (4.7)

with
B(U,¢) = (A1 (U) — ¢y A5(U) — ¢ A5(U))Us

/
1
By (U, ¢) = A3(U)U,y, Bs(U,¢) = A5(U)U..
For simplicity, let
ZLo(Un, ¢n) = LU + Un, ¢ + ¢n)’

ea(Una ¢n) = K(Ua + Una ¢a + ¢n)7
Bo(Un, #n), Ba(Unyn),- -

Then we have

ag(Un—&-h ¢n+1) - f(Un, ¢n) = ea(Unu ¢n)(Una ¢n)An + Ane;ﬂv (4'8)

where €/, is the standard quadratic error in the Newtonian iteration.

For the linearized rarefaction wave, there exists only the tame estimate,
we need to apply a regularizing operator .7, to (U, ¢,,) before the next step
in the Nash-Moser iteration. Hence

ga(UTL«kla ¢n+1) _ga(Una ¢n) — éa(ynUna ynqsn)(Una ¢n)An +Anen1 (49)

where e, = €}, + e, with /!, being the smoothing error.
In the new variable V;, in (4 4) and introducing the operator £,(U, ¢)V
LU, $)V + B(U, )V, we have

Za(Uns1, dnt1) = Za(Un, ¢n) =

- ) (4.10)
= Anﬁa(ynUna ynfﬁn)vn + An(enl + 67L2)7
DL S S
¢ ¢?’L$
In order to apply the estimates established for the linearized system in
[1] and [5] where the boundaries © = 0 as well as x = o with 1 < a < 2
are required to be uniformly characteristic, the values (U, -%,¢n) are

where ep9 =

15



further adjusted and the~error term e,3 is introduced. We denote the linear
operator obtained from ¢,(U,, ¢,,) through this adjustment as L,:

La(Una¢n) Ega(Unaq_sn)' (4'11)
Then we obtain
ga(Un+la ¢n+1) - ga(Una (bn) = AnLa(Unv ¢n)Vn + Anen? (412)

where
€n = enl + en2 + en3.

To obtain the combined estimate including both the rarefaction wave
in [1] and the usual solid wall boundary value problem, the operator (4.11)
needs to be constructed in the rarefaction wave domain and near the solid
boundary separately, and then be patched together by the usual localization
technique, see also [4].

Let Fn be chosen such that

n n—1
ZAka = —ynyTg(Ua,(ﬁa) - ynZAkek (4.13)
k=0 k=0

Here the operator .Zr is the extension operator from (—o0,T") to (—oo, 00)

as in [1]. The final iteration scheme for (V;,, ¢,) in the interior domain is
the following hyperbolic system

La(Upn, ¢n)Vi = E},. (4.14)

4.2 Boundary Conditions

At the solid wall boundary x = 0, dO(t,0,y,2) = b(t,y,z) by (3.3),
hence ¢(® = 0. The boundary condition at z = 0 for U© is linear and is
“)

satisfied accurately by the approximate solution (U%, ¢®). Therefore
0 0 :
BOU ) — BOUL, 60) = BOViA,. (4.15)

It can be formally rewritten as

BOV, = BOWO, 60) (7O 40 = 10 — g, (4.16)

a a n n
At the rarefaction wave boundaries, the solution is continuous: U©® =

UM onz=1and UD =U® onz =2 (here U and V), ¢ are already
uniquely determined from the initial data).

16



The boundary iteration scheme at = 1 becomes :

v vl = v —u® 4 AGD + AdD, (4.17)
where dg) is the error and GQ) is chosen to secure the convergence of the
iteration as in [1]. The iteration scheme at x = 2 is constructed in exactly
the same way.

Since the boundary L* is characteristic and the matrix A;(U™M) —
M) — Ax(UM)9,pM) — Az(UM),0M) is degenerate, we need to further
adjust the approximate solution U, ¢, to U,, ¢,, such that the adjusted
boundary matrix

AL T = 9,0 — Ag(TM)0, 0l — A3(T)D, 4LV (4.18)

is uniformly degenerate with rank 2. Its eigenvectors form an orthogonal
basis in R3. Let H%l) = H((_],(ll), _S)) be the matrix formed by these three
unit column eigenvectors, we can perform an orthogonal transformation such
that the first column vector corresponds to the right-propagation rarefaction
wave. This vector spans an one-dimensional subspace in which the matrix
(4.18) is degenerate, and non-degenerate in its orthogonal complement.
Let P, and I — P,, be the projectors corresponding to the non-degenerate
and degenerate subspaces, we can write the boundary conditions on z = 1
as
POVO) _ pyA) — p0)GO) on z=1. (4.19)

(1— PO — - pMyyW

The relation (4.19) is the boundary condition coupled with the interior dif-
ferential equations while (4.20) is used to determine @(10).

The term G in (4.19)-(4.20) is the modified error as shown later in
(4.23), and

s + % vp” + 0L

z = (1-pM)—= —= —(1-PY) —o7 (4.21)
oV + o 01" + o)
with (see [1], or [3, 10])
etz(M £ 0. (4.22)

In summary, we will denote the boundary iteration scheme (4.19)-(4.20)
onx=1as

B (UL, o) (VY 6)) = G (4.23)

n
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with Gslo) chosen according to the following
S alay = -, Fr BV U, 6%) — S, Zd,(j (4.24)

Similarly on x = 2, we have

B (UL, o) (VY 9)) = G (4.25)

n

4.3 Estimate for linearized problem

Let s be a non-negative integer, and k = (ko, k1, k2, k3) be the multiple
index with |k| = ko + k1 + k2 + k3. Let w;“-r =wj(W{t:t<T} (j =0,1) and
let Hy (w]T) be the n-weighted Sobolev space with the norm

Ulgry= 30 | 000200802 (U (wgzi) Pzt
0<|k|+2m<s“
where 7 being sufficiently large, D, = z(x — 1)(x — 2)0, is an operator
tangential to the boundary x = 0,1,2. The space Hp (w]T) is the usual 7-
weighted Sobolev space H® away from the boundary x = 0,1,2. At the

boundaries, the regularity in the z-derivatives is reduced, see [1, 8].
Let FJT ( =0,1,2) be the boundary

I7 = {(t,2,y,2); —00 < t < T,z = j, (y,2) € R*}.
And the Sobolev space Hy (FT) on the boundary FT is defined by
Vltgen = 2. / 08002 (¢ MU (3, 2. 1)) s Pdyd .
0<|k|<s

For the Sobolev spaces H(w; 1), we have the imbedding and trace theorems
(see [1])
H;(wJT) cam, for s > 2 4 2m.
s>1, ue H{;(ij) — u |z:j—1€ Hgfl(rj_ﬂ, U ‘x:jG Hgfl(Fj).

The linearized boundary value problem for the system (4.14) with bound-
ary conditions (4.16), (4.19) and (4.20) at = 0,1, 2 can be briefly written

as follows
{ La(Un ¢n)( n7¢n) = Fn,

(4.26)
Ba(Um@bn)( n7¢n) = Gn,

18



where
B, = BY B ,BY), U, = (U, U"), én= (01, 6%)
U= (08, 0"), Vo= (GO, V2), = (6,60),

Combining the estimates for the solid boundary problem in [16] and for
the linearized rarefaction wave in [1] by the usual localization technique, we
have the following estimate for the linearized problem (4.26)

Theorem 4.1 For the complete linearized solid wall - rarefaction wave prob-
lem (4.26), assume

e for a sufficiently small vo > 0,
1Unll 8@y + 9l s rry =7 < 0i (4.27)
o Integer s > 6 and even integer s > So;
o —T'>1;
o Iy € Hi(w") and Gy, € HiTH(IT).
Then the boundary value problem (4.26) has a unique solution (Vy,, d)n) sat-
isfying the following estimate
Vol zgiary + 19zt ey < s (1B gy + Gl oy

. . (4.28)
(Bl 3oy + Gl s o)) (1 + looefs)]

5 Convergence of Nash-Moser iteration

It remains to prove the convergence of function sequence (Vn,gbn) (or
equivalently (Uy, ¢,) in (4.3)(4.4)) constructed by solving the linear bound-
ary value problem (4.26) in Nash-Moser iteration. The procedure is standard
but tedious. For completeness, we give a concise proof in the following. The
interested reader can refer to [1, 4] for more details.

Let (Hy) be the following recurrence hypotheses:

”(Ukhd')k)”Hf](wT)—i_||q'5kHH75]+1(FT) < 592_0‘_1, 0<k<n, sp<s<sy, (5.1)
H.,?Q(Uk,(ﬁk)”Hﬁ(wT) § 502—047 0 S k § n, So S S S Sy — 2, (52)

H%G(Uk?¢k)HHf](FT) S 592_(1, 0 S k S n, So S S S S+ — 1. (5.3)

Then we have the following:
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Theorem 5.1 There exist constants (9, «, sg, S+), satisfying

3+1
< 1; sp=06(> %4—2); a>80+6=12; sy =2a—s9 > a+6, (5.4)

such that (Hy) are true for all n > 0.

Remark: Theorem 5.1 implies that (Uy, ¢) converges in the space H, (wh)x
Hy (I'T) with s < a, since 6, ~ /n, and hence the existence of the solution
(U,¢) € Hy (") x H2~1(I'T) for (3.9)-(3.13).

Also, since sy can be arbitrarily large by Theorem 2.1, the index « can be
larger than any given integer k. This implies the existence of C*° solution.

Theorem 5.1 will be proved in two steps

o (Hn—1) = (Hn);
o (Hp).

5.1 (H,—1) = (H,): Estimates for (U,, ¢,) and (S, U,, S, ¢n)
By the definition (U, ¢y,) in (4.3) and from the property of mollifier .7, [1],
we have

n—1

1(Uns )|l 15 () < > (U, 1)l 115 0m) D
=0

n—1 n—1
<06y ag—a—lalk =C6Y 077,
k=1 k=1

S0
| fn)lrgry < S50 s0 < s i s o
H(Um(lsn)HHg(wT) < dlog b;

For the mollification (.#,Uy, %5 on):
H(ynUmynfbn)”Hﬁ(wT) S 060;+(8_a)+7 s> s0, (e=0if s#a); (5.6)

H(Un - ynUna(bn - yn(bn)HHg(wT) < C(Sersl—a7 80 < 8 < sy

5.2 (Hn-1) = (H,): Estimate for error (e, d) (K <n—1)

The error estimate for (eg, d,) for the rarefaction wave 1 < x < 2 are already
obtained in [1] in the form of equivalent ¢-weighted norms. We have

lewlls iy + Nl ooy < CO263 75032 (5.7)
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with sp < s < sy —4.
Near the solid wall boundary = = 0, the estimates for e is the same,
and di = 0 since the boundary condition is linear.

5.3 (H,_1) = (H,): Estimate for (F,,G,,)
From (4.13) and (4.24), we have

n—2
AnFn = _(yn - <Eﬂn—l) <<QT$(UG) QZ)G) + Z Ak€k> - <EﬂnAn—len—l
‘ 2
MG = —(Fp — S 1) (%@(Uﬂ, )+ Akdk> — Iy 1d .
k=0
Since A,_1/A, ~ 1, then from (5.7) we have for so < s < s, — 4:
An* s+s —2«a
|3 Fnen-llmur) < COO7TT72, (5.8)

For s > sy — 4 > sg, we have

s—(s+—4
| nentllarsry < CllFnenall yossbi O+

< 0529;91_._—4-1-50—1-3—2049;91—(s+—4) < 05292+80+372a. (59)

From (5.7)

n—2 n—2
2 (s4+—4)+s0+3—2a 2 ns4+so—2a
||ZA,§€,€||H;+_4(WT) < C6%) A, < 05295+ Ts0—2
k=0 k=0

and by the property of .7, [1], we have for all s > s,

n—2
1
EH(yn - yﬂ—l)kZAkekHHf](wT)

=0

n—2

1
< 09;9;(5-»-74)*1||ZAkek||8+_4 (5 0)
k=0

< 05292—(5+—4)—19f{&-+50—20¢ < 0529;sl+so+372a'

On the other hand, we have

1
7”(5/% - ynfl)jTg(Uaaﬁsa)” S(wT
An i) (5.11)
< 092—5—1”3((]117 gba)HHg(wT)-
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Taking f = 2a — sp — 4 in (5.11) and noticing that (U®,¢%) is the C*°
approximate solution, then we have, for —7T > 1,

Cllz (U, ¢) <6, (5.12)

g my

and

1
A N0 = Fn-1) FrZ (U, 6% gy < Co2gyreotam2e, (5.13)

Combining (5.8)-(5.13), we obtain, for all s > s,

| Full gy < Co265+05-20, (5.14)
Similarly, we have '
HGnHH,g(FT) < 05292+80+3_2a- (5.15)

5.4 (H,_1) = (H,): Estimate for (U,, ¢,), £ (U, éx) and B(Uy, ¢y)

From (4.28) in Theorem 4.1, we have for all so < s < sy
||(Un7¢§n)”Hﬁ(wT) < Cs+ [HFnHH;H(wT) + HGHHH;‘H(FT)"‘ (5 16)

FEnllgor) + G lgery) 2+ 1T @l s )] -

By (5.6), (5.14) and (5.15), we obtain
| d)laggmy < Cu 87 [B5F0075720 4 ghbo2ogeleioals | (5.17)
By the choice of sp and « in (5.4), we have
s+sp+bh—-2a=s—-a—-1+(sp+6—a)<s—a-—1
and

if s+4—a>0:
8+sp—2a+e+(s+4d—a)f=s—a—-14+(sp+12—-2a)<s—a—1;

if s+4—a<0:
8+s9g—2a+(s+4—a)y=s—a—-14+9—a)<s—a-—1.

Choosing 6 < 1 such that 6C,s, <1, we obtain (5.1) for the interior norms
| (U, ¢k)||H,§(wT) for k = n.
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The estimate for ||¢y|| 1 (rry can be obtained similarly.
For Z,(Up, ¢n) in (5.2), we have, by (4.12) and (4.13)

n—1 n—1
Lo(Un, bn) = FrL U ¢%) + > Fulr+ Y ery

=0, B (5.18)
=1 -S) | Fr LU, 0%) + Z ek | +en—18n_1.
k=0

Therefore
(1~ ) Fr 2 (U, 6 gy < OO NLWO" ) gy (5.19)

Together with (5.7), we have for so < s <s; —4

n—2 n—2
11— ) 3 endells < GOy g2 Y~ gremroaee
k=0 =0 (5.20)

< 052024—504—3—2@ < 0529;3_0‘.

In (5.19) and (5.20), choosing first —T' > 1 such that C||.£(U*, (ba)HH%(wT) <

36, and then choosing § < 1 such that C'§ < 3, we obtain (5.2) for k = n.
The estimate for B,(Uy, ¢,,) in (5.3) can be proven exactly in the same
way.

5.5 Proof for (H)
For n=0
-i/ﬂa(UOa ¢0) = X(Ua7 d)a)a <@CL([]O’ ¢0) = %(Uav ¢a).
Ifa+4<s< sy + 2, we choose 6y > 1 such that
1)

106 2y + 12 vy < s gryfor (52D
and therefore
LW, 61y m + 18U, 6" gy
<L g2y + 1B gevagry  5.0m)

J

< s—a—3 < s—o
—i(1+08+)60 < 663
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If so < s < a+ 4, then we choose —T" > 1 such that

a a a ia J S0
||$(U ,d) )||H$+4(wT)+||‘@(U ,¢ )HH,?““L(FT) S m@oo 3’ (523)
and therefore
LU, 6w ry + 18U, 6 1 (0
< LU 6 gorry + 1BUT, 9 gota o) (5.24)
)
<« _ 7 sp—a—3 < s—o

These are (5.2) and (5.3) for (Ho).
From the expressions for (Fy, Gy),

AoEy = —AFr L (U, ¢%), NG = =S FrBU, %),

and the estimate (4.28) for solutions of linearized problem, we obtain simi-
larly as (5.16)

|@0; S0 lggary < Cosa (10l i ry + 1 Goll gz |

(5.25)
< Gy, [I2U% 69l gr20m) + 1BO% 6 g2
From (6.49)-(6.52), we have for s < s < sy +2
LU 0 g (r) + 18U 6| g 0y
5 (5.26)

< 05—04—3
4Gy

Combining (5.25) and (5.26) gives (5.1) for n = 0.
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