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1 Euler system and Riemann problem

Euler system of equations is the governing differential equations describing the state of the inviscid gas

in hydrodynamics. It consists of the conservations of mass, momentum and total energy, and appears

in many applications and has been widely studied both theoretically and numerically. The methods and

techniques in its study are also extended and applied to the study of many other more general systems

of conservation laws. In this article, we try to give a concise review of the achievements and the methods

in the study of the generalized Riemann problem (GRP for short in the sequel) for the Euler system of

equations, especially in the multiple dimensional spaces.

The Euler system for compressible non-viscous flow in 3-D space can be written as follows:



































∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0,

∂t(ρu) + ∂x(p+ ρu2) + ∂y(ρuv) + ∂z(ρuw) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(p+ ρv2) + ∂z(ρvw) = 0,

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(p+ ρw2) = 0,

∂t(ρE) + ∂x(ρEu + pu) + ∂y(ρEv + pv) + ∂z(ρEw + pw) = 0,

(1.1)

where (ρ, p, e) are the density, pressure, and the internal energy of the fluid, (u, v, w) is the velocity in the

(x, y, z) direction, and E = e+ 1
2 (u

2 + v2 +w2). Only two of the three thermodynamic variables (ρ, p, e)

are independent. If the gas is polytropic, then we have the state function p = A(S)ργ with γ > 1.
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Then system (1.1) can be written briefly as ∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0.

A piece-wise smooth function (ρ, p, u, v, w) which has a jump discontinuity along a smooth curve

Φ(x, y, z, t) = 0 is called a weak solution (or simply a solution) if

• (ρ, p, u, v, w) satisfies (1.1) in the two regions ±Φ(x, y, z, t) > 0;

• at Φ(x, y, z, t) = 0, the following Rankine-Hugoniot conditions are satisfied:

Φt[H0]
+
− +Φx[H1]

+
− +Φy[H2]

+
− +Φz[H3]

+
− = 0, (1.2)

where [f ]+− = f+ − f− denotes the jump difference of the function f along the curve Φ(x, y, z, t) = 0.

Introducing the unknown vector of functions U = (p, u, v, w, S), it is well known (see [15, 49]) that for

the smooth solutions, (1.1) is equivalent to the following system:































































∂p

∂t
+ (u, v, w) · ∇p+ ρc2∇ · (u, v, w) = 0,

ρ
∂u

∂t
+ ρ(u, v, w) · ∇u+

∂p

∂x
= 0,

ρ
∂v

∂t
+ ρ(u, v, w) · ∇v +

∂p

∂y
= 0,

ρ
∂w

∂t
+ ρ(u, v, w) · ∇w +

∂p

∂z
= 0,

∂S

∂t
+ (u, v, w) · ∇S = 0,

(1.3)

with c2 = p′ρ(ρ, S) > 0.

System (1.3) can be further written into the following symmetric form:

LU ≡ A0∂tU +A1(U)∂xU +A2(U)∂yU +A3(U)∂zU = 0, (1.4)

where

A0 =
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.

More generally, consider an m×m system of differential equations for U ∈ R
m, i.e.,

n
∑

k=0

Ak(U)∂xk
U = f. (1.5)
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The system (1.5) is called a symmetric quasi-linear hyperbolic system if all the matrices Ak(U) (k =

0, 1, . . . , n) are symmetric and the matrix A0(U) is positively definite.

In system (1.4), A0, A1, A2 and A3 are all symmetric and A0 > 0 for ρ > 0. Therefore, Euler system

of (1.3) is a special case and the most important example of the symmetric hyperbolic system.

The symmetric hyperbolic system has been studied in [20, 29, 30]. [20, 30] also studied a more general

form of positive symmetric system which includes the symmetric hyperbolic system (1.5) as a special

case, and may further include other type of systems, including some mixed type equations.

For (1.5), one may associate an initial condition for U satisfying on x0 = t = 0,

U(x, x0) = U0(x). (1.6)

The combination of (1.5) and (1.6) is called a Cauchy problem. Cauchy problem is one of the basic

problems in the study of partial differential equations.

The well-posedness for the Cauchy problem (as well as initial-boundary value problem, and some other

problems) of the linear symmetric hyperbolic system (1.5) has been well established [20, 21, 30, 48]. It is

also well known that for smooth initial data, the system admits a smooth solution local in time. However,

for the quasi-linear hyperbolic system (1.5), the smooth initial data may develop singularities in finite

time, no matter how smooth the initial data are.

Therefore, it is necessary and important, both in theory and in application, to study the Cauchy

problem with discontinuous initial data. The simplest case with such discontinuous initial data is the

Riemann problem. For the Riemann problem, the initial data U0(x) consist of two constant states on the

two sides of a hyperplane.

Because Euler system of (1.1) is both rotation- and translation-invariant, without loss of generality,

the Riemann problem for the Euler system of (1.1) can be written as














∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0,

U(x, y, z, 0) =

{

U− for x < 0,

U+ for x > 0.

(1.7)

Here in (1.7), (U−, U+) are two constant states for U .

Since the initial data (U−, U+) are independent of the space variables (y, z), the solution U for (1.7)

should also be independent of the space variables (y, z). Therefore, the Riemann problem (1.7) actually

becomes a problem in one space dimension x. Since the (v, w) components of the velocity are all constants,

(1.7) (or (1.1)) becomes



















∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(p+ ρu2),

∂t(ρE) + ∂x(ρEu+ pu) = 0,

(ρ, u, E)(0, x) =

{

(ρ−, u−, E−), for x < 0,

(ρ+, u+, E+), for x > 0.
(1.8)

The Riemann problem (1.8) has been extensively studied by many authors. In general, a solution

for (1.9) may contain three different waves: shock wave, rarefaction wave and contact discontinuity.

A shock wave is a solution which contains a jump discontinuity in (ρ, p) as well as the normal velocity

along a curve (shock front) x = φ(t) and satisfies the Rankine-Hugoniot conditions (1.2).

A rarefaction wave is a simple wave where one Riemann invariant is a constant.

A contact is a characteristic curve along which the velocity u and the pressure p are continuous, but

the density ρ may have a jump discontinuity.

For the Riemann problem (1.8), or more generally, for the Riemann problem of a hyperbolic conserva-

tion laws, the following result is well-known [15, 16, 49].

Theorem 1.1. For a system of hyperbolic conservation laws, if each characteristic field is either

genuinely nonlinear or linearly degenerate, the two initial states are sufficiently close to each other,

then the Riemann problem has a solution, which consists of shocks, centered simple waves and contact

discontinuity.
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2 GRP for 1-D Euler system of equations

The generalized Riemann problem (or GRP) [40] for the Euler system of equations (1.1) is the following:














∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0,

U(x, y, z, 0) =

{

U−(x, y, z) for x < φ0(y, z),

U+(x, y, z) for x > φ0(y, z).

(2.1)

Here in (2.1), φ0(y, z) is a smooth surface with (without loss of generality) φ0(0, 0) = 0 and ∇φ0(0, 0) = 0.

(U−, U+) are two smooth functions in x < φ0(y, z) and x > φ0(y, z), respectively.

The simplest form of GRP (2.1) is the case when φ0(y, z) = 0 and the initial data (U−, U+) are

functions of the variable x only. Then the GRP (2.1) can be written as:
















































∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(p+ ρu2) = 0,

∂t(ρE) + ∂x(ρEu + pu) = 0,

U(x, 0) =

{

U−(x) for x < 0,

U+(x) for x > 0.

(2.2)

Indeed, the initial value problem (2.2) can be reduced to the case of one space dimension and the

solution U(x, y, z, t) = U(x, t).

For the nonlinear hyperbolic system with two independent variables, there have long been many re-

search works. The local existence of C1 solutions to the Cauchy problem of 1-D Euler equations (or more

general nonlinear hyperbolic systems) was established by Friedrichs [19] and Douglis [17].

When the initial data are not piece-wise constant, the 1-D GRP (2.2) has been extensively studied

in [22–24,31–34], as well as the monograph [40]. A complete theory about the piece-wise smooth solutions

for (2.2) has been established in their work. In particular, the approach in [34,40] was to fold the different

regions separated by the wave boundaries into a standard corner domain, coupled with the functions

defining the free boundary. For the resulting boundary value problem, there is no characteristic curve

entering into the region from the origin. It was called the typical boundary value problem in [34,40], and

was thoroughly studied. By using the technique and estimate of integration along the characteristics,

they then obtain the existence of the piece-wise smooth solution.

Specifically, consider the following special Riemann problem obtained from (2.2) by freezing the initial

data at the origin (x, t) = (0, 0):
















































∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(p+ ρu2) = 0,

∂t(ρE) + ∂x(ρEu + pu) = 0,

U(x, 0) =

{

U−(0) for x < 0,

U+(0) for x > 0.

(2.3)

Then we have the following [40].

Theorem 2.1. For the generalized Riemann problem (2.2) for the Euler equations, if |U−(0)−U+(0)|
is sufficiently small, then there is a piece-wise smooth solution near the origin which contains exactly the

same wave patterns (including shocks, centered simple waves and contact discontinuities) as the corre-

sponding Riemann problem (2.3).

In particular, they showed that for the GRP (1.1) and (2.2) with non-constant initial data (U−(x),

U+(x)), one still has the similar wave structure as Riemann problem, i.e., the solution may contain shock,

rarefaction wave and contact discontinuity.

The literature on the 1-D GRP is very rich and numerous. Readers are referred to [16, 40] for more

references.
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3 GRP for 3-D Euler equations: Shock waves

For the genuine 3-D GRP (2.1), one has to deal with some new difficulties.

(1) First, the characteristic curves in 1-D case become characteristic varieties and the usual integration

along characteristic curves and the estimate in C1 norms do not work anymore.

(2) The function x = φ(y, z, t) describing a 3-D wave boundary (such as shock front, simple wave

or contact discontinuity) cannot be estimated without loss of regularity from a single relation in the

Rankine-Hugoniot conditions, and has to be dealt with more delicate analysis.

(3) There are new wave structures for the contact discontinuity, i.e., instead of only discontinuity in

the density, there could also be a jump in the tangential flow velocity, or vortex sheet, which is known to

be linearly instable in general.

The first result for the genuine 3-D GRP for the Euler equation (1.1) was obtained by Majda [41, 42]

for the 3-D shock waves.

A 3-D shock wave for (1.1) consists of a piece-wise smooth solution U of (1.1) and a smooth surface

φ(x, y, z, t) = 0 along which U has a jump discontinuity and satisfies the Rankine-Hugoniot conditions

φt[H0]
+
− + φx[H1]

+
− + φy [H2]

+
− + φz[H3]

+
− = 0. (3.1)

For the stability of the shock wave, we will always assume that the shock is compressive so that Lax’s

shock inequality is satisfied.

In [42], the stability of the linearized 3-D shock wave problem is established, and the existence of a

solution containing a shock issuing from a prescribed smooth curve x = φ0(y, z) is obtained.

The key issue in his success is the derivation of an a priori energy estimate for the solution (including

both U and φ) of the linearized shock front problem.

After some coordinates transformation to fix and flatten the free boundary, the linearized shock front

problem of (1.1) can be reduced to an initial-boundary value problem for the perturbation unknown

function (U̇ , ϕ̇) in the domain Ω = {(x, y, z, t) : x > 0, t > 0}, i.e.,


































A0(U, φ)∂tU̇ +A1(U, φ)∂xU̇ +A2(U, φ)∂yU̇ +A3(U, φ)∂zU̇

+C(U, φ)(U̇ , ϕ̇t,∇ϕ̇) = f, in x > 0, t > 0,

[H0]
+
−∂tϕ̇+ [H2]

+
−∂yϕ̇+ [H3]

+
−∂zϕ̇

+B(U, φ)U̇ = g, on x = 0, t > 0,

U̇(x, y, z, 0) = 0, ϕ̇ = 0, x > 0, t 6 0.

(3.2)

Here in (3.2), C(U, φ) is a zero-order operator on (U̇ , ϕ̇t,∇ϕ̇), and B(U, φ) is a 5×5 matrix, derived from

the linearization with respect to U only of the Rankine-Hugoniot condition.

Since the first order derivatives of ϕ̇ appear in the form of C(U, φ)(U̇ , ϕ̇t,∇ϕ̇) in the interior equations

of (3.1), one has to derive the estimate for (ϕ̇t,∇ϕ̇) from the boundary condition in (3.1). The key in the

linear stability analysis in [42] is to notice that the boundary operator for ϕ̇, [H0]
+
−∂t+[H2]

+
−∂y+[H3]

+
−∂z

is an over-determined 1st order elliptic system. One can obtain the estimate for the first-order derivative

norm of ϕ̇ only by deriving it micro-locally on the unit circle in the dual space of (t, y, z). This necessitates

considering the boundary value problem for a hyperbolic system with boundary conditions given by zero

order pseudo-differential equations, instead of the usual algebraic equations. It happens that the uniform

Lopatinsky condition for the initial-boundary value problem of hyperbolic system in [28] has exactly the

micro-local form in the dual space which provides the necessary and sufficient conditions for the linear

stability of multi-D shock front.

The main result of [42] is the derivation of the a priori energy estimate, assuming Lax’s shock inequality,

for the solution (U, φ) of (1.1) and (3.1),

η‖U̇‖2
Hs

η(Ω) + ‖U̇‖2
Hs

η(∂Ω) + ‖φ̇‖2
H

s+1
η (∂Ω)

6 Cs

(

1

η
‖f‖2

Hs
η(Ω) + ‖g‖2

Hs
η(∂Ω)

)

. (3.3)

Here ‖ · ‖Hs
η
is the usual η-weighted norm of Sobolev space Hs

η .

sujia
高亮
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Using the energy estimate (3.3) and assuming some necessary but complicated compatibility conditions

on the initial data (U0, φ0), Majda [41] proved the existence of shock wave solution (U, φ) for (1.1)

and (3.1), using the Newtonian iteration which, however, is not necessary here and can be replaced by a

simpler modified iteration, see [4].

Notice that the success of the iteration in [4,41] depends upon the nature of the energy estimate (3.3),

where the order of the estimated norms for (U̇ , φ̇) matches exactly with the order of (U, φ) appearing in

the coefficients in the linearized problem (3.2). This will not be the case for other nonlinear waves in

three dimensional case.

Applying similar technique to the second order quasi-linear equations, the 3-D shock wave for an

isentropic irrotational flow is studied in [44]. The combination of two shock waves was studied in [45] for

a 2-D 2×2 conservation laws, and was obtained for 3-D Euler equations using the result obtained in [42],

coupled with a blow-up at the origin, and by a simplified iteration procedure. Also the sonic wave was

studied in [46] as the limit of a shock wave as shock strength goes to zero.

4 GRP for 3-D Euler equations: Rarefaction waves

The genuine 3-D rarefaction wave solution for the Euler equations (1.1) was first obtained by Alinhac [1].

To simplify our presentation, we will assume in the following that (1.1) has already been reduced to the

form ∂U
∂t

+A1
∂U
∂x

+A2
∂U
∂y

+A3
∂U
∂z

= 0.

Without loss of generality, consider the right-propagating rarefaction wave. A right-propagating rar-

efaction wave solution for (1.1) can be formulated as a set of smooth functions (U−, Ur, χ, U+) near the

origin (0, 0, 0, 0) such that

• (U−, Ur, U+) satisfies (1.1) separately in each of the corner domains (Ω−,Ωr,Ω+) defined by (see

Figure 1)














Ω− = {x < χ−(t, y, z), t > 0},
Ωr = {χ−(t, y, z) < x < χ+(t, y, z), t > 0},
Ω+ = {χ+(t, y, z) < x, t > 0},

(4.1)

with φ0(y, z) = χ−(0, y, z) = χ+(0, y, z).

• x = χ(t, s, y, z), (0 6 s 6 1) is a parametrization of the domain Ωr with χ(t, 0, y, z) = χ−(t, y, z),

χ(t, 1, y, z) = χ+(t, y, z) and χs = γ(t, s, y, z)t with γ(t, s, y, z) > δ > 0. Indeed, x = χ(t, s, y, z) (0 6 s

6 1) is a family of characteristics issuing from Γ for each s ∈ [0, 1], such that

det |A1 − χt − χyA2 − χzA3| = 0, (4.2)

or more specifically,

χt = λ+(Ur;∇χ), (4.3)

where λ+(U ;φ) is the maximal eigenvalue of A1 − χyA2 − χzA3.

• Let the function W (t, s, y, z) be defined by

W (t, s, y, z) = Ur(t, χ(t, s, y, z), y, z). (4.4)

Then W (t, s, y, z) satisfies

L̃W ≡ χs

(

∂W

∂t
+A2

∂W

∂y
+A3

∂W

∂z

)

+ (A1 − χt − χyA2 − χzA3)
∂W

∂s
= 0. (4.5)

Since the surface x = χ+(t, y, z) is characteristic for (1.1), the function U+ is uniquely determined

in Ω+ by the initial data U0+(x, y, z). To find the rarefaction wave solution, one needs only to determine

the functions (U−,W, χ).

The existence of the rarefaction wave is obtained by the energy estimate for the linearized problem

and then by iteration.
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Figure 1 Rarefaction wave solution for (1.1)

- x̃

6
t̃

0 1

Ω1Ω0

Figure 2 Rarefaction wave configuration on (t̃, x̃) plane

First of all a singular coordinates transformation is performed to change the angular domains (Ω−,Ωr)

into standard cylindrical domains (Ω0,Ω1) with fixed boundary (see Figure 2)

Ωj = {(t̃, x̃, ỹ, z̃) : t̃ > 0, j − 1 < x̃ < j}, j = 0, 1.

We drop the tilde in the coordinates (t̃, x̃) to simplify the notation.

The linearization of the transformed rarefaction wave problem yields a boundary value problem for

a symmetric hyperbolic system, which has first order degeneracy at t = 0 in Ω1, with characteristic

boundary conditions on x = 0 and x = 1. Because of the degeneracy at t = 0, a tγ weighted norm is used

in deriving the energy estimate ‖U‖2
H0

γ(Ω) =
∫

Ω
t2γ |U(t, x, y, z)|2dtdxdydz.

Briefly writing the linearized rarefaction wave problem as follows:

{

La(U, φ)(V̇ , φ̇) = Ḟ ,

Ba(U, φ)(V̇ , φ̇) = Ġ,
(4.6)

the solution (V̇ , φ̇) of (4.6) then satisfies the following estimate:

‖V̇ ‖Hs
γ(Ω) + ‖φ̇‖Hs−1

γ (∂Ω) 6 C[‖Ḟ‖Hs
γ(Ω) + ‖Ġ‖Hs+1

γ (∂Ω)]. (4.7)

The outstanding feature in (4.7) is the loss of regularity in the solution (V̇ , φ̇) compared with the

data (Ḟ , Ġ). Such kind of energy estimates are also called tame estimates as in [25] which are present

for a wide range of problems where various kinds of degeneracy are involved. This necessitates the use

of the Nash-Moser type of iteration [25, 26, 47]. Nash-Moser iteration (or Nash-Moser implicit function

theorem) is a powerful tool to establish the existence of solution for some nonlinear problems of which

the linearized problems have an energy estimate with loss of regularity order. It was first applied to

the nonlinear elliptic problem and later adapted to the evolutionary equations [27]. It is a modified

Newtonian iteration, consisting of a mollification at every step of iteration and is coupled with further

minor modifications according to the nature of the problem. In [1], the iteration process has to make

more adjustment to accommodate the errors induced from the requirement of uniformly characteristic

boundary, see [48]. Finally, the local existence of the solution with a rarefaction wave for the Cauchy

problem of (1.1) was successfully proved in [1] by using Nash-Moser iteration, provided the corresponding

compatibility conditions on the initial data are satisfied.

Incorporating the techniques for both the 3-D shock waves in [41,42] and 3-D rarefaction waves in [1],

a combination of shock and rarefaction waves for 3-D Euler equations was also obtained in [35].
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5 GRP for Euler equations: Contact discontinuity

A vortex sheet solution (or contact discontinuity) of (1.1) is a set of functions (U−, U+, φ) such that

(1) (U−, U+) satisfy (1.1) in the domains x± φ(y, z, t) > 0, respectively.

(2) On the surface x = φ(y, z, t), a special set of Rankine-Hugoniot conditions is satisfied, i.e.,

u± − φyv± − φzw± = 0, and p− = p+. (5.1)

Of all the three types of waves for the 3-D Euler equations, i.e., shock, rarefaction wave and contact

discontinuity, the solution containing a contact discontinuity (or vortex sheet) is the most elusive to

obtain. Indeed, it is shown in [2, 3] that a genuine 3-D vortex sheet is highly unstable and various kinds

of kinks would develop with minor perturbation.

Nevertheless, Coulombel and Secchi [12] showed that in the two-dimensional case, if the tangential

velocity jump is suitably large, the linearized vortex sheet is stable in a weak sense. In addition, based

upon this fact, they also obtained in [13, 14] the existence of such vortex sheet solution.

In [12], a special parametrization and hence coordinate transformation, inspired in [18], is chosen to

satisfy the eikonal equations ∂tφ± + v±∂yφ± − u± = 0 so that the contact discontinuity is uniformly

characteristic in the whole concerned domain.

Consequently, after folding the domain x < 0 into x > 0, the linearized vortex sheet problem for (U̇ , φ̇)

can be written as the following boundary value problem:



























∂tU̇ +A1(U)∂xU̇ +A2(U)∂yU̇ = f, in x > 0,

B(U̇ , φ̇) ≡









(v+ − v−)∂yφ̇− (u̇+ − u̇−)

∂tφ̇+ vr∂yφ̇− u̇+

ρ̇+ − ρ̇−









= g, on x = 0.
(5.2)

For the linearized vortex sheet problem (5.2), the following is proved in [12].

Theorem 5.1. If the tangential velocity difference satisfies “supersonic” condition

|v+ − v−| > 2
√
2c, (5.3)

where v± is the tangential velocity in the both sides of the curve carrying initial discontinuity, c is the

corresponding sound speed, then a weakly Lopatinsky condition in the sense of [43] is satisfied, and hence

the result obtained in [43] is applicable. An energy estimate of the following form is obtained:

η‖U‖2H0
γ(Ω) + ‖U‖2H0

γ(∂Ω) + ‖φ‖2H1
γ(∂Ω) 6 C

[

1

η
‖f‖2H1

γ(Ω) + ‖g‖2H1
γ(∂Ω)

]

, (5.4)

which shows the loss of one order regularity and it is the so-called “tame” estimate in [25].

A k-th order version of the energy estimate (5.4) is also available.

The two important features in the proof of Theorem 5.1 are the following:

• Notice that the operator on φ̇ in B(U̇ , φ̇),

{

(v+ − v−)∂yφ̇,

∂tφ̇+ vr∂yφ̇,

is an overdetermined first order elliptic system, similar to the operator [H0]
+
−∂t + [H2]

+
−∂y + [H3]

+
−∂z

in (3.2) for the linearized shock wave problem. It is also obvious from here that the “2-D” condition is

necessary and cannot be generalized into the “3-D” case.

• Eliminating microlocally φ̇ from the boundary conditions in (5.2) yields a boundary value problem

with microlocal boundary conditions for U̇ and with uniformly characteristic boundary. One can apply

the result in [43]. Indeed, the requirement (5.3) in Theorem 5.1 is equivalent to the weakly Lopatinski
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condition in [43], which is nothing but the uniformly Lopatinski condition applied to the non-degenerate

components of the variable U̇ .

Using the “tame” energy estimates of (5.4) and all its high-order version, the Nash-Moser type of it-

eration is used in [13]. To accommodate the uniform characteristic requirement in the weakly Lopatinski

condition [43], extra modification errors were introduced, in addition to the usual quadratic and mollifi-

cation errors. Such errors also need to be taken into account when performing the Nash-Moser iteration.

Specifically, for the following GRP of 2-D Euler equations:














∂tH0 + ∂xH1 + ∂yH2 = 0,

U(x, y, 0) =

{

U−(x, y) for x < φ0(y),

U+(x, y) for x > φ0(y),

(5.5)

it is obtained in [13].

Theorem 5.2. Let

• φ0(y) be sufficiently smooth with φ0(0) = φ0y(0) = 0;

• (U−, U+) be sufficiently smooth in their respective domain and satisfy on x = φ0(y) :

p− = p+, u± − v±φ0y = 0;

• |v+ − v−| > 2
√
2c.

Then (5.5) has a unique piece-wise smooth vortex sheet solution (U−, U+, φ) near the origin, provided

the corresponding compatibility condition on x = φ0(y).

6 GRP for Euler equations with all three waves

In all the above work, three nonlinear waves are studied separately [1, 12, 13, 41, 42] or at most the

combination of two waves. Special care has to be taken in the above studies to ensure that only the

desired waves are present, usually in the form of complicated compatibility conditions. As is well known

from the 1-D GRP, given an arbitrary piece-wise smooth initial data, the solution should contain all three

different waves in general. To obtain such a solution, we need to combine the techniques used in all the

previous studies for different waves.

A solution containing all three possible nonlinear waves (shock, rarefaction wave and vortex sheet)

for isentropic 2-d Euler system has been obtained by Chen and Li [10]. The main result of [10] is the

following.

Theorem 6.1. Assume that P is a point on the initial discontinuity curve of the initial data (U0−, U0+),

and

(1) the 1-D simplified model at P (which is a 1-D Riemann problem) has a solution containing a

complete nonlinear wave patterns (non-degenerate shock or rarefaction wave) with shock satisfying Lax’s

shock inequality;

(2) at the point P , the supersonic tangential velocity condition (5.3) is satisfied.

Then the 2-D generalized Riemann problem of the isentropic Euler system admits a unique piece-wise

smooth solution with fan-shaped wave structure containing shock, rarefaction wave and vortex sheet in a

neighborhood of P .

Main steps of the proof are as follows:

(1) First of all, the compatibility issue is discussed and an approximate solution of infinite order is

constructed.

(2) Reformulate the problem by fixing and flattening the free boundaries.

(3) Linearize the problem and obtain the energy estimates first locally for each wave structure and

then combine them together to establish a unified estimate in the whole domain. Here, because of the

different regularity in the energy estimates in separate domains, special attention needs to be paid when

combining these estimates.
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(4) Finally, Nash-Moser iteration is used to obtain the existence of the desired solution by choosing

appropriate parameters to ensure the convergence of a sequence of approximate solutions.

One common feature for all the three waves discussed above, whether they are shock, rarefaction waves,

or 2-D contact discontinuity, is that the iteration to establish the existence of solution need to be carried

out near an approximate solution, and the existence of such an approximate solution is a necessary

condition to have a piece-wise smooth solution. In other words, the existence of any such waves requires

the initial data to be compatible. The compatibility condition is the set of algebraic equations on the

value of the initial data U0± at the initial jump curve x = φ0(y, z), together with all their derivatives

up to the order k. They consist of many algebraic equations, and the higher the order k is, the more

complicated the system of algebraic equations become, and the harder it is to check and satisfy all these

conditions.

However, since it is a necessary condition, one cannot avoid it but has to assume it as a prerequisite

condition in all the above-listed work, see [1, 4, 13, 35, 41]. In the 1-D case, this is not an issue since the

classical solution only requires the first order compatibility. In the high-dimensional case, the issue is no

more negligible because of the use of Sobolev space Hk where k > n+1
2 is larger than one. It becomes

very important in the case of rarefaction wave or contact discontinuity when Nash-Moser iteration is used

and a very high order of compatibility is required.

It is remarkable to notice that such complicated high order compatibility requirements become auto-

matically satisfied, if the 0-order compatibility condition is satisfied. In other words, the compatibility

issue becomes trivial, by treating all three waves together, rather than each separately. Indeed, the

following theorem is proved in [10] (and later on expanded to the general case in [36]).

Theorem 6.2. For the generalized Riemann problem (1.8), if the Riemann problem with constant

data frozen at the origin has a solution with complete nonlinear wave configuration, then the initial data

in (1.8) for the M-D Euler system is automatically compatible of infinite order for a corresponding M-D

solution.

7 Further considerations

In the previous sections we reviewed the progress in the study of the GRP for multi-dimensional Euler

equations. As we can see, the picture is still incomplete compared with the 1-D case.

(1) First of all, even for the 2-D Euler equations, the supersonic condition (5.3) is required to ensure

the existence of the solution to GRP. Comparing with the known result in 1-D case, it is natural to ask

if such a condition can be eliminated or weakened. Because of the instability of the linearized vortex

sheet, it seems impossible to try to establish the existence by usual linear iteration. However, since the

complete set of nonlinear waves are considered, it is still unknown if the appearance of shock waves could

offer some stability effect to get rid of the condition (5.3).

(2) The similar question can be asked to the existence of solution containing all three waves for genuine

3-D Euler system. The difficulty involved is fundamental, because of the nature of instability of linearized

vortex sheet.

(3) Using the same idea as in [10] the initial-boundary value problems for multi-dimensional Euler

system are studied with general data [37]. It has been attempted to combine the solutions of two initial-

boundary value problems as in [37] to construct the solution containing vortex sheet, but so far without

much progress in this direction.

(4) One promising direction in the study of GRP is the degenerate case. In [10], all possible waves

(whether shock wave, rarefaction wave, or contact discontinuity) are non-degenerate. However, as men-

tioned in [36], from the viewpoint of compatibility, these waves could be degenerate, as long as some kind

of uniformness is maintained. The existence problem containing such degenerate waves is still open. We

believe that similar existence results could be obtained along similar line, or with some minor modification

of methods.
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(5) Finally, the GRP considered above for multi-dimensional Euler system is indeed quasi-one dimen-

sional. However, even for the 2-D case, one may consider another generalization of Riemann problem,

when the initial data are assumed to be different constants in different angular domains (see [5, 6, 50]).

Even with such simple data the problems are much more difficult than in 1-D case. With their im-

portance in application, they become a big topic in partial differential equations. So far there are few

rigorous theoretical results on this topic. A rigorous proof on the existence of the solution is estab-

lished for the Chaplygin gas in [11]. As for the polytropic gas, an existence result is obtained in [38],

where the gas-expansion problem is treated and is regarded as a special case of the corresponding multi-

dimensional Riemann problem. Other discussions on multi-dimensional Riemann problems can also be

found in [7–9, 39, 50] and the references cited therein.
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