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Abstract

We study the initial-boundary value problem for the general 3-D
Euler equations with data which are incompatible in the classical sense,
but are ”shock-compatible”. We show that such data are also shock-
compatible of infinite order and the initial-boundary value problem has
a piece-wise smooth solution containing a shock.

1 Introduction

Initial-boundary value problem is one of the most important problems, both
in theoretical research and in application, in the study of hyperbolic sys-
tems, in particular, Euler system of gas-dynamics. It is well known that the
smoothness of both the initial and boundary data does not guarantee the
existence of a classical solution. A necessary condition to the existence of
a smooth solution is the compatibility of such data. In order the solution
has higher differentiability, the higher order compatibility of the data is re-
quired, see, e.g., [3, 8, 13, 15]. Similarly, for certain free boundary value
problems involving shock wave, rarefaction wave or contact discontinuity of
Euler equations, the data are also required to be compatible, often of very
high order, [1, 2, 4, 5, 9, 11, 12].

The compatibility is a set of conditions on the initial and boundary data
at the points of intersection of the boundary with the initial manifold. They
consist of the algebraic restrictions at the intersection on the values of data,
together with their normal derivatives of high order (depending upon the
order of compatibility). Usually, such conditions are complicated and very
tedious to verify.
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In this paper, we study the initial-boundary value problem for the general
3-D Euler equation with data which are incompatible in the classical sense.
The data may contain a jump discontinuity at the intersection of the initial
and boundary manifolds. For such data, there exists no classical solution.
Instead, we are looking for a piece-wise smooth solution containing a shock
front under a simple general assumption on the data, see condition (A) in
Theorem 1.1. We will call such data (satisfying (A)) as ”shock-compatible”.
Similar to the situation for free boundary value problems studied in [4, 10],
for such data, even though incompatible in the classical sense, permitting
shock waves makes the compatibility issue much simpler. It turns out that
the 0-order shock-compatible data (A) are automatically shock compatible
of infinite order if both the initial and boundary data are smooth. Taking
advantage of such fact, we are able to show the existence of the piece-wise
smooth shock wave solution with the condition (A) only, without requiring
any high-order compatibility as in [1, 2, 4, 5, 9, 11, 12].

As the most important example of quasi-linear hyperbolic system, the
Euler equations for compressible non-viscous flow in 3-D space can be writ-
ten as follows:

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0,

∂t(ρu) + ∂x(p+ ρu2) + ∂y(ρuv) + ∂z(ρuw) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(p+ ρv2) + ∂z(ρvw) = 0,

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(p+ ρw2) = 0,

∂t(ρE) + ∂x(ρEu+ pu) + ∂y(ρEv + pv) + ∂z(ρEw + pw) = 0,

(1.1)

where (ρ, p, e) are the density, pressure, and the internal energy of the fluid,
(u, v, w) is the velocity in the (x, y, z) direction, and the total energy E =
e+ 1

2(u2+v2+w2). For convenience, we will consider the gas to be polytropic,
with p = A(S)ργ with γ > 1.

One of the simplest and natural initial-boundary value problems for the
Euler system (1.1) describes the gas flow bounded by a solid wall x = 0 with
given initial status (ρ, u, v, w, e):{

(ρ, u, v, w, e)(0, x, y, z) = (ρ0, u0, v0, w0, e0)(x, y, z) in x ≥ 0,

u(t, 0, y, z) = 0, on t ≥ 0.
(1.2)

In order to have a smooth solution for the problem (1.1)(1.2), it is neces-
sary to require the initial data (ρ0, u0, v0, w0, e0) to be compatible, see e.g.,
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[13]. The continuity of the solution requires the zero-order compatibility

u0(0, y, z) = 0. (1.3)

If one wants the solution belonging to Ck, the higher order compatible con-
ditions are required, which consist of algebraic relations imposed upon u0

and its derivatives ∂jxu0(j ≤ k) at x = 0.
If (1.3) is not satisfied, i.e., if the data is not compatible in the classical

sense, then one cannot expect to have a continuous solution. However, there
could be other solutions which are only piece-wise smooth. In this paper,
we will study the initial-boundary value problem for (1.1) with data which
is not compatible in the classical sense, but admits a piece-wise solution
containing a shock wave.

In this paper, we will study a more general initial-boundary value prob-
lem, for which (1.2) is a special case. Denote

H0 =


ρ
ρu
ρv
ρw
ρE

 , H1 =


ρu

p+ ρu2

ρuv
ρuw

(ρE + p)u

 , H2 =


ρv
ρuv

p+ ρv2

ρvw
(ρE + p)v

 , H3 =


ρw
ρuw
ρvw

p+ ρw2

(ρE + p)w

 .

Then system (1.1) can be written briefly as

∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0.

Introducing the unknown vector of functions U = (p, u, v, w, S), it is
well-known (see e.g., [6, 14]) that for smooth solutions, the system (1.1) is
equivalent to the following system

∂p

∂t
+ (u, v, w) · ∇p+ ρc2∇ · (u, v, w) = 0,

ρ
∂u

∂t
+ ρ(u, v, w) · ∇u+

∂p

∂x
= 0,

ρ
∂v

∂t
+ ρ(u, v, w) · ∇v +

∂p

∂y
= 0,

ρ
∂w

∂t
+ ρ(u, v, w) · ∇w +

∂p

∂z
= 0,

∂S

∂t
+ (u, v, w) · ∇S = 0,

(1.4)

with c2 = p′ρ(ρ, S) > 0.
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System (1.4) can be further written into the following symmetric form

L (U)U ≡ A0∂tU +A1(U)∂xU +A2(U)∂yU +A3(U)∂zU = 0, (1.5)

where

A0 =


1
ρc2

0 0 0 0

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
0 0 0 0 1

 , A1 =


u
ρc2

1 0 0 0

1 ρu 0 0 0
0 0 ρu 0 0
0 0 0 ρu 0
0 0 0 0 u

 ,

A2 =


v
ρc2

0 1 0 0

0 ρv 0 0 0
1 0 ρv 0 0
0 0 0 ρv 0
0 0 0 0 v

 , A3 =


w
ρc2

0 0 1 0

0 ρw 0 0 0
0 0 ρw 0 0
1 0 0 ρw 0
0 0 0 0 w

 .
The matrix A−1

0 [A1(U) +A2(U)ξ +A3(U)η] has two simple eigenvalues
λ± and one triple eigenvalue λ0:

λ− = u− vξ − wη − c
√

1 + ξ2 + η2,
λ0 = u− vξ − wη,
λ+ = u− vξ − wη + c

√
1 + ξ2 + η2,

(1.6)

with λ− < λ0 < λ+.
Let x = b(t, y, z) be a smooth surface in (t, x, y, z) space with b(0, 0, 0) =

by(0, 0, 0) = bz(0, 0, 0) = 0. Denote b0(y, z) = b(0, y, z). For the Euler
system (1.1), consider the initial-boundary value problem in the domain
bounded by the moving solid boundary x = b(y, z, t) and the initial plane
t = 0: 

∂tH0(U) + ∂xH1(U) + ∂yH2(U) + ∂zH3(U) = 0,

U(0, x, y, z) = U0(x, y, z) in x ≥ 0,

u− bt − byv − bzw = 0, on x = b(t, y, z), t ≥ 0.

(1.7)

Obviously, (1.1)(1.2) is the special case of (1.7) with b = 0.
The main result of this paper is the following

Theorem 1.1 For the initial-boundary value problem (1.7), assuming the
following condition (A) is the satisfied:
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(A)

{
|bt(0, 0, 0)| < c0, with c2

0 = pρ U0(0,0,0),

u0(0, 0, 0) < bt(0, 0, 0).

Then the problem (1.7) admits a piece-wise smooth solution near the origin
in the domain x > b(t, y, z), t > 0, containing one shock front x = φ(t, y, z)
emanating from the initial curve x = b0(y, z).

Remark 1.1 1. The assumption |bt(0, 0, 0)| < c in Theorem 1.1 is a
necessary condition. Otherwise, the problem (1.7) is not well-posed.
In particular, for the fixed boundary x = 0 in (1.2), the condition is
trivially satisfied.

2. The assumption u0(0, 0, 0) < bt(0, 0, 0) in Theorem 1.1 ensures the
existence of a shock wave. For the special case of fixed boundary x = 0
in (1.4), the condition becomes simply u0 < 0.

3. It is worth mentioning here that if u0(0, 0, 0) > bt(0, 0, 0), there would
be a solution containing a rarefaction wave. Such case will be studied
later in another paper. The degenerate case of u0(0, 0, 0) = bt(0, 0, 0)
would imply either a smooth solution or a solution with weak discon-
tinuity such as sound wave.

In the following, Section 2 will be devoted to the set-up of the problem
and the construction of an approximate solution of infinite order. The prob-
lem will be reformulated in Section 3 by introducing new coordinates in (1.7)
to flatten the boundary x = b(t, y, z) as well as the shock front x = φ(t, y, z).
The linear stability of the transformed equivalent problem will be derived
in Section 4 by combining the results from [3, 7, 12, 13]. Then the existence
of a piece-wise smooth solution containing a shock front will be established
in Section 5 by iteration.

2 Shock wave solution and its approximation

From the solid wall condition u− bt − byv − bzw = 0 on the moving bound-
ary x = b(t, y, z) in (1.7) and the condition u0(0, 0, 0) < bt(0, 0, 0) in the
assumption (A) of Theorem 1.1, it is obvious that the data for the initial-
boundary value problem (1.7) is not compatible in the classical sense and
hence (1.7) admits no classical smooth solution. Therefore we will look for
a piece-wise smooth solution which contains, in the specific case of (A), a
right propagating shock wave.

5



Specifically, a shock wave solution for (1.7) is a set of smooth functions
(U, φ, U∗) near the origin (0, 0, 0, 0) such that

• The shock front S : x = φ(t, y, z) divides the domain x > b(t, y, z), t >
0 into two parts:

Ω = {(t, x, y, z) : b(t, y, z) < x < φ(t, y, z), t > 0}
Ω∗ = {(t, x, y, z) : φ(t, y, z) < x, t > 0}

with
φ(0, y, z) = b(0, y, z), and c0 < φt(0, 0, 0); (2.1)

- x
0
�
�
�
�
�
�

C
C
C
C
C
C
C

Ω∗

Ω
S : x = φ(t, y, z)

C : x = b(t, y, z)

Figure 2.1: Shock wave solution for (1.7)

• U (or U∗) is defined and smooth in Ω (or Ω∗), and satisfies the equa-
tions

∂tH0(U) + ∂xH1(U) + ∂yH2(U) + ∂zH3(U) = 0 (2.2)

in Ω (or Ω∗);

• (U, φ, U∗) satisfies the Rankine-Hugoniot condition on x = φ(t, y, z):

φt[H0]+− − [H1]+− + φy[H2]+− + φz[H3]+− = 0 (2.3)

Here in (2.3), [f ]+− denotes the jump of the value of f across the shock
front.

The Lax’s shock condition [14] implies that the shock front x = φ(t, y, z)
is space-like in front of the shock front, thus the condition in (2.1). So the
flow status U∗ is uniquely determined in Ω∗ by the initial data U0(x, y, z). In
order to find the solution, one needs only to determine the functions (U, φ).
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The set of functions (Ũ , φ̃, Ũ∗) is called an approximate solution of order
k for (1.7) and (2.3), if the following is satisfied near t = 0

∂tH0(Ũ) + ∂xH1(Ũ) + ∂yH2(Ũ) + ∂zH3(Ũ) = O(tk), in Ω

∂tH0(Ũ∗) + ∂xH1(Ũ∗) + ∂yH2(Ũ∗) + ∂zH3(Ũ∗) = O(tk), in Ω∗

φ̃t[H0]+− − [H1]+− + φ̃y[H2]+− + φ̃z[H3]+− = O(tk), on x = φ̃;

U∗(0, x, y, z) = U0(x, y, z) in x ≥ 0,

ũ− bt − byṽ − bzw̃ = O(tk), on x = b(t, y, z), t ≥ 0.

(2.4)

Since U∗ can be uniquely determined by U0(x, y, z), one can simply take
Ũ∗ = U∗, the conditions in (2.4) for Ũ∗ can be dropped. (2.4) can be
simplified into the following conditions containing only (Ũ , φ̃):


∂tH0(Ũ) + ∂xH1(Ũ) + ∂yH2(Ũ) + ∂zH3(Ũ) = O(tk), in Ω

φ̃t[H0]+− − [H1]+− + φ̃y[H2]+− + φ̃z[H3]+− = O(tk), on x = φ̃;

ũ− bt − byṽ − bzw̃ = O(tk), on x = b(t, y, z), t ≥ 0.

(2.5)

Obviously, the existence of the k-th order approximate solution is equiv-
alent to the fact that all the derivatives at t = 0 up to the order of k for
(U, φ) can be uniquely determined by the equations in (2.5) along the initial
sub-surface x = b(0, y, z). For the existence of an infinite order approximate
solution, we have the following theorem

Theorem 2.1 Under the condition (A) in Theorem 1.1, and also assuming
that b(t, y, z) ∈ C∞, U0(x, y, z) ∈ C∞ in the initial-boundary value problem
(1.7) and (2.3), then all the derivatives of (U, φ) at t = 0 can be uniquely
determined by the equations in (2.5) at the intersection x = b(0, y, z), and
consequently, there exists an infinite order approximate solution (Ũ , φ̃).

To prove Theorem 2.1, we need to show that ∀k ≥ 0, all the derivatives
up to the order k of (U, φ) can be uniquely determined at x = b(0, y, z).
First we prove the case k = 0.

The 0-order compatibility does not include any derivatives of U , and
we have 6 variables

U(0, φ0(y, z), y, z), ∂tφ(0, y, z).

to satisfy 6 equations in the boundary conditions of (2.5).
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Due to the continuity in the variables y and z and by the implicit func-
tion theorem, we need only to show that at the origin (0,0,0,0), the system
consisting of six boundary conditions in (2.5) has one solution

U(0, 0, 0, 0), ∂tφ(0, 0, 0).

and the corresponding Jacobian matrix is non-degenerate.
At (0,0,0,0) the six boundary equations in (2.5) become

φt(0)


ρ− ρ0

ρu− ρ0u0

ρv − ρ0v0

ρw − ρ0w0

ρE − ρ0E0

 =


ρu− ρ0u0

p+ ρu2 − p0 − ρ0u
2
0

ρuv − ρ0u0v0

ρuw − ρ0u0w0

(ρE + p)u− (ρ0E0 + p0)u0

 ; (2.6)

u = bt. (2.7)

The variable u is obviously uniquely determined by (2.7). The two vari-
ables (v, w), each appears only in one equation of (2.6), and they all have
non-zero coefficient ρ(φt − u) because φt > bt = u.

Eliminating these three variables from (2.6) and (2.7) and replacing the
energy conservation by the equivalent thermodynamic Hugoniot relation [6],
we obtain a 3× 3 system for (φt, ρ, p):

φt(0)

(
ρ− ρ0

ρu− ρ0u0

)
−
(

ρu− ρ0u0

p− p0 + ρu2 − ρ0u
2
0

)
= 0;

(ρ0 − µ2ρ)p− (ρ− µ2ρ0)p0 = 0;

(2.8)

Here τ = 1/ρ as usual and µ2 = (γ − 1)/(γ + 1).
Because u = bt > u0 in (2.8), there exists a unique solution (ρ, p, φt), by

the shock curve [14] with ρ > ρ0, p > p0 and φt − u0 supersonic and φt − u
subsonic.

Denote by F the left hand sides of the boundary conditions in (2.5), and
J the coefficient matrix of their linearization. We need to show

det J = det
∂F

∂(U, φt)
6= 0, at (0, 0, 0, 0). (2.9)

Similar as in (2.6) and (2.7), the last row of J contains only variable u,
and the variables (v, w) appear only in the third and the fourth rows and
with non-zero coefficients (= ρ0(φt(0)− u0)). We need to consider only the
first two rows and the fifth row for the variables (ρ, p, φt). Also, we may
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replace the energy conservation by the equivalent thermodynamic Hugoniot
relation as in (2.8). The corresponding coefficient matrix is φt(0)− u 0 ρ− ρ0

(φt(0)− u)u −1 ρu− ρ0u0

−µ2p− p0 ρ0 − µ2ρ 0

 (2.10)

Using the relation φt(ρ − ρ0) = ρu − ρ0u0 to simplify the last column, the
determinant of (2.10) is equal to

(ρ− ρ0) det

(
(φt(0)− u)2 1
µ2p+ p0 µ2ρ− ρ0

)
(2.11)

Obviously, (2.11) is non-zero if µ2ρ− ρ0 < 0, which follows readily from the
restrictions on the compression ratio (see [6], p. 148)

µ2 < ρ/ρ0 < µ−2.

The first order compatibility consists of eleven linear equations for
the eleven variables

Ut(0, φ0(y, z), y, z), Un(0, φ0(y, z), y, z), φtt(0, y, z).

Here Un denotes the normal derivative to the shock front x = φ(t, y, z).
Again by the continuity in (y, z) and because the equations for these

variables are linear, we need only to show the Jacobian of these 11 equations
is non-degenerate at (0,0,0,0). In particular at the origin, Un = Ux, φly =
φlz = φry = φrz = θy = θz = 0 and θt = ua = ub = u.

Let (Dφ, Du) be the tangential vectors at the origin in the directions of
the curves x = φ(t, 0, 0) and x = b(t, 0, 0) (noticing bt = u at the origin):

Dφ = ∂t + φt∂x, Du = ∂t + u∂x.

As usual, we will replace the energy conservation by the thermody-
namic Hugoniot relation. Denote by (H04, H14) the first four components
of (H0, H1) and then take tangential derivatives Dφ along x = φ of thus
modified boundary equations in (2.5) in the t-x plane. Evaluating them at
(0,0,0,0), we obtain (here and in the following in this paper, ∗ stands for
terms already determined by lower order compatibility):{

φtt[H04]+− + (φtH
′
04 −H ′14)DφU = ∗,

(p0 + µ2p)Dφρ+ (µ2ρ− ρ0)Dφp = ∗.
(2.12)
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where the 4× 5 matrix (φtH
′
04 −H ′14) is

φtH
′
04 −H ′14 =


φt − u −ρ 0 0 0

u(φt − u) ρ(φt − 2u) 0 0 −1
0 0 ρ(φt − u) 0 0
0 0 0 ρ(φt − u) 0

 .
At the origin (0,0,0,0), the interior equations in (2.5) becomes

Duρ+ ρ∂xu = ∗,
Duu+ 1

ρ∂xp = ∗,
Duv = ∗,
Duw = ∗,
Dup+ ρc2∂xu = ∗.

in Ω (2.13)

Obviously, from the last boundary condition in (2.5) on x = b we have

Duu = ∗, (2.14)

The linear system (2.12)-(2.14) consists of eleven equations for the eleven
variables (φtt, Ut, Ux), where U = (ρ, u, v, w, p). They can be simplified as
follows.

Because Dφ, Du are not parallel, (vt, vx) are uniquely determined by
(Duv,Dφv, ). Since the derivatives of v appears only in one equation in
(2.13) in the form Duv, and also appears only in one equation in (2.12)
in the form Dφv, both with non-zero coefficients, hence (Duv,Dφv) can be
uniquely determined. Therefore (vt, vx) can be eliminated.

Same argument also applies to (wt, wx). Thus, we can eliminate the four
variables (vt, vx, wt, wx) from (2.12)-(2.14) and obtain seven equations for
the remaining seven variables

(φtt, ρt, ρx, ut, ux, pt, px).

Eliminating φtt from (2.12) yields

[
(u− φt)2 2ρ(u− φt) 1
p0 + µ2p 0 µ2ρ− ρ0

]
Dφ

ρu
p

 = ∗. (2.15)

Eliminating Dφρ from (2.15) yields

(m1,m2)Dφ

[
u
p

]
= ∗ (2.16)
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with {
m1 = 2ρ(u− φt)(p0 + µ2p) < 0,
m2 = (p0 + µ2p)− (µ2ρ− ρ0)(u− φt)2 > 0.

(2.17)

Dropping the two equations containing Duv and Duw in (2.13), the
remaining last two equations contain no term of Duρ:{

Duu+ 1
ρ∂xp = ∗,

Dup+ ρc2∂xu = ∗.
(2.18)

Or equivalently

Du

[
u
p

]
+ cE ∂x

[
u
p

]
= ∗, (2.19)

with the operator E defined as (see also [10])

E ≡
[

0 (cρ)−1

cρ 0

]
= E −1. (2.20)

Since Dφ = Du + (φt − u)∂x, we have by (2.19){
Dφ

[
u
p

]
= (I − βE )Du

[
u
p

]
+ ∗, (2.21)

where

β ≡ φt − u
c

> 0, with |β| < 1 (2.22)

by the Lax’ shock inequality.
Replacing (Dφu,Dφp) in (2.16) by (2.21), we obtain:

[
m1−m2βcρ −m1β(cρ)−1+m2

]
Du

[
u
p

]
= ∗. (2.23)

By (2.17) and (2.22), we have

m1 −m2βcρ < 0, −m1β(cρ)−1 +m2 > 0.

Since Duu is already uniquely determined by (2.14), Dup is also uniquely
determined. Consequently (ux, px) are uniquely determined by (2.19). Also,
(Dφρ,Duρ) are uniquely determined by (2.12) and (2.13). This finishes the
proof of the 1st order compatibility.

For the k-th order compatibility, apply Dk
φ to the modified boundary

conditions (2.5) and evaluate them at the origin (0,0,0,0). Also apply Dk−1
u
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to the interior equations and evaluate them at (0,0,0,0). Similar to the first
order compatibility, the nine variables (Dk

φv,D
k−1
φ ∂xv,D

k
φw,D

k−1
φ ∂xw) can

be determined independently and thus be eliminated.
For the remaining seven variables

∂k+1
t φ,Dk

uρ,D
k−1
u ∂xρ,D

k
uu,D

k−1
u ∂xu,D

k
up,D

k−1
u ∂xp,

we have seven equations:
[
ρ
ρu

]+

−
∂k+1
t φ+

[
φt − u −ρ 0

u(φt − u) ρ(φt − 2u) −1

]
Dk
φ

 ρ
u
p

 = ∗;

(p0 + µ2p)Dk
φρ+ (µ2ρ− ρ0)Dk

φp = ∗.

(2.24)


Dk
uρ+ ρDk−1

u ∂xu = ∗,
Dk
uu+ 1

ρD
k−1
u ∂xp = ∗,

Dk
up+ ρc2Dk−1

u ∂xu = ∗.
(2.25)

Dk
uu = ∗. (2.26)

As usual, eliminating ∂k+1
t φ and Dkρ from (2.24) and (2.25), we obtain

(m1,m2)Dk
φ

[
u
p

]
= ∗. (2.27)

Furthermore, we can use (2.25) to replace (Dk
φu,D

k
φp) with (Dk

uu,D
k
up) by

applying the following lemma, see [4, 10]

Lemma 2.1 (Dk
φu,D

k
φp) in (2.25) can be expressed by (Dk

uu,D
k
up) as

Dk
φ

[
u
p

]
= δ(αk − βE )Dk

u

[
u
p

]
= ∗, (2.28)

where 0 < |β| < αk ≤ 1, and δ is a positive constant which may depend on
k and the explicit form of which is of no consequence in our discussion.

We omit the proof here.
Applying the lemma, we can rewrite (2.27) as follows

(m1,m2)δ(αk − βE )Dk
u

[
u
p

]
= ∗, (2.29)

or
[m1αk −m2β(cρ)]Dk

uu+ [−m1β(cρ)−1 +m2αk]D
k
up = ∗ (2.30)
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From (2.17) and (2.22), we have

m1αk −m2β(cρ) < 0, −m1β(cρ)−1 +m2αk > 0.

Combining (2.26) and (2.30), (Dk
uu,D

k
up) are uniquely determined. Then

(Dk−1
u ∂xu,D

k−1
u ∂xp) can also be determined by (2.25), as well as Dk

uρ. Dk
φρ

and consequently Dk−1
u ∂xρ can be determined from (2.24). An induction on

the index j would give all k-th order derivatives forDk−j
u ∂jxρ,D

k−j
u ∂jxu,D

k−j
u ∂jxp

(j = 2, · · · , k). This finishes the proof of k-th order compatibility. Since k
is arbitrary, this implies infinite order compatibility.

Once all the derivatives of (U, φ) can be uniquely determined at t =
0, x = 0, we can construct explicitly an infinite order approximate solution
by the usual Borel technique, see [4]. In particular, for the case considered
in this paper, we also have the following

Remark 2.1 The infinite order approximate solution in Lemma 2.1 can be
constructed such that the condition on the boundary x = b(t, y, z) in (1.7)
and (2.5) be satisfied accurately, i.e.,

ũ− bt − byṽ − bzw̃ = 0, on x = b(t, y, z), t ≥ 0. (2.31)

Indeed, given the approximate solution Ũ , one can construct Û by solving
a linear boundary value problem for the linearized equation of (1.7) at the
approximate solution Ũ with the linear boundary condition

û− bt − byv̂ − bzŵ = −[ũ− bt − byṽ − bzw̃], on x = b(t, y, z), t ≥ 0.

Then (Û + Ũ , φ̃) will be the desired approximate solution.

3 Transformation and Reformulation

To prove the existence of the piece-wise smooth shock wave solution in
Theorem 1.1, we first perform a singular transformation to reformulate the
problem. The purpose of the transformation is to fix the shock front and
straighten the solid boundary x = b(t, y, z), see also [1, 2, 4, 9].

Let
t = t̃, x = ξ(t̃, x̃, ỹ, z̃), y = ỹ, z = z̃. (3.1)

where
ξ(t̃, x̃, ỹ, z̃) = (1− x̃)b(t̃, ỹ, z̃) + x̃φ(t̃, ỹ, z̃)

13



With the transformation (3.1), the domain Ω in the (t, x, y, z) coordinates
becomes a rectanglar region Ω̃ in the (t̃, x̃, ỹ, z̃) coordinates:

Ω̃ = {(t̃, x̃, ỹ, z̃) : 0 < x̃ < 1, t̃ > 0, (ỹ, z̃) ∈ R2}.

The system (1.5) of interior differential equations in the new coordinates
(t̃, x̃, ỹ, z̃) becomes

A0(U)∂t̃U + Ã1(U)∂x̃U +A2(U)∂ỹU + +A3(U)∂z̃U = 0 (3.2)

with

Ã1(U) =
1

∂x̃ξ
(A1(U)−A0(U)ξt̃ −A2(U)ξỹ −A3(U)ξz̃).

Because ∂x̃ξ = O(t̃), the system (3.2) is singular at t̃ = 0 with order O(t̃).
To formally remove this singularity, let (see also [2, 4])

t̃ = τ, with ∂t̃ = e−τ∂τ . (3.3)

The transform (3.3) changes the domain Ω̃ into ω:

ω = {(τ, x̃, ỹ, z̃) : 0 < x̃ < 1, τ > −∞, (ỹ, z̃) ∈ R2}.

In the coordinates (τ, x̃, ỹ, z̃), the system (3.2) becomes

L (U, φ) ≡ ∂τU + ˜̃A1(U)∂x̃U + eτA2(U)∂ỹU + eτA3(U)∂z̃U = 0 (3.4)

with

˜̃A1(U) =
eτ

ξx̃
(A1(U)− e−τξτA0(U)− ξỹA2(U))− ξz̃A3(U)). (3.5)

In addition, we also notice that under the coordinates transform (3.3),
the t̃η-weighted integration in the domain Ω̃ becomes the hyperbolic (η+1)-
weighted integration in ω:∫

Ω̃
t̃η|U(t̃, x̃, ỹ, z̃)|2dt̃dx̃dỹdz̃ =

∫
ω
e(η+1)τ |U (j)(τ, x̃, ỹ, z̃)|2dτdx̃dỹdz̃.

Denote the boundary operators on x̃ = 0, 1 in the coordinates (τ, x̃, ỹ, z̃)
as follows:

• On x̃ = 0:
B(0)(U) ≡ e−τ bτ − u+ vbỹ + wbz̃;
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• On x̃ = 1:

B(1)(U, φ) ≡ ∂τφ[H0]− eτ [H1] + eτ∂ỹφ[H2] + eτ∂z̃φ[H3].

To simplify the notation, we will drop the ˜ in the coordinates (τ, x̃, ỹ, z̃)
in the following, and replace τ by t. In summary, the proof of Theorem
1.1 is reduced to finding the unknown functions (U, φ) near t = −∞ in the
domain ω = {(t, x, y, z) : 0 < x < 1, t > −∞}, satisfying:

• Interior equations:
L (U, φ) = 0 in ω; (3.6)

• Boundary conditions:

B(0)(U) = 0 on x = 0, (3.7)

B(1)(U, φ) = 0 on x = 1; (3.8)

• “Initial” condition:

(U − Ũ , φ− φ̃) = O(eηt) at t = −∞. (3.9)

Remark 3.1 Through these transformations, the fixed boundary function
b(t, y, z) is incorporated into the coefficients of the operators L and B(0),
in the form of ∇b, i.e., containing the derivatives of order one, the same
order as for the variable φ. This fact will not be used in this paper, but will
be useful in future studies.

By the coordinates transformations introduced above, the original initial-
boundary value problem (1.7) with solution containing a shock front is now
transformed into an equivalent problem (3.6)-(3.9). Therefore, in order to
prove Theorem 1.1, we need only to prove the following

Theorem 3.1 There exists a C∞ solution (U, φ) to the boundary value
problem (3.6)-(3.9).

Theorem 3.1 will be proved by linear iteration of (3.6)-(3.9) near the
approximate solution (Ũ , φ̃).
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4 Linearization and energy estimate

First of all, we rewrite the problem (3.6)-(3.9). Let (V, ψ) = (U − Ũ , φ−
φ̃).

By the Taylor formula with Cauchy integral remainder, we have

f(x) = f(x0) +

[∫ 1

0
f ′(x0 + θ(x− x0))dθ

]
(x− x0).

Therefore, the operators L (U, φ) and B(1)(U, φ) in (3.6) and (3.8) can be
written as {

L (U, φ) = L (Ũ , φ̃) + L(V, ψ)(V, ψ),

B(1)(U, φ) = B(1)(Ũ , φ̃) + B(1)(V, ψ)(V, ψ).

Then the problem (3.6)-(3.9) can be rewritten for (V, ψ) as follows
L(V, ψ)(V, ψ) = f ≡ −L (Ũ , φ̃), 0 < x < 1,

B(0)V = B(0)(V ) = 0, x = 0,

B(1)(V, ψ)(V, ψ) = g ≡ −B(1)(Ũ , φ̃), x = 1,

(V, ψ) = O(eηt) at t = −∞.

(4.1)

Here in (4.1), the boundary condition on x = 0 remains unchanged since
B(0) is linear and Ũ satisfies B(0)(Ũ) = 0 accurately.

Consider the following linearization of (4.1):

L(V, ψ)(V̇ , ψ̇) = f, 0 < x < 1,

B(0)V̇ = 0, x = 0,

B(1)(V, ψ)(V̇ , ψ̇) = g, x = 1,

(V̇ , ψ̇) = O(eηt) at t = −∞.

(4.2)

For fixed (V, ψ), (4.2) is a initial-boundary value problem for (V̇ , ψ̇) in the
domain ω. The linear stability of the linearized shock front problem (4.2)
is discussed as follows, by combining the known results for solid boundary
and for shock front.

For Euler system of gas-dynamics, the linearized solid boundary problem
and the linearized shock wave front problem, both have already been well-
studied see, e.g., [12, 13]. Near the solid boundary x = 0 and the shock front
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boundary x = 1, one can obtain the energy estimates and the existence of
solutions.

Let ωT = ω
⋂
{t; t < T} and k = (k0, k1, k2, k3) be the multiple index

with |k| = k0 + k1 + k2 + k3. For any non-negative integer s, let Hs
η(ωT ) be

the η-weighted Sobolev space with the norm

‖U‖2Hs
η(ωT )=

∑
0≤|k|+2m≤s

∫
ωT
|∂k0t Dk1

x ∂
k2
y ∂

k3
z ∂

m
x (e−ηtU(x,y,z,t))|2dydzdxdt, (4.3)

where η is a fixed sufficiently large constant, Dx = x∂x is an operator tan-
gential to the boundary x = 0. The space Hs

η(ωT ) is the usual η-weighted
Sobolev space Hs away from the boundary x = 0. At x = 0, the regularity
in the x-derivatives is reduced, see [1, 7].

The boundary spaces Hs
η(ΓTj ) can be similarly defined with

ΓTj = {x;x = j}
⋂
{t; t < T}, (j = 0, 1).

As with the standard Sobolev space, there are also similar embedding
and trace results for the space Hs

η(ωT ), see also [1].
It is well known from [1, 13] that near the boundary x = 0, the solution

V̇ of (4.2) satisfies the energy estimate

η‖ϕ0V̇ ‖2Hs
η(ωT )

≤ Cs
η
‖f‖2

Hs
η(ωT )

, (4.4)

where ϕ0(x) is a smooth function with ϕ0(x) = 1 near x = 0 and ϕ0(x) = 0
near x = 1.

Near the boundary x = 1, the solution (V̇ , ψ̇) of (4.2) satisfies the energy
estimate [12]

η‖ϕ1V̇ ‖2Hs
η(ωT )

+ ‖V̇ ‖2
Hs
η(ΓT1 )

+ ‖ψ̇‖2
Hs+1
η (ωT )

≤ Cs
(

1

η
‖f‖2

Hs
η(ωT )

+ ‖g‖2
Hs
η(ΓT1 )

)
.

(4.5)

where ϕ1(x) is a smooth function with ϕ1(x) = 0 near x = 0 and ϕ1(x) = 1
near x = 1.

Using the usual localization technique, we can combine the two energy
estimates in (4.4) and (4.5) to obtain an energy estimate for the solution
(V̇ , ψ̇) of (4.2) throughout the domain ωT :

η‖V̇ ‖2
Hs
η(ωT )

+ ‖V̇ ‖2
Hs
η(ΓT1 )

+ ‖ψ̇‖2
Hs+1
η (ωT )

≤ Cs
(

1

η
‖f‖2

Hs
η(ωT )

+ ‖g‖2
Hs
η(ΓT1 )

)
.

(4.6)

17



With the energy estimate (4.6), we can use the standard dual argument
to establish the existence of the solution (V̇ , ψ̇) of (4.2) with specified regu-
larity.

In summary, we obtained the following

Lemma 4.1 For s ≥ 5, there exists a constant δ > 0 such that
∀(V, ψ) ∈ Hs

η(ωT )×Hs
η(ΓT1 ) and

η‖V̇ ‖2Hs
η(ωT ) + ‖V̇ ‖2

Hs
η(ΓT1 )

+ ‖ψ̇‖2
Hs+1
η (ωT )

≤ δ,

the linear problem (4.2), for every (f, g) ∈ Hs
η(ωT )×Hs

η(ΓT1 ), there exists a

unique solution (V̇ , ψ̇) ∈ Hs
η(ωT ) ×Hs

η(ΓT1 ), satisfying the energy estimate
(4.6).

In addition, the constant Cs in (4.6) depends only upon δ and is inde-
pendent of specific (V, ψ).

5 Linear iteration and existence of solution

We are now ready to use linear iteration to establish the existence of
solution for the problem (4.1). In particular, one notices that in the energy
estimate (4.6), the order of regularity is the same for (V̇ , ψ̇) and for (f, g).
So the standard iteration can be used instead of the more sophisticated
Nash-Moser iteration.

Let (V0, φ0) = (0, 0) and (Vn, φn) (n = 1, 2, · · · ) be the solution of the
following linear boundary value problem

L(Vn−1, ψn−1)(Vn, ψn) = f, 0 < x < 1,

B(0)Vn = 0, x = 0,

B(1)(Vn−1, ψn−1)(Vn, ψn) = g, x = 1.

(5.1)

Here, we drop the initial condition in (5.1) because it is automatically sat-
isfied for solutions (Vn, ψn) ∈ Hs

η(ωT )×Hs
η(ΓT1 ).

From Lemma 4.1, we have the following

Lemma 5.1 ∀s ≥ 5, assume that

‖Vn−1‖2Hs
η(ωT ) + ‖Vn−1‖2Hs

η(ΓT1 )
+ ‖ψn−1‖2Hs+1

η (ωT )
≤ δ, (5.2)
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there exists a unique solution (Vn, ψn) of (5.1), satisfying

η‖Vn‖2Hs
η(ωT )

+ ‖Vn‖2Hs
η(ΓT1 )

+ ‖ψn‖2Hs+1
η (ωT )

≤ Cs
(

1

η
‖f‖2

Hs
η(ωT )

+ ‖g‖2
Hs
η(ΓT1 )

)
.

(5.3)

Here, the constant Cs depends upon s and δ, but independent of the (Vn−1, ψn−1).
Now we need only to show that the sequence (Vn, ψn) is well-defined for

some fixed T and it is also convergent in an appropriate norm.

Lemma 5.2 ∃T with −T � 1 such that for all n = 0, 1, 2, · · · , we have

‖Vn‖2Hs
η(ωT ) + ‖Vn‖2Hs

η(ΓT1 )
+ ‖ψn‖2Hs+1

η (ωT )
≤ δ, (5.4)

Proof: By (4.1), f = −L (Ũ , φ̃) and g = −B(1)(Ũ , φ̃). Because (Ũ , φ̃) is
an approximate solution of infinite order in Theorem 2.1, this implies that
for any fixed s,

lim
T→−∞

(
‖f‖2Hs

η(ωT ) + ‖g‖2
Hs
η(ΓT1 )

)
= 0.

Choose −T � 1 such that(
‖f‖2Hs

η(ωT ) + ‖g‖2
Hs
η(ΓT1 )

)
≤ δ

Cs
. (5.5)

Combining (5.5) and (5.3) in Lemma 5.1 yields that (5.4) is satisfied for
n, hence the sequence (Vn, ψn) is well-defined for such T .

Lemma 5.3 The sequence (Vn, ψn) is convergent in the space Hs
η(ωT ) ×

Hs
η(ΓT1 ) to the solution (V, ψ) of (4.1).

Proof: From Lemma 5.2, it is already known that the sequence (Vn, ψn)
is uniformly bounded in the space Hs

η(ωT ) × Hs
η(ΓT1 ). By Banach-Saks

Theorem, we need only to show that (Vn, ψn) is convergent in the space
H0
η (ωT )×H0

η (ΓT1 ).
Let

(V̇n, ψ̇n) = (Vn+1 − Vn, ψn+1 − ψn), n = 0, 1, 2, · · · .
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Then (V̇n, ψ̇n) satisfies

L(Vn, ψn)(V̇n, ψ̇n)

= [L(Vn−1, ψn−1)− L(Vn, ψn)](Vn, ψn), 0 < x < 1,

B(0)V̇n = 0, x = 0,

B(1)(Vn,ψn)(V̇n, ψ̇n)

= [B(1)(Vn−1,ψn−1)−B(1)(Vn,ψn)](Vn, ψn), x = 1.

(5.6)

Applying the estimate (4.6) in Lemma 4.1 with s = 0 to the problem
(5.6), we have

η‖V̇n‖2H0
η(ωT )

+ ‖V̇n‖2H0
η(ΓT1 )

+ ‖ψ̇n‖2H1
η(ωT )

≤ C ′s|||(V̇n−1, ψ̇n−1)|||20 |||(Vn, ψn)|||2s.
(5.7)

Here,
|||(Vn, ψn)|||2s ≡ ‖Vn‖2Hs

η(ωT ) + ‖Vn‖2Hs
η(ΓT1 )

+ ‖ψn‖2Hs
η(ΓT1 )

.

For sufficiently small δ, (5.7) implies that the sequence (V̇n, ψ̇n) is con-
tracting and hence the sequence (Vn, ψn) converges in H0

η (ωT ) × H0
η (ΓT1 ).

This concludes the proof of the existence of solution.
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