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Abstract

The paper studies the compatibility of the Cauchy data which have
a jump discontinuity for the non-isentropic 3-d Euler system. For a
complete range of combinations of waves including shocks, rarefaction
waves, and contact discontinuity, it is shown that the data is compati-
ble of infinite order if the corresponding 1-d Riemann problem admits
such a solution.

1 Introduction

In the study of the initial-boundary value problems for evolutionary equa-
tions, such as the Euler system in gas-dynamics, one of the necessary condi-
tions for the existence of smooth solution is the compatibility [15, 17]. For
the more complicated free-boundary problems where solutions may contain
various discontinuities, such as shock wave, rarefaction wave, or vortex sheet,
the compatibility requirements are also always imposed, see [1, 11, 12, 5],
also [2, 9].

Look at the typical initial-boundary value problem for an n×n hyperbolic
system

∂tu+A1∂xu+A2∂yu+A3∂zu+ Cu = f. (1.1)

u(0, x, y, z) = u0(x, y, z), x ≥ 0, (1.2)

Bu(t, 0, y, z) = g(t, y, z), t ≥ 0, (y, z) ∈ R2. (1.3)
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In order to have a solution which is continuous at t = 0, x = 0, we must
have by (1.2)(1.3), Bu0(0, y, z) = g(0, y, z) for all (y, z) ∈ R2. In order that
the solution has continuous first order derivative, we must have the value of
ut determined by (1.1)(1.2) satisfying (1.3), i.e., But(0, 0, y, z) = gt(0, y, z).
Similarly are derived the higher order compatibilities which contain many
equations for the values of the initial and boundary data and their derivatives
along the intersection of the initial plane and the boundary surface.

For Euler equations, a piecewise smooth solution may contain such dis-
continuities such as shock, rarefaction wave, contact discontinuity and/or
vortex sheet [8, 16]. The mathematical formulation for such solution is
a free-boundary value problem which requires similar compatibility of the
initial data. Such compatibility conditions consist of a large simultaneous
system of algebraic equations for the values of initial data and their deriva-
tives along the initial discontinuity surface. For high order of compatibility,
the conditions are not only difficult to satisfy, but also very tedious to verify
for a given set of initial data.

The compatibility requirement is not a big concern in the one space
dimension [10], where the solution is sought in the space of C1 is required
to be only continuous up to the boundary. In other word, the required
compatibility is of order 0.

However, in high space dimension where the solution is usually found in
the Sobolev space Hk, high value of k is needed in order to perform linear
iteration and to obtain classical solution by the imbedding theorem. The
compatibility becomes especially an issue if the linearized problems have only
weak estimates (tame estimate [7]) and Nash-Moser iteration is needed in
establishing the existence of solution, see [1, 5]. In such cases, it is usually
required that one works in the space Hk with k sufficiently large which
can only be determined in the process of the iteration. In addition, when
rarefaction wave is involved or two waves intersect, [2, 9], the high order
weighted norms also demand a high order approximate solution [1, 2, 9].
The magnitude of such high order k is usually very complicated to determine
explicitly.

In studying the existence of a specific wave structure with central vortex
sheet for 2-d isentropic Euler equations, it was shown in [3] that if all three
waves are non-degenerate, the high order compatibility requirement can be
satisfied from the 0-order compatibility with usual Lax’ shock inequality.
This is a big simplification on the usually cumbersome but necessary com-
patibility requirement.

This paper intends to expands the result for the special case in [3] to
the more general cases. We will consider not only the non-isentropic 3-
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d Euler system, but also the more general wave combinations, including
the contact discontinuity which could be a density jump, a vortex sheet,
or their combination or even their degeneration – a weak discontinuity. In
addition, the result will also apply (with minor adjustment) to the sound
waves, treated as a degenerate rarefaction wave, see also [13].

It is important to emphasize that we are here concerned only with the
compatibility aspect of all these wave combinations, with no regard to their
linear stability or existence. Indeed, it is well-known that 3-d vortex sheet
are highly unstable, see e.g. [4]. However, the compatibility result obtained
here can be a useful tool in the study of the existence of various waves
where a weak linear stability does hold, like the 2-d non-isentropic vortex
sheet with tangential speed difference larger than a critical value [5, 14],
or the genuine contact discontinuity without tangential velocity jump [4],
or sound wave cases [13]. These topics are not addressed here and will be
studied in future works.

In the following, the Cauchy problem for the Euler system will be for-
mulated and the main theorem presented in section 2. Sections 3, 4, 5 will
discuss the compatibility of three different combinations of the waves.

2 Cauchy problem for 3-D non-isentropic Euler system with
piecewise smooth initial data

Let (ρ, p, e) be the density, pressure, and the internal energy of the fluid,
(u, v, w) be the velocity in the (x, y, z) direction. The Euler system of com-
pressible flow in 3-D space can be written as follows:

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0,

∂t(ρu) + ∂x(p+ ρu2) + ∂y(ρuv) + ∂z(ρuw) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(p+ ρv2) + ∂z(ρvw) = 0,

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(p+ ρw2) = 0,

∂t(ρE) + ∂x(ρEu+ pu) + ∂y(ρEv + pv) + ∂z(ρEw + pw) = 0,

(2.1)

with E = e+ 1
2(u2 + v2 + w2).
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Denote

H0 =


ρ
ρu
ρv
ρw
ρE

 , H1 =


ρu

p+ ρu2

ρuv
ρuw

(ρE + p)u

 , H2 =


ρv
ρuv

p+ ρv2

ρvw
(ρE + p)v

 , H3 =


ρw
ρuw
ρvw

p+ ρw2

(ρE + p)w

 .

Then system (2.1) can be written briefly as

∂tH0 + ∂xH1 + ∂yH2 + ∂zH3 = 0,

and the corresponding Rankine-Hugoniot condition on the shock front x =
φ(t, y, z) is

φt[H0]
1
0 − [H1]

1
0 + φy[H2]

1
0 + φz[H3]

1
0 = 0. (2.2)

Here as usual, [f ]10 denotes the difference between the status ahead of and
behind the shock front x = φ(t, y, z).

Introducing the unknown vector of functions U = (p, u, v, w, S), it is well-
known (see e.g., [6]) that for smooth solutions, the system (2.1) is equivalent
to the following system

∂tp+ (u, v, w) · ∇p+ ρc2∇ · (u, v, w) = 0,

ρ∂tu+ ρ(u, v, w) · ∇u+ ∂xp = 0,

ρ∂tv + ρ(u, v, w) · ∇v + ∂yp = 0,

ρ∂tw + ρ(u, v, w) · ∇w + ∂zp = 0,

∂tS + (u, v, w) · ∇S = 0,

(2.3)

with c2 = p′ρ(ρ, S) > 0.
System (2.3) can be written as the following symmetric form

LU ≡ A0∂tU +A1(U)∂xU +A2(U)∂yU +A3(U)∂zU = 0,

where

A0 =


1
ρc2

0 0 0 0

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
0 0 0 0 1

 , A1 =


u
ρc2

1 0 0 0

1 ρu 0 0 0
0 0 ρu 0 0
0 0 0 ρu 0
0 0 0 0 u

 ,
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A2 =


v
ρc2

0 1 0 0

0 ρv 0 0 0
1 0 ρv 0 0
0 0 0 ρv 0
0 0 0 0 v

 , A3 =


w
ρc2

0 0 1 0

0 ρw 0 0 0
0 0 ρw 0 0
1 0 0 ρw 0
0 0 0 0 w

 .
The matrix A−10 [A1(U)+A2(U)φy+A3(U)φz] has two simple eigenvalues

λ± and one triple eigenvalue λ0:

λ− = u− vφy − wφz − a
√

1 + φ2y + φ2z,

λ0 = u− vφy − wφz,
λ+ = u− vφy − wφz + a

√
1 + φ2y + φ2z,

(2.4)

with λ− < λ0 < λ+.
Let Γ : x = φ0(y, z) be a smooth surface in the initial space R3 with

φ0(0, 0) = 0 and ∇φ0(0, 0) = 0. Consider the Cauchy problem for (2.1) with
the initial data given as

U =

{
U−(x, y, z), if x < φ0(y, z),

U+(x, y, z), if x > φ0(y, z).
(2.5)

Here U−(x, y, z), U+(x, y, z) are smooth in their respective domains up to Γ.
Corresponding to the Cauchy problem (2.1), (2.5), we will refer to the

following accompanying 1-d Riemann problem with constant initial data
∂tρ+ ∂x(ρu) = 0,

∂tρu+ ∂x(p+ ρu2) = 0,

∂tρE + ∂x(ρEu+ pu) = 0,

(2.6)

(ρ, u, e)(0, x) =

{
(ρ−, u−, e−)(0, 0, 0), if x < 0,

(ρ+, u+, e+)(0, 0, 0), if x > 0.
(2.7)

The Riemann problem (2.6), (2.7) is the 1-d version of (2.1), (2.5) with the
constant initial data taking the values of (ρ±, u±) at the origin (0,0,0).

The solutions for the Riemann problem (2.6), (2.7) have been well-
studied and may contain in general shocks, rarefaction waves or contact
discontinuity emanating from the initial discontinuity. The possible com-
binations are SCS, SCR, RCS and RCR, where “S” stands for a shock,
“R” stands for a rarefaction wave, and “C” stands for contact discontinuity,
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while the first letter represents a wave propagating to left, and the third
letter represents a right-propagating wave.

Depending upon the initial data (2.7), shock or rarefaction waves may be
degenerate into a characteristic carrying weak discontinuities (of the deriva-
tives of the solution), also called sound wave [13]. The contact discontinuity
may also be similarly degenerate.

In the study of high-dimensional free boundary problems involving shocks
[11, 12], rarefaction waves [1], contact discontinuity [5], or some combination
thereof [2, 9], complicated compatibility conditions are always required. The
higher the order of compatibility, the higher the order of the derivatives are
involved, and the more the equations are contained in the system.

Even though such conditions are necessary for the solution’s existence,
for a given set of the initial data, it is practically very difficult to verify their
compatibility, and it is also very tedious to explicitly construct a compatible
set of initial data, see [1, 12, 5], except for the trivial constant cases.

The purpose of this paper is to show that as long as we consider the
complete set of wave patterns, even including some degenerate cases, the
high-order compatibility can actually be derived from basic stability of the
wave patterns and hence the infinite order compatibility is automatically
satisfied for piecewise smooth initial data. The main theorem is stated as
follows.

Theorem 2.1 For the Cauchy problem (2.1), (2.5), assume that

(C) the problem (2.6), (2.7) has a solution with complete nonlinear wave
configuration, i.e., one of the four combinations: SCS, SCR, RCS or
RCR; with the shocks satisfying the usual Lax’ condition,

then the initial data in (2.5) for the non-isentropic 3-d Euler system (2.1) is
automatically compatible of infinite order for a corresponding 3-d solution.

Remark 2.1 The corresponding 3-d solution in Theorem 2.1 means a solu-
tion which has the same left or right propagating waves “S” or “R”, while in
the center, there is a contact discontinuity. This contact discontinuity “C”
could be either a vortex sheet, or a discontinuity in the density ρ only, or
a combination of the two. It could even be degenerate, i.e., it is missing in
the solution for (2.6), (2.7), but appears in the corresponding 3-d solution
for (2.1), (2.5) as a weak discontinuity with solution being continuous, but
only possible discontinuous normal derivatives.

Remark 2.2 Theorem 2.1 can be expanded to cover the case when the
shock or rarefaction wave also degenerates into a sound wave. In this case,
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the initial data in (2.5) should be required to be uniformly degenerate at
every point along Γ, not only at the origin. The proof can be easily obtained
by adapting slightly the proof for Theorem 2.1 (see Remark 4.2) and will
not be explicitly given here.

For convenience, we will assume in the following that the non-isentropic
flow is the ideal polytropic gas with

p = A(S)ργ , γ > 1.

Then we have the relation (see, e.g., [6]) with τ = ρ−1

p′ρ = a2 = γpτ ; e =
1

γ − 1
pτ.

For our purpose of studying compatibility, it is convenient to choose the
unknown vector function as U = (ρ, u, v, s, p) (denoted again as U with the
abuse of notation), and consider the following equivalent system to (2.1):

∂tρ+ (u, v, w) · ∇ρ+ ρ∇ · (u, v, w) = 0,

∂tu+ (u, v, w) · ∇u+ ρ−1∂xp = 0,

∂tv + (u, v, w) · ∇v + ρ−1∂yp = 0,

∂tw + (u, v, w) · ∇w + ρ−1∂zp = 0,

∂tp+ (u, v, w) · ∇p+ ρc2∇ · (u, v, w) = 0.

(2.8)

The last equation of energy conservation in (2.2) can be replaced by the
following thermodynamic relation [6]

e1 − e0 = (τ1 − τ0)
p1 + p0

2
. (2.9)

Here as usual, subscripts ”0” and ”1” denote the status before and after the
shock front. In particular for the ideal polytropic gas, (2.9) becomes

(ρ0 − µ2ρ1)p1 = (ρ1 − µ2ρ0)p0, (2.10)

here µ2 = (γ − 1)/(γ + 1).

3 Compatibility for the SCS combination of waves

The SCS combination of waves consist of a left-propagating shock, a right-
propagating shock, and a contact discontinuity (or vortex sheet) at the cen-
ter. Let the left-propagating shock be denoted by Sl : x = φl(t, y, z), the
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right-propagating shock by Sr : x = φr(t, y, z), and the contact discontinu-
ity be denoted by C : x = θ(t, y, z). See Fig. 3.1.
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Sr : x = φr(t, y, z)

C : x = θ(t, y, z)

Sl : x = φl(t, y, z)

Figure 3.1: SCS wave configuration

Let Ua(t, x, y, z) (Ub(t, x, y, z), resp.) be the solution of (2.8) (which is
equivalent to (2.1)) in the angular domain Ωa (Ωb, resp.) between Sl (Sr,
resp.) and C. And Ul(t, x, y, z) (Ur(t, x, y, z), resp.) is the solution of (2.8)
in the domain Ωl (Ωr, resp.) left (right, resp.) to Sl (Sr, resp.).

In addition to the equations of (2.8), (Ul, Ur) and (φl, φr, θ) also satisfy
the initial condition:

Ul(0, x, y, z) = U−(x, y, z) in x < φ0(y, z);

Ur(0, x, y, z) = U+(x, y, z) in x > φ0(y, z);

φl(0, y, z) = φr(0, y, z) = θ(0, y, z) = φ0(y, z).

(3.1)

Besides, they also satisfy the following Rankine-Hugoniot conditions on
two shock fronts x = φl, x = φr:

φlt[H0]
a
− + φly[H2]

a
− + φlz[H3]

a
− − [H1]

a
− = 0 at x = φl(t, y, z); (3.2)

φrt[H0]
b
+ + φry[H2]

b
+ + φrz[H3]

b
+ − [H1]

b
+ = 0 at x = φr(t, y, z); (3.3)

and on the contact discontinuity x = θ:
θt + vbθy + wbθz − ub = 0,

pb − pa = 0,

θy(vb − va) + θz(wb − wa)− (ub − ua) = 0

at x = θ(t, y, z). (3.4)

Remark 3.1 The condition (3.4) does not impose any restriction on the
density ρ or the tangential velocity. It has the same form for all different
type of contact discontinuity. In particular, it also applies to the degenerate
case where only weak discontinuity exits. This shows that the proof in the
following is valid for all these cases, hence follows Remark 2.1.
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The k-th order compatibility is the requirement that one should be able
to uniquely determine the values of the functions (Ua, Ub, φlt, φrt, θt) and
their derivatives up to the order k at the initial manifold Γ from Eqs (2.8)
and the boundary conditions (3.2)-(3.4). It is equivalent to the existence of
an approximate solution which satisfies (2.8) and (3.2)-(3.4) near Γ up to
the order O(tk). In the following, we show that it is true for any k under
the condition in Theorem 2.1.

3.1 The 0-order compatibility

The 0-order compatibility does not involve any derivatives of (Ua, Ub) and
we have 13 variables

Ua(0, φ0(y, z), y, z), Ub(0, φ0(y, z), y, z), ∂tφl(0, y, z), ∂tφr(0, y, z), ∂tθ(0, y, z).

to satisfy 13 equations in the boundary conditions (3.2)-(3.4).
Due to the continuity in the variables y and z, by the implicit function

theorem we need only to show that at the origin (0,0,0,0), the system (3.2)-
(3.4) has one solution

Ua(0, 0, 0, 0), Ub(0, 0, 0, 0), ∂tφl(0, 0, 0), ∂tφr(0, 0, 0), ∂tθ(0, 0, 0).

and the corresponding Jacobian matrix is non-degenerate.
The existence of a solution at (0,0,0,0) is provided by the condition (C)

in Theorem 2.1. Indeed by (2.10), Eqs (3.2)-(3.4) at (0,0,0,0) become

φlt(0)


ρa − ρ−

ρaua − ρ−u−
ρava − ρ−v−
ρawa − ρ−w−

 =


ρaua − ρ−u−

pa + ρau
2
a − p− − ρ−u2−

ρauava − ρ−u−v−
ρauawa − ρ−u−w−

 ;

(ρ− − µ2ρa)p− (ρa − µ2ρ−)p− = 0

(3.5)

φrt(0)


ρb − ρ+

ρbub − ρ+u+
ρbvb − ρ+v+
ρbwb − ρ+w+

 =


ρbub − ρ+u+

pb + ρbu
2
b − p+ − ρ+u2+

ρbubvb − ρ+u+v+
ρbubwb − ρ+u+w+

 ;

(ρ+ − µ2ρb)p− (ρb − µ2ρ+)p+ = 0;

(3.6)

pa = pb = p, ua = ub = u = θt(0). (3.7)

The four variables (va, vb, wa, wb), each appears only in one equation of
(3.5) and (3.6), and they all have non-zero coefficients (ρa(φlt − ua) and
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ρb(φrt − ub)) by condition (C) in Theorem 2.1. Hence they can be solved
independently after all other variables are determined.

Eliminating these four variables together with (pb, ub, θt(0)) from (3.5)-
(3.7), we end up with a 6× 6 system for (φlt, φrt, ρa, u, p, ρb):

φlt(0)

(
ρa − ρ−

ρau− ρ−u−

)
−
(

ρau− ρ−u−
p+ ρau

2 − p− − ρ−u2−

)
= 0;

(ρ− − µ2ρa)p− (ρa − µ2ρ−)p− = 0;

(3.8)


φrt(0)

(
ρb − ρ+

ρbu− ρ+u+

)
−
(

ρbu− ρ+u+
p+ ρbu

2 − p+ − ρ+u2+

)
= 0;

(ρ+ − µ2ρb)p− (ρb − µ2ρ+)p+ = 0;

(3.9)

These equations are exactly the Rankine-Hugoniot conditions for the
Riemann problem (2.6)(2.7), for which the existence of solution is assumed
by the condition (C).

Denote the left hand sides of (3.2)-(3.4) by F1, F2, F3, and let det J be
the determinant of the following Jacobian matrix

J =
∂(F1, F2, F3)

∂(φlt, φrt, θt, ρa, ua, va, wa, pa, ρb, ub, vb, wb, pb)
. (3.10)

We need to show that detJ 6= 0 at the point (0, 0, 0, 0).
The Jacobian J is the coefficient matrix of the linearized system (3.2)-

(3.4). The linearization of (3.4) at the point (0, 0, 0, 0) becomes simply

θt = ua, ua = ub, pa = pb.

So we can eliminate the variables (θt, ub, pb) in the linearized system. For
the same reason listed above, the variables (va, wa, vb, wb) in the linearized
system all appear only in one equation with non-zero coefficient, hence we
can also eliminate them from the linear system.

The condition det J 6= 0 is equivalent to the non-degeneracy of the coef-
ficient matrix of the linearization of (3.8), (3.9) at (0, 0, 0, 0), which is

φ̇lt

 ρ
ρu
0

a
−

+

 φlt − u −ρa 0
u(φlt − u) ρa(φlt − 2u) −1
p− + µ2pa 0 µ2ρa − ρ−

 ρ̇au̇
ṗ

 = 0. (3.11)

φ̇rt

 ρ
ρu
0

b
+

+

 φrt − u −ρb 0
u(φrt − u) ρb(φrt − 2u) −1
p+ + µ2pb 0 µ2ρb − ρ+

 ρ̇bu̇
ṗ

 = 0. (3.12)
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Here (φ̇lt, φ̇rt, ρ̇a, ρ̇b, u̇, ṗ) denote the small increments of the corresponding
variables.

Using the relations φlt(ρa − ρ−) = ρau − ρ−u− and φrt(ρb − ρ+) =
ρbu − ρ+u+ to eliminate the terms φ̇lt and φ̇rt in (3.11) and (3.12), we
obtain [

(u− φlt)2 2ρa(u− φlt) 1
p− + µ2pa 0 µ2ρa − ρ−

] ρ̇au̇
ṗ

 .
[

(u− φrt)2 2ρb(u− φrt) 1
p+ + µ2pb 0 µ2ρb − ρ+

] ρ̇bu̇
ṗ

 .
(3.13)

Further eliminating ρ̇a and ρ̇b from (3.11) yields a 2× 2 system for (u̇, ṗ)

M

[
u̇
ṗ

]
≡
[
ml1 ml2

mr1 mr2

][
u̇
ṗ

]
= 0. (3.14)

with 
ml1 = 2ρa(u− φlt)(p− + µ2pa),

ml2 = (p− + µ2pa)− (µ2ρa − ρ−)(u− φlt)2

mr1 = 2ρb(u− φrt)(p+ + µ2pb),

mr2 = (p+ + µ2pb)− (µ2ρb − ρ+)(u− φrt)2

(3.15)

To see that detM 6= 0, it suffices to show that

ml1 > 0, ml2 > 0, mr1 < 0, mr2 > 0. (3.16)

First of all, one obtains ml1 > 0 and mr1 < 0 readily from u − φlt > 0
and u− φrt < 0.

For polytropic gas p(ρ, S) = A(S)ργ , hence p = c2ρ
γ . Since the supersonic

or subsonic character of the flow can be determined by the flow speed with
the critical speed c∗ [6], so by Lax’ shock inequality,

(φlt − u)2 < c2−, (φlt − u)2 < c2a, (φrt − u)2 < c2b , (φrt − u)2 < c2+.

Hence ml2 > 0 and mr2 > 0 if

(ρ− + µ2ρa) > γ(µ2ρa − ρ−), (ρ+ + µ2ρb) > γ(µ2ρb − ρ+).

or equivalently
ρ−
ρa

> µ4,
ρ+
ρb

> µ4. (3.17)
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(3.17) follows readily from the restriction on compression ratio ρ1/ρ0 (see
[6], p. 148)

µ2 <
ρ1
ρ0

<
1

µ2
.

Therefore (3.16) is true. This finishes the proof of 0-order compatibility.

3.2 The first order compatibility

First, we notice that once the values of (Ua, Ub, φlt, φrt, θt) are determined
at the initial discontinuity Γ, then all their derivatives tangential to Γ are
uniquely determined. Therefore, the first order compatibility consists of 23
linear equations for the 23 variables

Uat(0, φ0(y, z), y, z), Uan(0, φ0(y, z), y, z),

Ubt(0, φ0(y, z), y, z), Ubn(0, φ0(y, z), y, z),

φltt(0, y, z), φrtt(0, y, z), θtt(0, y, z).

Here (Uan, Ubn) denote the normal derivative to Γ.
Again by the continuity in (y, z) and the implicit function theorem, we

need only to show the Jacobian of these 23 equations is non-degenerate at
the origin (0,0,0,0). In particular at the origin, (Uan, Ubn) = (Uax, Ubx),
φly = φlz = φry = φrz = θy = θz = 0 and θt = ua = ub = u.

Let (Dl, Dc, Dr) be the tangential differential operators in the (x =
φl, θ, φr) directions in the t-x plane:

Dl = ∂t + φlt∂x, Dc = ∂t + u∂x, Dr = ∂t + φrt∂x.

Replace the last equations in (3.2)-(3.3) by (2.10), and then denote by
(H04, H14) the first four components of (H0, H1). Taking tangential deriva-
tives (Dl, Dr) of thus modified equations (3.2) and (3.3) in the t-x plane and
evaluating them at (0,0,0,0), we obtain (here and in the following in this pa-
per, ∗ stands for terms already determined by lower order compatibility):{

φltt[H04]
a
− + (φltH

′
04 −H ′14)DlUa = ∗,

(p− + µ2p)Dlρa + (µ2ρa − ρ−)Dlpa = ∗.
(3.18)

{
φrtt[H04]

b
+ + (φrtH

′
04 −H ′14)DlUb = ∗,

(p+ + µ2p)Drρb + (µ2ρb − ρ+)Drpb = ∗.
(3.19)
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where the 4× 5 matrix (φl(r)tH
′
04 −H ′14) is the following

φl(r)t − u −ρa(b) 0 0 0

u(φl(r)t − u) ρa(b)(φl(r)t − 2u) 0 0 −1

0 0 ρa(b)(φl(r)t − u) 0 0

0 0 0 ρa(b)(φl(r)t − u) 0

 .
Taking tangential derivatives Dc of the equations in (3.4) and evaluating

them at (0,0,0) yields
θtt −Dcua = ∗,
Dcpa −Dcpb = ∗,
Dcua −Dcub = ∗.

(3.20)

At the origin (0,0,0,0), the interior equation (2.8) becomes

Dcρa(b) + ρa(b)∂xua(b) = ∗,
Dcua(b) + 1

ρa(b)
∂xpa(b) = ∗,

Dcva(b) = ∗,
Dcwa(b) = ∗,
Dcpa(b) + ρa(b)c

2
a(b)∂xua(b) = ∗.

in Ωa(b) (3.21)

The linear system (3.18)-(3.21) consists of 23 equations for the 23 vari-
ables

(φltt, φrtt, θtt, Uat, Uax, Ubt, Ubx),

where U = (ρ, u, v, w, p). They can be simplified as follows.

• θtt appears only in one equation in (3.20) and can be eliminated.

• There is no restriction in (3.14) on (vt, vx, wt, wx), and so (vat, vax, wat, wax)
and (vbt, vbx, wbt, wbx) are decoupled with each other.

Because Dc, Dl are not parallel, (vat, vax) are uniquely determined by
(Dcva, Dlva, ). Since Dva appears only in one equation in (3.21) in
the form Dcva, and appears only in one equation in (3.18) in the
form Dlv, both with non-zero coefficients, hence (Dcva, Dlva) can be
uniquely determined. Therefore (vat, vax) can be eliminated.

• Same argument also applies to (wat, wax, vbt, vbx, wbt, wbx).

Therefore we can eliminate the 9 variables

(θtt, vat, vax, wat, wax, vbt, vbx, wbt, wbx)
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from (3.18)-(3.21) and obtain 14 equations for the remaining 14 variables

(φltt, ρat, ρax, uat, uax, pat, pax, φrtt, ρbt, ρbx, ubt, ubx, pbt, pbx).

Eliminating φltt from (3.18) yields

[
(u− φlt)2 2ρa(u− φlt) 1
p− + µ2pa 0 µ2ρa − ρ−

]
Dl

ρaua
pa

 = ∗. (3.22)

Eliminating Dlρa from (3.22) yields

(ml1,ml2)Dl

[
ua
pa

]
= ∗, (3.23)

where (ml1,ml2) are defined as in (3.15).
Similarly from (3.19), we obtain

(mr1,mr2)Dr

[
ub
pb

]
= ∗. (3.24)

with (mr1,mr2) defined as in (3.15).
Removing the two equations involving Dcva(b) and Dcwa(b) in (3.21), the

remaining last two equations are independent of Dρ:{
Dcua(b) + 1

ρa(b)
∂xpa(b) = ∗,

Dcpa(b) + ρa(b)c
2
a(b)∂xua(b) = ∗.

(3.25)

Or equivalently

Dc

[
ua(b)
pa(b)

]
+ ca(b)Ea(b)∂x

[
ua(b)
pa(b)

]
= ∗, (3.26)

with

Ea(b) ≡
[

0 (ca(b)ρa(b))
−1

ca(b)ρa(b) 0

]
= E −1a(b). (3.27)

Since Dl = Dc + (φlt − u)∂x and Dr = Dc + (φrt − u)∂x, then they can
be written by (3.26) as

Dl

[
ua
pa

]
= (I − βlEa)Dc

[
ua
pa

]
+ ∗,

Dr

[
ub
pb

]
= (I − βrEb)Dc

[
ub
pb

]
+ ∗,

(3.28)
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with

βl ≡
φlt − u
ca

< 0, βr ≡
φrt − u
cb

> 0. (3.29)

By the Lax’ shock inequality in condition (C), we have |βl| < 1 and |βr| < 1.
Replacing (Dlua, Dlpa) and (Drub, Drpb) in (3.23) and (3.24) using (3.28),

we obtain two equations for two variables (Dcu,Dcp):[
ml1 −ml2βlcaρa −ml1βl(caρa)

−1 +ml2

mr1 −mr2βrcbρb −mr1βr(cbρb)
−1 +mr2

]
Dc

[
u
p

]
= ∗. (3.30)

By (3.16) and (3.29), we have

ml1 −ml2βlcaρa > 0, −ml1βl(caρa)
−1 +ml2 > 0,

mr1 −mr2βrcbρb < 0, −mr1βr(cbρb)
−1 +mr2 > 0.

Consequently (3.30) is non-degenerate and (Dcu,Dcp) are uniquely deter-
mined.

This finishes the proof of the 1st order compatibility.

3.3 k-th order compatibility

As in the case of the first order compatibility, let’s take the k-th order tangen-
tial derivatives of the modified equations (3.2)-(3.4), and then evaluate them
at the origin (0,0,0,0). Apply Dk−1

c to the interior equations (2.8), and then
evaluate them at (0,0,0,0). Similar to the case of the 1st order compatibil-
ity, the 9 variables (∂k+1

t θ,Dk
l(r)va(b), D

k−1
l(r) ∂xva(b), D

k
l(r)wa(b), D

k−1
l(r) ∂xwa(b))

can be determined independently and thus be eliminated.
From (3.20) we also have

Dk
cua = Dk

cub + ∗, Dk
c pa = Dk

c pb + ∗.

For the remaining 12 variables

∂k+1
t φl(r), D

k
c ρa(b), D

k−1
c ∂xρa(b), D

k
cua, D

k−1
c ∂xua(b), D

k
c pa, D

k−1
c ∂xpa(b),

we have 12 equations
[
ρ
ρu

]a
−
∂k+1
t φl+

[
φlt − u −ρa 0

u(φlt − u) ρa(φlt − 2u) −1

]
Dk
l

 ρa
ua
pa

= ∗;

(p− + µ2p)Dk
l ρa + (µ2ρa − ρ−)Dk

l pa = ∗.

(3.31)
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[
ρ
ρu

]b
+

∂k+1
t φr+

[
φrt − u −ρb 0

u(φrt − u) ρb(φrt − 2u) −1

]
Dk
r

 ρb
ub
pb

= ∗;

(p+ + µ2p)Dk
rρb + (µ2ρb − ρ+)Dk

rpb = ∗.

(3.32)


Dk
c ρa(b) + ρa(b)D

k−1
c ∂xua(b) = ∗,

Dk
cu+ 1

ρa(b)
Dk−1
c ∂xpa(b) = ∗,

Dk
c p+ ρa(b)c

2
a(b)D

k−1
c ∂xua(b) = ∗.

in Ωa(b) (3.33)

The system (3.31)-(3.33) consists of 12 equations for the 12 variables
(with Dk

cu ≡ Dk
cua and Dk

c p ≡ Dk
c pa)

∂k+1
t φl(r), D

k
c ρa(b), D

k−1
c ∂xρa(b), D

k
cu, D

k−1
c ∂xua(b), D

k
c p, D

k−1
c ∂xpa(b).

As in the first order case, eliminating ∂k+1
t φl(r) and Dk

l(r)ρa(b) from (3.31)

and (3.32), we obtain 
(ml1,ml2)D

k
l

[
ua
pa

]
= ∗,

(mr1,mr2)D
k
r

[
ub
pb

]
= ∗.

(3.34)

We can use (3.33) to replace (Dk
l(r)ua(b), D

k
l(r)pa(b)) with (Dk

cu,D
k
c p). For

this, we have the following lemma (a little different one was used in [3])

Lemma 3.1 From (3.33), (Dk
l(r)ua(b), D

k
l(r)pa(b)) can be expressed by (Dk

cu,D
k
c p)

as follows

Dk
l

[
ua
pa

]
= δl(αlk − βlE )Dk

c

[
ua
pa

]
= ∗,

Dk
r

[
ub
pb

]
= δr(αrk − βrE )Dk

c

[
ub
pb

]
= ∗,

(3.35)

where 0 < |βl| < αlk ≤ 1 and 0 < |βr| < αrk ≤ 1. δl and δr are two positive
constants which may depend on k and the explicit form of which is of no
consequence in our discussion.

Proof: For k = 1, (3.35) is simply (3.28).
By induction, assume (3.35) for k − 1, then

Dk
l

[
ua
pa

]
= δl(αl(k−1) − βlE )(1− βlE )Dk

c

[
ua
pa

]
+ ∗

= δl(1 + αl(k−1))(αlk − βlE )Dk
c + ∗.
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We need only to show that

αlk =
αl(k−1) + β2l
1 + αl(k−1)

> |βl|, (3.36)

which follows by induction assumption from

αl(k−1) + β2l − |βl| − αl(k−1)|βl| = (αl(k−1) − |βl|)(1− |βl|) > 0

The same argument also applies to Dk
r . This concludes the proof of Lemma

3.1.

Applying Lemma 3.1, we can rewrite (3.34) into the following 2 × 2
system for (Dk

cu,D
k
c p):
(ml1,ml2)δl(αlk − βlE )Dk

c

[
u
p

]
= ∗,

(mr1,mr2)δr(αrk − βrE )Dk
c

[
u
p

]
= ∗.

(3.37)

i.e.,

[ ml1 ml2 ]

[
αlk −βl(caρa)−1

−βl(caρa) αlk

]
Dk
c

[
u
p

]
= ∗;

[ mr1 mr2 ]

[
αrk −βr(cbρb)−1

−βr(cbρb) αrk

]
Dk
c

[
u
p

]
= ∗.

(3.37) is non-degenerate iff the following matrix is non-degenerateml1αlk −ml2βl(caρa), −ml1βl(caρa)
−1 +ml2αlk

mr1αrk −mr2βr(cbρb), −mr1βr(cbρb)
−1 +mr2αrk

 (3.38)

From (3.16) and (3.29), we have
ml1αlk −ml2βl(caρa) > 0,

−ml1βl(caρa)
−1 +ml2αlk > 0,

mr1αrk −mr2βr(cbρb) < 0,

−mr1βr(cbρb)
−1 +mr2αrk > 0.

Therefore (3.38) is non-degenerate.
Once (Dk

cu,D
k
c p) is known, (Dk−1

c ∂xua(b), D
k−1
c ∂xpa(b)) as well as Dk

c ρa(b)
can be obtained from (3.33). Then Dk

l(r)ρa(b) and consequently Dk−1
c ∂xρa(b)
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can be determined from (3.31), (3.32). Induction on the index j would

give all k-th order derivatives for Dk−j
c ∂jxρa(b), D

k−j
c ∂jxua(b), D

k−j
c ∂jxpa(b) (j =

2, · · · , k).
This concludes the proof of Theorem 2.1 for the SCS wave combination.

4 Compatibility for the SCR/RCS combination of waves

We need only to consider only the SCR combination of waves whch
consist of a left-propagating shock, a right-propagating rarefaction wave,
and a contact discontinuity at the center. As in Section 3, the contact
discontinuity here is understood in the most general sense, including the
degenerate situation. See Fig. 4.1.

Let the left-propagating shock be denoted by Sl : x = φl(t, y, z), the
contact discontinuity be denoted by C : x = θ(t, y, z), and the right-
propagating rarefaction wave is represented by an angular domain between
two characteristics L− : x = χ−(t, y, z) and L+ : x = χ+(t, y, z).

- x
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C

HH
HH

H
HH

H

Ωr

Ωb ΩRΩa

Ωl

L+ : x = χ+(t, y, z)

L− : x = χ−(t, y, z)
C : x = θ(t, y, z)

Sl : x = φl(t, y, z)

Figure 4.1: SCR wave configuration

The solution of (2.8) in the angular domain Ωa (Ωb, resp.) between Sl
(L−, resp.) and C is denoted by Ua(t, x, y) (Ub(t, x, y), resp.), the solution
in the domain ΩR formed by the rarefaction wave between L− and L+ is
denoted by Uc, the solution in the domain left to Sl is denoted by Ul(t, x, y),
and the solution in the domain right to Sr is denoted by Ur(t, x, y).

By the finite speed propagation property for hyperbolic systems, the
solution Ul, Ur, and the location of the characteristic L+ are already uniquely
determined by the initial data U− and U+.

Due to the multi-valuedness of Uc at Γ, a parameter s is introduced to
blow up the wedge area of ΩR as [1]. Let x = χ(t, s, y, z) (1 ≤ s ≤ 2) be the
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family of characteristics issuing from Γ inside ΩR. Then χ(t, s, y, z) satisfies

det |A1 − χt − χyA2 − χzA3| = 0, (4.1)

or more precisely
χt = λ+(Uc;∇χ), (4.2)

where λ+(U ;φ) is the maximal eigenvalue in (2.4).
Introduce the function W (t, s, y, z):

W (t, s, y, z) = Uc(t, χ(t, s, y, z), y, z), (4.3)

which satisfies

L̃W ≡ χs(
∂W

∂t
+A2

∂W

∂y
+A3

∂W

∂z
)

+(A1 − χt − χyA2 − χzA3)
∂W

∂s
= 0.

(4.4)

In summary, the SCR combination of waves is represented by the set of
functions Ua(t, x, y, z), Ub(t, x, y, z), W (t, s, y, z), χ(t, s, y, z), φl(t, y, z), θ(t, y, z)
satisfying, in addition to (4.2),

LUa = 0 in Ωa,

LUb = 0 in Ωb,

L̃W = 0 in 1 < s < 2.

(4.5)

φlt[H0] + φly[H2]− [H1] = 0 on x = φl(t, y). (4.6)
θt − ua − vaθy − waθz = 0,

pa − pb = 0,

(ub − ua)− θy(vb − va)− θz(wb − wa) = 0.

(4.7)


χ(t, 1, y, z) = χ−(t, y, z),

χ(t, 2, y, z) = χ+(t, y, z),

W (t, 1, y, z) = Ub(t, χ(t, 1, y, z), y, z),

W (t, 2, y, z) = UR(t, χ(t, 2, y, z), y, z).

(4.8)

Finally, we have the initial conditions at Γ:

φ(0, y, z) = θ(0, y, z) = χ(0, s, y, z) = 0, (4.9)

with the assumption as in [1]

χs = γ(t, s, y, z)t with γ(t, s, y, z) ≥ δ > 0. (4.10)
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Remark 4.1 As noted in Remark 2.2, for sound wave treated as a degen-
erate rarefaction wave, the last equations in (4.5) are void, as well as (4.8).
And χ−(t, y, z) = χ+(t, y, z) are determined by the initial value U+.

4.1 The 0-order compatibility

As in the SCS case, we may assume (Ul, Ur) = (U−, U+) and (Ua, Ub) as well
as (φlt, θt, χ

−
t , χ

+
t ) being all constant. Also assume χt depending only on s,

with W (t, s, y, z) = W (s) satisfying(A1 − χt(s))W (s) = 0,

W (2) = U+.
(4.11)

By (4.7), pa = pb, ua = ub, and only one equation in (4.7) contains θt. In
addition, (va, wa, vb, wb) are decoupled and can be determined independently
from (4.6) and (4.8). Therefore, the 0-order compatibility becomes connect-
ing the state (ρ−, u−, p−) with the state (ρ+, u+, p+) by a shock x = φl(t)
and a rarefaction wave x = χ. The existence of (ρa, ρb, ua = ub, p, φlt, χt(s))
is provided by the condition (C) on the accompanying problem (2.6)(2.7).

Let ζ(s) = (ρ(s), u(s), p(s)) be the solution of (2.6)(2.7) such that{
(A′1 − χt(s)I)ζ ′(s) = 0,

ζ(2) = (ρ+, u+, p+), ζ(1) = (ρb, ua, pa), χt(1) = χ−t ,
(4.12)

with

A′1 =

 u ρ 0
0 u ρ−1

0 ρc2 u

 .
From (4.12) we see that χt(s) = λ+(ζ(s)) = u+c and ζ ′(s) = r(ζ), where

the r(ζ) being parallel to (ρ, c, c2), is the right eigenvector of A′1, satisfying

r · ∂λ
∂ζ

= 1

and ζ(s) is the solution of the system of the ordinary differential equation

dζ

ds
= r(ζ) (4.13)

with ζ(2) = (ρ+, u+, p+).

20



Replace the last equation in (4.6) by the thermodynamic relation (2.10),
then the boundary conditions on x = φl can be written as

F1 = φlt(ρa − ρ−)− (ρaua − ρ−u−) = 0,

F2 = φlt(ρaua − ρ−u−)− (pa + ρau
2
a − p− − ρ−u2−) = 0,

F3 = (ρ− − µ2ρa)p− (ρa − µ2ρ−)p− = 0.

(4.14)

Denote the solution (ρb, u, p) of (4.13) as two equations

G1(ρb, u, p) = 0, G2(ρb, u, p) = 0.

Then (φlt, ρa, ρb, u, p) can be uniquely determined if and only if

∆ = det

(
∂(F1, F2, F3, G1, G2)

∂(φlt, ρa, u, p, ρb)

)
6= 0. (4.15)

The Jacobian in (4.15) can be computed explicitly
ρa − ρ− φlt − u −ρa 0 0

ρaua − ρ−u− (φlt − u)u ρa(φlt − 2u) −1 0
0 F3ρa 0 F3p 0
0 0 G1u G1p G1ρb

0 0 G2u G2p G2ρb

 (4.16)

Obviously (4.16) is non-singular if and only if

det


(u− φlt)2 2ρa(u− φlt) 1 0
−(p− + µ2p) 0 ρ− − µ2ρa 0

0 G1u G1p G1ρb

0 G2u G2p G2ρb

 6= 0, (4.17)

or equivalently

det

ml1 ml2 0
G1u G1p G1ρb

G2u G2p G2ρb

 6= 0, (4.18)

where (ml1,ml2) are defined as in (3.15).
Since the eigenvector r(ζ) is parallel to (ρb, cb, c

2
b), hence (G1, G2) can

be chosen such that (G1ρa , G1u, G1p) is parallel to the vector (−ρb, cb, 0) and
(G2ρa , G2u, G2p) is parallel to the vector (0, 1,−cb).

Then (4.18) becomes

det

ml1 ml2 0
cb 0 −ρb
1 −cb 0

 = ρbcb(ml1 +ml2) 6= 0, (4.19)

which is obvious by (3.16). This concludes the proof of 0-order compatibility.
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4.2 The first order compatibility k = 1

We need to show that the first order derivatives of Ua(b)(t, x, y, z),W (t, s, y, z)
and φlt(t, y, z), θt(t, y, z), χt(t, s, y, z) can be uniquely determined at Γ. From
the 0-order compatibility, these functions and their tangential derivatives
with respect to Γ are already known.

As in [1], let H(v, η) be the matrix satisfying

H−1(A1 − χyA2 − χzA3)H =

(
λ 0
0 λb

) (
, d
)
, (4.20)

where the superscript b denotes the last four rows.
From (4.4) we have

H−1(Wt +A2Wy +A3Wz)

= −H−1(A1 − χtI −A2χy −A3χz)Ws/χs

=

(
χt − λ 0
∗ ∗

)
Ws/χs =

(
0 0
∗ ∗

)
Ws/χs.

(4.21)

Then the first row becomes

(H−1(Wt +A2Wy +A3Wz))
1 = 0. (4.22)

Multiplying (4.4) by H−1 we have

χsH
−1(Wt +A2Wy +A3Wz) + (d− χt)H−1Wsu = 0.

Differentiating with respect to t gives

χtsH
−1(Wt +A2Wy +A3Wz) + χs(H

−1(Wt +A2Wy +A3Wz))t

+(d− χt)tH−1Ws + (d− χt)(H−1Ws)t = 0.
(4.23)

Since χs = 0 at t = 0, (4.23) yields

χts
(
H−1(Wt +A2Wy +A3Wz)

)b
+(λb − χt)t

(
H−1Ws

)b
+ (λb − χt)

(
H−1Ws

)b
t

= 0.
(4.24)

From (4.24) we have

χts
(
H−1(Wt +A2Wy +A3Wz)

)b
+(λb − χt)t((H−1Wt)

b)s + (H−1Wt)
b · ∗ = ∗,

(4.25)
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here ∗ stands again for the known terms. Therefore, the value of (H−1Wt)
b

at any s ∈ [1, 2] can be uniquely determined by its value at s = 2. On the
other hand, the value (H−1Wt)

1 is determined from (4.22). Hence the value
of all the components of H−1Wt are uniquely determined, and so are all the
components of Wt.

Once Wt is known, we can obtain χtt by differentiating (4.2) with respect
to t:

χtt = λWWt − ληχyt − λζχzt. (4.26)

Since the tangential derivatives of Ub and Uc on x = χ(t, 1, y, z) ≡
χ1(t, y, z) are equal, therefore the value of the tangential derivative DrUb ≡
(∂t + χ1t∂x)Ub is known. Therefore

Drρb = ∗, Drub = ∗, Drp = ∗, Drvb = ∗, Drwb = ∗, (4.27)

with
Dr = ∂t + (u+ cb)∂x = Dc + cb∂x,

since at the origin χ1(0, 0, 0) = u+ cb.
Because χ1t = λ+ is an eigenvalue for the system (2.8), only two of the

first three relations in (4.27) are independent. Hence (4.27) consists of only
four independent relations for (ρb, ub, vb, wb, pb) which we denote as

Drρb = ∗, Drpb = ∗, Drvb = ∗, Drwb = ∗. (4.28)

Similar as in the SCS case in section 3, we can also obtain (3.18) and (3.20)
from (4.6) and (4.7).

Remark 4.2 For the sound wave which is treated as a degenerate rarefac-
tion wave, χ1t = χ2t = λ+ and we obtain the same (4.27) and (4.28). Since
the degeneracy at one point on Γ does not ensure the degeneracy in its neigh-
borhood, the additional requirement of uniform degeneracy is needed as in
Remark 2.2. Then all the following arguments also apply to the degenerate
case.

The linear system (3.18), (3.20), (3.21), (4.26), (4.28) consists of 23
equations for the 23 variables

(φltt, θtt, χ1tt, Uat, Uax, Ubt, Ubx).

By the same argument as in the SCS case, (vat, vax, wat, wax) can be
eliminated from (3.18) and (3.21), (vbt, vbx, wbt, wbx) can be eliminated from
(3.21) and (4.28). (θtt, χ1tt) can be eliminated from (3.20) and (4.26).
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Again eliminating φltt from (3.18) yield (3.22). Then (ρat, ρax) can be
eliminated since (Dlρa, Dcρa) can be eliminated from (3.21) and (3.22),
(ρbt, ρbx) can be eliminated from (3.21) and (4.28). Finally (Dcpb, Dcub)
can also be eliminated from (3.20).

After these simplifications, we are left with 6 equations for 6 variables
(Dlua, Dlpa, Dcua, Dcpa, Drub, Drpb). For convenience, we rewrite these 6
equations as follows:

(ml1,ml2)Dl

[
ua
pa

]
=(ml1,ml2)[Dc + (φlt − ua)∂x]

[
ua
pa

]
= ∗;

Dcua + 1
ρa(b)

∂xpa(b) = ∗;

Dcpa + ρa(b)c
2
a(b)∂xua(b) = ∗;

Drpb = (0, 1)[Dc + cb∂x]

[
ub
pb

]
= ∗.

(4.29)

Using four interior equations in (4.29) to eliminate (∂xua, ∂xpa, ∂xub, ∂xpb),
we obtain two equations for (Dcua, Dcpa)

(ml1,ml2)(I − βlEa)Dc

[
ua
pa

]
= ∗;

(0, 1)(I − c−1b Ea)Dc

[
ua
pa

]
= ∗.

(4.30)

(4.30) is non-degenerate if

det

ml1 −ml2βl(caρa) −ml1βl(caρa)
−1 +ml2

−c−1b 1

 6= 0, (4.31)

which follows readily from the fact that ml1 > 0, ml2 > 0 by (3.16), and
βl < 0 by (3.29).

4.3 The k-th order compatibility

We apply the tangential derivatives Dk−1
l to (3.18), Dk−1

c to both (3.20) and

(3.21), Dk−1
r to (4.28), and ∂k−1t to (4.26), This gives 23 linear equations{

∂k+1
t φl[H04]

a
− + (φltH

′
04 −H ′14)Dk

l Ua = ∗,
(p− + µ2p)Dk

l ρa + (µ2ρa − ρ−)Dk
l pa = ∗.

(4.32)
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Dk
c ρa(b) + ρa(b)D

k−1
c ∂xua(b) = ∗,

Dk
cua(b) + 1

ρa(b)
Dk−1
c ∂xpa(b) = ∗,

Dk
c va(b) = ∗,

Dk
cwa(b) = ∗,

Dk
c pa(b) + ρa(b)c

2
a(b)D

k−1
c ∂xua(b) = ∗.

in Ωa(b) (4.33)

∂k+1
t θ −Dk

cua = ∗, Dk
c pa −Dk

c pb = ∗, Dk
cua −Dk

cub = ∗. (4.34)

Dk
rρb = ∗, Dk

rpb = ∗, Dk
r vb = ∗, Dk

rwb = ∗. (4.35)

∂k+1
t χ = ∂k−1t (λWWt − ληχyt). (4.36)

For (4.32)-(4.36), there are 23 independent variables

∂k+1
t φl, ∂k+1

t θ, ∂k+1
t χ1, Dk

cUa(b), Dk−1
c ∂xUa(b).

By the same argument as in the first order compatibility, the 12 variables

∂k+1
t χ1, ∂

k+1
t θ,Dk

c va(b), D
k−1
c ∂xva(b), D

k
cwa(b), D

k−1
c ∂xwa(b), D

k
cub, D

k
c pb

can be eliminated immediately. Straightforward computations further elim-
inate the following 5 variables

∂k+1
t φl, D

k
c ρa(b), D

k−1
c ∂xρa(b)

from (4.32), (4.33) and (4.35).
There are six equations left:

(ml1,ml2)D
k
l

[
ua
pa

]
= ∗,

Dk
cu+ 1

ρa(b)
Dk−1
c ∂xpa(b) = ∗,

Dk
c p+ ρa(b)c

2
a(b)D

k−1
c ∂xua(b) = ∗;

Dk
rpb = (1, 0)Dk

r

[
ub
pb

]
= ∗.

(4.37)

for the six variables

Dk
cu, Dk

c p, Dk−1
c ∂xua(b), Dk−1

c ∂xpa(b).

As shown in Lemma 3.1 for the SCS case, we can use (3.35) to replace
(Dk

l ua, D
k
l pa) by (Dk

cua, D
k
c pa). On the other hand, similar to (3.28), we

have here

Dr

[
ub
pb

]
= (I − Eb)Dc

[
u
p

]
+ ∗, (4.38)
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and also

Dk
r

[
ub
pb

]
= (I − Eb)

kDk
c

[
u
p

]
+ ∗ = 2k−1 (I − Eb)D

k
c

[
u
p

]
+ ∗. (4.39)

Therefore (4.37) can be reduced to the following 2×2 system for (Dk
cu,D

k
c p):

(ml1,ml2)δl(αlk − βlEa)Dk
c

[
u
p

]
= ∗,

(1, 0)2k−1 (I − Eb)D
k
c

[
u
p

]
= ∗.

(4.40)

(4.40) is non-degenerate if

det

[
ml1αlk −ml2βl(caρa) −ml1βl(caρa)

−1 +ml2αlk
1 −(cbρb)

−1

]
6= 0, (4.41)

which follows readily from ml1 > 0, ml2 > 0, βl < 0 and αlk > 0.
Once (Dk

cu,D
k
c p) is known, we can determine (Dk−1

c ∂xua(b), D
k−1
c ∂xpa(b)).

Then using interior equation (3.21) and induction, we can determine all the

derivatives (Dk−j
c ∂jxua(b), D

k−j
c ∂jxpa(b)) for j = 2, 3, . . . , k.

This finishes the proof of the compatibility for SCR wave combination.

5 Compatibility for the RCR combination of waves

The compatibility for the RCR wave combination can be obtained simi-
larly as for the SCR case.

Omitting the tedious details, the proof is outlined as follows.

1. The 0-order compatibility follows from the condition (C);

2. For the first order compatibility, let

Dc = ∂t + u∂x, Dl = Dc − ca∂x, Dr = Dc + cb∂x. (5.1)

Noticing that the eigenvalues corresponding to the two rarefaction
waves are λ± = u± c, and then taking tangential derivatives (Dl, Dr)
to the boundary conditions on x = χl(r), and taking derivative Dc to
the boundary condition on x = θ, we obtain a linear system similar
to (4.32)-(4.36) with k = 1, except the condition (4.32) is replaced
by corresponding equations (4.35) and (4.36). After simplification, we
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have a system similar to (4.29), again with first equation replaced by
a corresponding equation as the last one:

Dlpb = (0, 1)Dl

[
ua
pa

]
= ∗,

Dcu+ 1
ρa(b)

∂xpa(b) = ∗,

Dcp+ ρa(b)c
2
a(b)∂xua(b) = ∗;

Drpb = (0, 1)Dr

[
ub
pb

]
= ∗.

(5.2)

From the interior equations in (5.2), we have by (5.1)

Dl

[
ua
pa

]
= (I + Ea)Dc

[
u
p

]
+ ∗,

Dr

[
ub
pb

]
= (I − Eb)Dc

[
u
p

]
+ ∗.

(5.3)

Therefore, we obtain from (4.39) and (5.2)
(0, 1) (I + Ea)Dc

[
u
p

]
= ∗,

(0, 1) (I − Eb)Dc

[
u
p

]
= ∗,

(5.4)

i.e., [
caρa 1
−cbρb 1

]
Dc

[
u
p

]
= ∗, (5.5)

which is obviously non-degenerate.

3. For the k-th order compatibility, take tangential derivatives (Dk
l , D

k
r )

to the boundary conditions on x = χl(r), take derivative Dk
c to the

boundary condition on x = θ, and Dk−1
c to the interior equations in

Ωa(b).

This yields a linear system similar to (4.32)-(4.36), except the con-
dition (4.32) is replaced by corresponding Eqs (4.35),(4.36). After
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simplification, we are left with a system similar to (4.37):

Dk
l pb = (0, 1)Dk

l

[
ua
pa

]
= ∗,

Dk
cu+ 1

ρa(b)
Dk−1
c ∂xpa(b) = ∗,

Dk
c p+ ρa(b)c

2
a(b)D

k−1
c ∂xua(b) = ∗;

Dk
rpb = (0, 1)Dk

r

[
ub
pb

]
= ∗.

(5.6)

From (5.3) and (5.6), we obtain
(0, 1) (I + Ea)

kDk
c

[
u
p

]
= ∗,

(0, 1) (I − Eb)
kDk

c

[
u
p

]
= ∗.

(5.7)

By (4.39), (5.7) is equivalent to[
caρa 1
−cbρb 1

]
Dk
c

[
u
p

]
= ∗, (5.8)

which is obviously non-degenerate.
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