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Abstract

The paper studies the compatibility of the Cauchy data which have
a jump discontinuity for the non-isentropic 3-d Euler system. For a
complete range of combinations of waves including shocks, rarefaction
waves, and contact discontinuity, it is shown that the data is compati-
ble of infinite order if the corresponding 1-d Riemann problem admits
such a solution.

1 Introduction

In the study of the initial-boundary value problems for evolutionary equa-
tions, such as the Euler system in gas-dynamics, one of the necessary condi-
tions for the existence of smooth solution is the compatibility [15, 17]. For
the more complicated free-boundary problems where solutions may contain
various discontinuities, such as shock wave, rarefaction wave, or vortex sheet,
the compatibility requirements are also always imposed, see [1, 11, 12, 5],
also [2, 9].

Look at the typical initial-boundary value problem for an nxn hyperbolic
System

Oru + A10zu + A20yu + A30.u + Cu = f. (1.1)
w(0,z,y,2) = uo(z,y,2), =0, (1.2)
Bu(t,0,y,2) = g(t,y,2), t >0, (y,2) € R%. (1.3)
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In order to have a solution which is continuous at ¢t = 0, x = 0, we must
have by (1.2)(1.3), Bug(0,vy,2) = (0,9, z) for all (y,z) € R%. In order that
the solution has continuous first order derivative, we must have the value of
u¢ determined by (1.1)(1.2) satisfying (1.3), i.e., Bu¢(0,0,y,2) = ¢:(0,y, 2).
Similarly are derived the higher order compatibilities which contain many
equations for the values of the initial and boundary data and their derivatives
along the intersection of the initial plane and the boundary surface.

For Euler equations, a piecewise smooth solution may contain such dis-
continuities such as shock, rarefaction wave, contact discontinuity and/or
vortex sheet [8, 16]. The mathematical formulation for such solution is
a free-boundary value problem which requires similar compatibility of the
initial data. Such compatibility conditions consist of a large simultaneous
system of algebraic equations for the values of initial data and their deriva-
tives along the initial discontinuity surface. For high order of compatibility,
the conditions are not only difficult to satisfy, but also very tedious to verify
for a given set of initial data.

The compatibility requirement is not a big concern in the one space
dimension [10], where the solution is sought in the space of C! is required
to be only continuous up to the boundary. In other word, the required
compatibility is of order 0.

However, in high space dimension where the solution is usually found in
the Sobolev space HF, high value of k is needed in order to perform linear
iteration and to obtain classical solution by the imbedding theorem. The
compatibility becomes especially an issue if the linearized problems have only
weak estimates (tame estimate [7]) and Nash-Moser iteration is needed in
establishing the existence of solution, see [1, 5]. In such cases, it is usually
required that one works in the space H* with k sufficiently large which
can only be determined in the process of the iteration. In addition, when
rarefaction wave is involved or two waves intersect, [2, 9], the high order
weighted norms also demand a high order approximate solution [1, 2, 9].
The magnitude of such high order k is usually very complicated to determine
explicitly.

In studying the existence of a specific wave structure with central vortex
sheet for 2-d isentropic Euler equations, it was shown in [3] that if all three
waves are non-degenerate, the high order compatibility requirement can be
satisfied from the 0-order compatibility with usual Lax’ shock inequality.
This is a big simplification on the usually cumbersome but necessary com-
patibility requirement.

This paper intends to expands the result for the special case in [3] to
the more general cases. We will consider not only the non-isentropic 3-



d Euler system, but also the more general wave combinations, including
the contact discontinuity which could be a density jump, a vortex sheet,
or their combination or even their degeneration — a weak discontinuity. In
addition, the result will also apply (with minor adjustment) to the sound
waves, treated as a degenerate rarefaction wave, see also [13].

It is important to emphasize that we are here concerned only with the
compatibility aspect of all these wave combinations, with no regard to their
linear stability or existence. Indeed, it is well-known that 3-d vortex sheet
are highly unstable, see e.g. [4]. However, the compatibility result obtained
here can be a useful tool in the study of the existence of various waves
where a weak linear stability does hold, like the 2-d non-isentropic vortex
sheet with tangential speed difference larger than a critical value [5, 14],
or the genuine contact discontinuity without tangential velocity jump [4],
or sound wave cases [13]. These topics are not addressed here and will be
studied in future works.

In the following, the Cauchy problem for the Euler system will be for-
mulated and the main theorem presented in section 2. Sections 3, 4, 5 will
discuss the compatibility of three different combinations of the waves.

2 Cauchy problem for 3-D non-isentropic Euler system with
piecewise smooth initial data

Let (p,p,e) be the density, pressure, and the internal energy of the fluid,
(u,v,w) be the velocity in the (z,y, z) direction. The Euler system of com-
pressible flow in 3-D space can be written as follows:

(0,p + 0 (pu) + Oy(pv) + 0. (pw) =0,

B (pu) + 9z (p + pu®) + Oy(puv) + 8. (puw) = 0,
A(pv) + Oz (puv) + y(p + pv?) + 9. (pvw) = 0, (2.1)

(
Or(pw) + Oz (puw) + Oy (pvw) + 9 (p + pw?) = 0,
Oi(pE) + 0z (pEu + pu) + 0y(pEv + pv) + 0. (pEw + pw) = 0,

\

with E = e + 3(u? 4+ v? + w?).



Denote

p pu pu pw
pU p+ qu pUv puw
Hoy=|pv |, H = puv ,Hy=| p+p? |, H3= PUW
pw puw pow p+ pw2
pE (PE +p)u (PE +p)v (PE +p)w

Then system (2.1) can be written briefly as
OsHy + 0. H1 + 8yH2 + 0,H3 =0,

and the corresponding Rankine-Hugoniot condition on the shock front x =

o(t,y, z) is
¢t[Holo — [Hilg + ¢y[Holp + ¢-[Hzlp = 0. (2:2)

Here as usual, [ f]é denotes the difference between the status ahead of and
behind the shock front z = ¢(t,y, 2).

Introducing the unknown vector of functions U = (p, u, v, w, S), it is well-
known (see e.g., [6]) that for smooth solutions, the system (2.1) is equivalent
to the following system
o + (u,v,w) - Vp + pcV - (u,v,w) = 0,
pou + p(u,v,w) - Vu + 0yp = 0,
pOv + p(u,v,w) - Vo + dyp = 0, (2.3)
poyw + p(u,v,w) - Vw + d,p = 0,

S + (u,v,w) - VS =0,

with ¢ = p/ (p, ) > 0.

System (2.3) can be written as the following symmetric form

LU = A()atU + AI(U)&EU + AQ(U)ayU + Ag(U)azU = 0,

where
p%oooo = 1 0 0 0
0 p 00O 1 pu 0 0 O
A= 0 0p OO|, 4= 0 0 pu 0O 0],
0 00 poO 0 0 0 pu O
0 000 1 0 0 0 0 u



p”? 0 1 0 0 p“’? 0O 0 1 0

0 pv 0 0 O 0O pw 0 0 O

Ay=1 1 0 pv O Of, A3=| 0 0 pw 0 O
0 0 0 pv O 1 0O 0 pw O

0 0 0 0 w 0 0 0 0 w

The matrix Ay [A1(U)+ As(U)dy+ A3(U) ] has two simple eigenvalues
A+ and one triple eigenvalue Ag:

Ao = u— vy — wh, —ay/1+ 62 + 62,

Ao = U — vy — Wy, (2.4)
Ay =u—voy, —wd, +ay/1+¢2 + ¢2,

with A < A\g < A4

Let T': o = ¢o(y, 2) be a smooth surface in the initial space R? with
$0(0,0) =0 and V¢(0,0) = 0. Consider the Cauchy problem for (2.1) with
the initial data given as

U {U_(x,y,z), if < ¢o(y,2), (2.5)

U.t,_(.T,y,Z), it > ¢0(y72)‘

Here U_(z,y, 2), Ut (z,y, ) are smooth in their respective domains up to I.
Corresponding to the Cauchy problem (2.1), (2.5), we will refer to the
following accompanying 1-d Riemann problem with constant initial data

Op + O (pu) = 0,
Aypu+ 0, (p + pu?) =0, (2.6)
OpE + 0z (pEu + pu) = 0,

(p—,u_,e_)(0,0,0), if =<0,
(p; u,€)(0,2) = .
(p+,U+,6+)(0,0,0), if z>0.

The Riemann problem (2.6), (2.7) is the 1-d version of (2.1), (2.5) with the
constant initial data taking the values of (p4,u) at the origin (0,0,0).
The solutions for the Riemann problem (2.6), (2.7) have been well-
studied and may contain in general shocks, rarefaction waves or contact
discontinuity emanating from the initial discontinuity. The possible com-
binations are SCS, SCR, RCS and RCR, where “S” stands for a shock,
“R” stands for a rarefaction wave, and “C” stands for contact discontinuity,

(2.7)



while the first letter represents a wave propagating to left, and the third
letter represents a right-propagating wave.

Depending upon the initial data (2.7), shock or rarefaction waves may be
degenerate into a characteristic carrying weak discontinuities (of the deriva-
tives of the solution), also called sound wave [13]. The contact discontinuity
may also be similarly degenerate.

In the study of high-dimensional free boundary problems involving shocks
[11, 12], rarefaction waves [1], contact discontinuity [5], or some combination
thereof [2, 9], complicated compatibility conditions are always required. The
higher the order of compatibility, the higher the order of the derivatives are
involved, and the more the equations are contained in the system.

Even though such conditions are necessary for the solution’s existence,
for a given set of the initial data, it is practically very difficult to verify their
compatibility, and it is also very tedious to explicitly construct a compatible
set of initial data, see [1, 12, 5], except for the trivial constant cases.

The purpose of this paper is to show that as long as we consider the
complete set of wave patterns, even including some degenerate cases, the
high-order compatibility can actually be derived from basic stability of the
wave patterns and hence the infinite order compatibility is automatically
satisfied for piecewise smooth initial data. The main theorem is stated as
follows.

Theorem 2.1 For the Cauchy problem (2.1), (2.5), assume that

(C) the problem (2.6), (2.7) has a solution with complete nonlinear wave
configuration, i.e., one of the four combinations: SCS, SCR, RCS or
RCR; with the shocks satisfying the usual Lax’ condition,

then the initial data in (2.5) for the non-isentropic 3-d Euler system (2.1) is
automatically compatible of infinite order for a corresponding 3-d solution.

Remark 2.1 The corresponding 3-d solution in Theorem 2.1 means a solu-
tion which has the same left or right propagating waves “S” or “R”, while in
the center, there is a contact discontinuity. This contact discontinuity “C”
could be either a vortex sheet, or a discontinuity in the density p only, or
a combination of the two. It could even be degenerate, i.e., it is missing in
the solution for (2.6), (2.7), but appears in the corresponding 3-d solution
for (2.1), (2.5) as a weak discontinuity with solution being continuous, but
only possible discontinuous normal derivatives.

Remark 2.2 Theorem 2.1 can be expanded to cover the case when the
shock or rarefaction wave also degenerates into a sound wave. In this case,



the initial data in (2.5) should be required to be uniformly degenerate at
every point along I', not only at the origin. The proof can be easily obtained
by adapting slightly the proof for Theorem 2.1 (see Remark 4.2) and will
not be explicitly given here.

For convenience, we will assume in the following that the non-isentropic
flow is the ideal polytropic gas with
p=A(S)p", v>1.

Then we have the relation (see, e.g., [6]) with 7 = p~!

py=a?=wri e=——pr.
P v—1

For our purpose of studying compatibility, it is convenient to choose the
unknown vector function as U = (p, u, v, s,p) (denoted again as U with the
abuse of notation), and consider the following equivalent system to (2.1):

,

Op + (u,v,w) - Vp+ pV - (u,v,w) =0,

Opu + (u,v,w) - Vu+ p~td,p = 0,

o + (u,v,w) - Vo + p~1dyp =0, (2.8)
Orw + (u,v,w) - Vw + p~td,p = 0,

o + (u,v,w) - Vp + pc*V - (u,v,w) = 0.

The last equation of energy conservation in (2.2) can be replaced by the
following thermodynamic relation [6]

Dp1+Ppo
€1 — €y = (7'1 — T()) 9 . (2.9)
Here as usual, subscripts ”” and ”1” denote the status before and after the

shock front. In particular for the ideal polytropic gas, (2.9) becomes

(po — p2p1)p1 = (p1 — 1 po)Ppos (2.10)

here pi* = (y —1)/(v +1).

3  Compatibility for the SCS combination of waves

The SCS combination of waves consist of a left-propagating shock, a right-
propagating shock, and a contact discontinuity (or vortex sheet) at the cen-
ter. Let the left-propagating shock be denoted by S; : = = ¢;(¢,y, z), the



right-propagating shock by S, : = = ¢,(t,y, 2), and the contact discontinu-
ity be denoted by C': = = 0(t,y, z). See Fig. 3.1.

C:x=0(ty,z)

Spix = ¢p(t,y, 2)

Figure 3.1: SCS wave configuration

Let Uy(t,x,y, z) (Up(t,x,y, z), resp.) be the solution of (2.8) (which is
equivalent to (2.1)) in the angular domain Q, (£, resp.) between S; (S,
resp.) and C. And U;(t,x,y,2) (Ur(t,z,y,2), resp.) is the solution of (2.8)
in the domain Q; (€, resp.) left (right, resp.) to S; (S, resp.).

In addition to the equations of (2.8), (U, U,) and (¢, ¢r,0) also satisty
the initial condition:

Ul(07$a Y, Z) = U*(xa Y, Z) n z< ¢U(y> Z)a
Ur(03$aya Z) :U+(£C,y,2) in z >¢U(y’z); (31)
¢l(07 Y, 2) = qb?“(oa Y, Z) = 9(07 Y, 2) = ¢0(ya 2)

Besides, they also satisfy the following Rankine-Hugoniot conditions on

two shock fronts x = ¢y, x = ¢,

Gie[Hol + ¢iy[Ho]” + ¢uz[H3]? — [H1] =0 at x=¢i(t,y,2);  (3.2)

¢rt[H0]l—7|r + ¢Ty[H2}l—;s- + ¢TZ[H3]3- - [Hl]l—)i- =0 at == ¢.(t,y,2); (3.3)

and on the contact discontinuity z = 6:

0 + vy + wpt, —up = 0,
Po — Pa =0, at ©=0(t,y,2). (3.4)
Oy(vb — Ua) + Gz(wb - wa) — (ub - ua) =0

Remark 3.1 The condition (3.4) does not impose any restriction on the
density p or the tangential velocity. It has the same form for all different
type of contact discontinuity. In particular, it also applies to the degenerate
case where only weak discontinuity exits. This shows that the proof in the
following is valid for all these cases, hence follows Remark 2.1.



The k-th order compatibility is the requirement that one should be able
to uniquely determine the values of the functions (Ug, Uy, ¢1t, drt, 0¢) and
their derivatives up to the order k at the initial manifold I" from Eqs (2.8)
and the boundary conditions (3.2)-(3.4). It is equivalent to the existence of
an approximate solution which satisfies (2.8) and (3.2)-(3.4) near I" up to
the order O(t¥). In the following, we show that it is true for any & under
the condition in Theorem 2.1.

3.1 The 0-order compatibility

The 0-order compatibility does not involve any derivatives of (U,, Up) and
we have 13 variables

Ua(oy ¢0(ya2)aya Z)’ Ub(ov ¢0(ya Z)a?/? Z)? atd)l(oayaz)a atqbr‘(ovya Z)a atQ(O,y,z)

to satisfy 13 equations in the boundary conditions (3.2)-(3.4).

Due to the continuity in the variables y and z, by the implicit function
theorem we need only to show that at the origin (0,0,0,0), the system (3.2)-
(3.4) has one solution

Ua(0707070)7 Ub(0707070)7 8t¢l(07070); 8t¢7'(07070)7 ata(oaoao)

and the corresponding Jacobian matrix is non-degenerate.
The existence of a solution at (0,0,0,0) is provided by the condition (C)
in Theorem 2.1. Indeed by (2.10), Egs (3.2)-(3.4) at (0,0,0,0) become

Pa — P— Pallq — p-U—
ou(0) | Pata =Pt | _ | Pat patiy — p— — p_u? ;
PaVlq — P-V— PallaVq — Pp-U_V— (35)
Py — p_W_ PallqgWg — P_U_W_

(p— = 1°pa)p — (pa — W2p-)p- =0

Pb — P+ PrUp — P U4
pyuy — pyuy | | oyt pouy — py — prud
¢7"t (0) - ’
PbUb — P+U+ PbUBVS — P4 U4Vt (3.6)
PrWp — P+ W+ PrUpWp — P4 U+ W

(p+ = 1°p0)p — (o6 — 2Py )ps = O;

Pa =Pb =D, Uazub:uzet(0)~ (37)

The four variables (vg, vy, wq, wp), each appears only in one equation of
(3.5) and (3.6), and they all have non-zero coefficients (pq(¢; — uq) and



pu(¢rt — up)) by condition (C) in Theorem 2.1. Hence they can be solved
independently after all other variables are determined.

Eliminating these four variables together with (pp, up, 6,(0)) from (3.5)-
(3.7), we end up with a 6 x 6 system for (¢, Ort, pPa, Uy D, Pb):

Pa = P Patt — p—u_
0 — = 0;
Pul0) <pau - p—U—) <p + pat® = p- — p—u2_>

(3.8)
(p= — 12pa)p — (pa — 12p—)p— = 0;
Pb — P+ Prl — P4 U4
T 0 - =
#re(0) <pbu — p+U+> <p + pou? — py — p+u2+> (3.9)

(p+ — 12pp)p — (pp — 2 p4)ps = 0;

These equations are exactly the Rankine-Hugoniot conditions for the
Riemann problem (2.6)(2.7), for which the existence of solution is assumed
by the condition (C).

Denote the left hand sides of (3.2)-(3.4) by Fi, Fs, F3, and let det J be

the determinant of the following Jacobian matrix
J = a(F17F27F3)
a((ﬁlta ¢7“ta eta Pa, Ua, Va, Wa, Pas Pbs Wby Vb, Wh, pb)

We need to show that det J # 0 at the point (0,0,0,0).
The Jacobian J is the coefficient matrix of the linearized system (3.2)-
(3.4). The linearization of (3.4) at the point (0,0,0,0) becomes simply

(3.10)

0 = Ug, Ug = Uy, Pa = Po-

So we can eliminate the variables (6, up,pp) in the linearized system. For
the same reason listed above, the variables (vg,wq, vy, wp) in the linearized
system all appear only in one equation with non-zero coefficient, hence we
can also eliminate them from the linear system.

The condition det J # 0 is equivalent to the non-degeneracy of the coef-
ficient matrix of the linearization of (3.8), (3.9) at (0,0, 0,0), which is

a

. P i —u ~Pa 0 Pa

| pu u(pp —u)  pa(dp — 2u) -1 | =0. (3.11)
0] | p-+4Ppa 0 12pa—p— | LD
_ b -

e Grt — u ) 0 Pb

Prt| pu u(pre —u)  py(pre —2u) 1 w| =0, (3.12)
L0 ], [ ps+1Pm 0 wpoy—py | [P ]

10



Here ((ﬁlt, (ﬁrt, Pa, Pbs U, p) denote the small increments of the corresponding
variables.

Using the relations ¢u(pa — p—) = pou — p-u— and ¢n(pp — p4) =
Py — piuy to eliminate the terms ¢y and ¢, in (3.11) and (3.12), we
obtain

2

(u—du)?* 2pau— du) 1 ] Pa
| p— + 1°pa 0 12 pa — p—

(3.13)

[ (u— ¢Tt>2 2p,(u — brt) 1 :| Zj
L+ 17 0 1oy — py

Further eliminating p, and p, from (3.11) yields a 2 x 2 system for (1, p)

di)-[mml]-ews

mrl mrQ p
mp = QPQ(U - ¢lt>(p— + :U'zpa)v
mig = (p— + (°pa) — (WPpa — p-)(u — d11)*

with

) (3.15)
my1 = 2pp(u — &re) (P4 + 17py),
mpo = (py + 12ps) — (P pp — p1) (U — brt)?
To see that det M # 0, it suffices to show that
mypp >0, myp >0, mp <0, mpo > 0. (3.16)

First of all, one obtains m;; > 0 and m,; < 0 readily from uw — ¢z > 0
and u — ¢y < 0.

For polytropic gas p(p, S) = A(S)p7, hence p = Ci—p. Since the supersonic
or subsonic character of the flow can be determined by the flow speed with
the critical speed ¢, [6], so by Lax’ shock inequality,

(¢lt - U)2 < 02—7 (¢lt - U)2 < 0(217 (¢rt - U)2 < cf, (¢rt - U)2 < CEL-
Hence mys > 0 and m,o > 0 if
(p— + 12pa) > Y(1Ppa — p=), (p+ + 1°p6) > (1°p6 — po).

or equivalently
Pos ot Bt (3.17)
b

11



(3.17) follows readily from the restriction on compression ratio pi/pp (see
6], p. 148)
1
p2 < Pt —.
Po

Therefore (3.16) is true. This finishes the proof of 0-order compatibility.

3.2 The first order compatibility

First, we notice that once the values of (Ug, Uy, ¢y, drt, 0¢) are determined
at the initial discontinuity I', then all their derivatives tangential to I' are
uniquely determined. Therefore, the first order compatibility consists of 23
linear equations for the 23 variables

Uat(07¢0(yvz)7yaz)u Uan(o’ ¢0(y72)ay’ Z)a
Ubt(07 ¢O(ya z),y, Z)’ Ubn(0a¢0(yvz)vyvz)v
¢ltt(oay) Z)) ¢Ttt(05y72)7 Qtt(O,ya Z)’

Here (Uup, Up,) denote the normal derivative to I'.

Again by the continuity in (y, z) and the implicit function theorem, we
need only to show the Jacobian of these 23 equations is non-degenerate at
the origin (0,0,0,0). In particular at the origin, (Usn,Upn) = (Usz, Ubz),
¢ly:¢lz:¢Ty:¢rz:9y:0zzoand0t:uazub:u-

Let (Dy, D, D,) be the tangential differential operators in the (z =
¢1,0, @) directions in the t-x plane:

Dl = 875 + ¢ltax7 Dc = 815 + uaac; Dr = 815 + ¢7‘t8a:~

Replace the last equations in (3.2)-(3.3) by (2.10), and then denote by
(Ho4, H14) the first four components of (Hp, H1). Taking tangential deriva-
tives (Dy, D,) of thus modified equations (3.2) and (3.3) in the t-x plane and
evaluating them at (0,0,0,0), we obtain (here and in the following in this pa-
per, * stands for terms already determined by lower order compatibility):

but[Hoa|® + (puuH)y — Hiy)DiUg = *, (3.18)
(p— + 1) Dipa + (112 pa — p—)Dipa = *.
Grie[Hoal% + (e Hlyy — Hi ) DiUp = %, (3.19)
(P4 + 1?p) Drpy + (42 py — 1) Drpy = *.

12



where the 4 x 5 matrix (¢ Hpy — Hiy) is the following

iyt — u —Pa(b) 0 0 0
w(Prrye — ) Pa)(Di(rye — 2u) 0 0 -1
0 0 Pa()(Pi(rye — ) 0 0

0 0 0 Pav)(Prrye —u) 0

Taking tangential derivatives D, of the equations in (3.4) and evaluating
them at (0,0,0) yields
Htt - Dcua =,
Depg — Depy = *, (3'20)
D.ug — Deup = .

At the origin (0,0,0,0), the interior equation (2.8) becomes

Depagy + Pa)Oztap) = *,
Do) + 7—0uDa() = *,

Pa(b)
Devgpy = *, in Q) (3.21)
Dcwa(b) = *,

Dcpa(b) + pa(b)cz(b)a’ruu(b) = *

The linear system (3.18)-(3.21) consists of 23 equations for the 23 vari-
ables

(¢ltt7 ¢rtt, ett; Uata Ua:t?a Ubta Ubaf))a
where U = (p, u,v,w,p). They can be simplified as follows.

e 0y appears only in one equation in (3.20) and can be eliminated.

e There is no restriction in (3.14) on (v¢, vy, W, Wy ), and s0 (Vat, Vaz, Wats Waz )
and (vpt, Upg, Wet, Wh,) are decoupled with each other.

Because D., D; are not parallel, (vq, v4,) are uniquely determined by
(Dcvg, Dyvg, ). Since Duv, appears only in one equation in (3.21) in
the form D.v,, and appears only in one equation in (3.18) in the
form Dyv, both with non-zero coefficients, hence (D.v,, Div,) can be
uniquely determined. Therefore (vq, vqz) can be eliminated.

e Same argument also applies to (wat, Waz, Vbt, Vb Wht s W )-

Therefore we can eliminate the 9 variables

(Qtt, Vat s Vazs Waty Wax, Ubts UVbxy Wot wb:c)

13



from (3.18)-(3.21) and obtain 14 equations for the remaining 14 variables

(¢ltta Pats Pazs Uats Uaz Pats PDazs Prity Pots Poas Ubts Ubas Dbt pbx)-
Eliminating ¢y; from (3.18) yields

Pa
(u—ou)* 2pa(u— ¢u) 1 _

Eliminating D;p, from (3.22) yields

(mllamIQ)Dl[ Za ] = x, (3.23)

a

where (my1, m2) are defined as in (3.15).
Similarly from (3.19), we obtain

u
(mrl,mrg)Dr[ b } = . (3.24)
by
with (my1, my2) defined as in (3.15).
Removing the two equations involving D.vgp) and Dewgp) in (3.21), the
remaining last two equations are independent of Dp:

1 _
Dcua(b) + T(b)axpa(b) =% (325)
-Dcpa(b) + pa(b)cZ(b)aa:ua(b) = *.
Or equivalently
U U
D, | ® ] + Ca(b)Eu(p) O { a(b) ] = %, 3.26
|: Pa(b) (5)%al®) Pa(b) ( )
with ( -
0 c -
Eyp) = a(b)Pa(t) } =&k 3.27
) { Ca(t)Pa(t) 0 a(® (327

Since D; = D, + (¢ — u)0, and D, = D. + (¢t — u)0y, then they can
be written by (3.26) as

Dl[“" ] —(1—/315,1)1)6{““ } T x,

Pa Da
(3.28)
(U up, .
Dr|:pb:|_(l ﬁréob)Dc[pb:|+ )
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with

g == g g =tTU (3.29)
Ca cp

By the Lax’ shock inequality in condition (C), we have |5;| < 1 and |§,| < 1.
Replacing (Djug, Dips) and (Dyup, Dypp) in (3.23) and (3.24) using (3.28),
we obtain two equations for two variables (D.u, D.p):

my — meBicapa —mu1Bi(capa) "t + Mo } [ u ]
_ D = *. 3.30
mr1 — me2Brcopp —mi1 Br(copy) ™1 + My p (3:30)

By (3.16) and (3.29), we have

mp — miaBicapa > 0, —mp Bi(capa) "t +mu2 >0,
mye1 — My Breppp < 0, —my1Br(cupp) ™+ mya > 0.

Consequently (3.30) is non-degenerate and (D.u, D.p) are uniquely deter-
mined.
This finishes the proof of the 1st order compatibility.

3.3 k-th order compatibility

As in the case of the first order compatibility, let’s take the k-th order tangen-
tial derivatives of the modified equations (3.2)-(3.4), and then evaluate them
at the origin (0,0,0,0). Apply D¥~! to the interior equations (2.8), and then
evaluate them at (0,0,0,0). Similar to the case of the 1st order compatibil-
ity, the 9 variables (6{““0, le(r)va(b)v Df(f)l axva(b), D;C(r)wa(b)y Dﬁ;)l axwa(b))

can be determined independently and thus be eliminated.
From (3.20) we also have

Djuq = Dyuy +*, Dgpa = Dypy + *.
For the remaining 12 variables
af+1¢l(r)v Dlgpa(b)a Dﬁ_laxpa(b)a Dfua, Dlg_lalvua(b)v Dfpa, Dlg_laibpa(b)a

we have 12 equations

a Pa
Pl okt bt —u —Pa 0 1,x
0 DF| u, |= %
[Pu}_t bﬁ[u(%—u) paldy —2u) =17 Z ’ (3.31)

(p— + p?p)DFpo + (U2pa — p—) DFpe = *.

15



b Pb
H K R e i I CED
(p+ + uPp) Dy + (1P py — py) DEpy, = .
D¥paw) + pan) D~ 0uttg ) = *,
DFu + #@Dlg_laxpa(b) = x, in Q) (3.33)

DEp + Pa)Capy De ™ Duttay) = *.
The system (3.31)-(3.33) consists of 12 equations for the 12 variables
(with D¥u = D¥u, and D¥p = DFp,)
8f+1¢l(7“)7 Dﬁpa(b)a Dlg_larpa(b)a D?u, Dzlf_lazua(b)7 D§p7 Dlg_lawpa(b)'

As in the first order case, eliminating 8f+1qbl(T) and ch(,,)ﬂa(b) from (3.31)
and (3.32), we obtain

u,
(mll)mZQ)D[k|: ¢ :| = %,
Pa

(3.34)
(mrl)mr2)Dvlf|: Zb :| = *.
b

We can use (3.33) to replace (le(r)ua(b), le(T)pa(b)) with (D¥u, D¥p). For
this, we have the following lemma (a little different one was used in [3])

Lemma 3.1 From (3.33), (le(r)ua(b), Df(T)pa(b)) can be expressed by (D¥u, D¥p)
as follows

D;C|: ZZ :| = (5[(0% —ﬁlg)Df[ ZZ :| = %,

(3.35)

DE “b]zar e — TﬁDk[“b]:,
T|:pb (ak B )c Db *

where 0 < || < agx, < 1 and 0 < |5, < o < 1. §; and 9§, are two positive
constants which may depend on k and the explicit form of which is of no
consequence in our discussion.

Proof: For k=1, (3.35) is simply (3.28).
By induction, assume (3.35) for k — 1, then

Df[ Za ] = di(k-1) — Bi&)(1 — 515)17’5[ ;La ] T
= 51(1 + Oél(kfl))(alk - Bl@(d)Dﬁ +

16



We need only to show that

2
Ozl(kfl) + /Bl
ok = 5 P 1B (3.36)

which follows by induction assumption from

a1y + B7 — 18Il = qupge—n)| Bl = (qp—ry — 1B (A = B1]) >

The same argument also applies to D¥. This concludes the proof of Lemma
3.1.

Applying Lemma 3.1, we can rewrite (3.34) into the following 2 x 2
system for (DFu, D¥p):

(ma1, mu2)6i(cur, — Bi168) D [ ] =

(3.37)
(mrlvaZ) (ark Br& ) |: P :| = *.
ie.,
Qg —Bi(capa)™? } k [ u }
mp m D = x;
L s | [ —Bi(capa) Qg “lp
rk —Br(copp) ™! ] K [ u ]
my my Dc = k.
L e | { Blapy)  an p
(3.37) is non-degenerate iff the following matrix is non-degenerate
myroge — miaBi(capa),  —marBi(capa) ™t + miau
(3.38)
My1 Qe — M2 B (Copp), =M1 Br(copy) ™" + Mpoiry

From (3.16) and (3.29), we have

myrogr — mizfBi(capa) > 0,

—muBi(capa) " + muzag, >0,

M0k, — M2 By (cppp) < 0,

—my1Br(copp) 4 My, > 0.
Therefore (3.38) is non-degenerate.

Once (D¥u, D¥p) is known, (D’g_laxua(b), D'g_laxpa(b)) as well as Dfpa(b)
can be obtained from (3.33). Then le(T) Pa(p) and consequently Df‘lﬁwpa(b)
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can be determined from (3.31), (3.32). Induction on the index j would
give all k-th order derivatives for DY 792 Pa(b)s Dk~ Nl (b) DE=I Ipay (J =
2, k).

This concludes the proof of Theorem 2.1 for the SCS wave combination.

4  Compatibility for the SCR/RCS combination of waves

We need only to consider only the SCR combination of waves whch
consist of a left-propagating shock, a right-propagating rarefaction wave,
and a contact discontinuity at the center. As in Section 3, the contact
discontinuity here is understood in the most general sense, including the
degenerate situation. See Fig. 4.1.

Let the left-propagating shock be denoted by S; : = = ¢(t,y, z), the
contact discontinuity be denoted by C' : z = 6(t,y,z), and the right-
propagating rarefaction wave is represented by an angular domain between
two characteristics L_ : = x"(t,y,2) and Ly : = = x"(t,9,2).

C:z=0(,y,=2
(y)L

_rx=x"(ty,2)

SZZI:¢l(t7y,Z) L+:I:X+(t7y72)

Figure 4.1: SCR wave configuration

The solution of (2.8) in the angular domain 2, (€2, resp.) between S;
(L_, resp.) and C' is denoted by U,(t,x,y) (Uy(t,z,y), resp.), the solution
in the domain Qp formed by the rarefaction wave between L_ and L is
denoted by U,, the solution in the domain left to S; is denoted by U;(t, =, y),
and the solution in the domain right to S, is denoted by U, (t, z,y).

By the finite speed propagation property for hyperbolic systems, the
solution Up, U,., and the location of the characteristic L, are already uniquely
determined by the initial data U_ and U,.

Due to the multi-valuedness of U, at I', a parameter s is introduced to
blow up the wedge area of Qg as [1]. Let z = x(t,s,y,2) (1 < s < 2) be the
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family of characteristics issuing from I' inside Q. Then x(¢, s,y, z) satisfies
det |A1 — Xt — XyAQ — XZAg‘ = 0, (41)

or more precisely
xt = A4 (Ue; V), (4.2)

where A, (U; ¢) is the maximal eigenvalue in (2.4).
Introduce the function W (t,s,y, z):

W(t,s,y,2) = Uec(t, x(t,8,9,2), ¥, 2), (4.3)

which satisfies

ow ow ow

LW = v, A A
W X(8t+ 28y+ 382) )
ow ’
+(A1 — xt — xyA2 — XzAS)g = 0.

In summary, the SCR combination of waves is represented by the set of
functions Ua(ta L, Y, Z)? Ub(ta z,Y, Z)a W(ta $Y, Z), X(ta $Y, Z), ¢l(ta Y, Z)7 e(ta Y, Z)
satisfying, in addition to (4.2),

LU, =0 in Q
LU, =0 in O (4.5)
LW =0 in 1<s<2.

Gue[Ho| + ¢ry[Ho] — [H1] =0 on x = ¢(t,y). (4.6)

0 — uq — vaby — w0, =0,
Pa — Db =0, (4.7)
(up — ua) — Oy(vp — va) — O (wp — wa) =

x(t,1,y,2) =x"(t,y,2),

X(t,2,y,2) = X" (t,y, 2),

W(t,1,y,2z) = Up(t, x(t,1,y,2),y, 2),

W(t7 27 y? Z) = UR(t’ X(t7 27 y7 z)? y7 Z)
Finally, we have the initial conditions at I':

(b(oaya Z) - H(O,y,z) - X(O,s,y,z) =0, (4'9)

with the assumption as in [1]

Xs =(t,8,y,2)t  with y(t,s,y,2) > 6 > 0. (4.10)

19



Remark 4.1 As noted in Remark 2.2, for sound wave treated as a degen-
erate rarefaction wave, the last equations in (4.5) are void, as well as (4.8).
And x~(¢,y,2) = x*(t,y, 2) are determined by the initial value U,..

4.1 The 0-order compatibility
As in the SCS case, we may assume (U, U,) = (U_, U ) and (U, Up) as well

as (¢, 0, Xy X?_ ) being all constant. Also assume x; depending only on s,
with W(t,s,y, z) = W (s) satisfying
(A1 = xi(s))W (s) = 0,

(4.11)

By (4.7), pa = pp, uq = up, and only one equation in (4.7) contains 6;. In
addition, (vq, wq, vp, wp) are decoupled and can be determined independently
from (4.6) and (4.8). Therefore, the 0-order compatibility becomes connect-
ing the state (p_,u_,p_) with the state (p4,us,ps+) by a shock z = ¢;(t)
and a rarefaction wave x = x. The existence of (pq, pp, Ua = Up, D, Pit, X1(S))
is provided by the condition (C) on the accompanying problem (2.6)(2.7).

Let ((s) = (p(s),u(s),p(s)) be the solution of (2.6)(2.7) such that

{(AﬁxdﬁﬂC@)ZO, (4.12)
<(2) = (P+,U+,p+), C(l) = (pbauaapa)v Xt(l) = X;a
with
U p 0
Ai=10 u pt
0 pc®

From (4.12) we see that x:(s) = A1 ({(s)) = u+cand ¢'(s) = r(¢), where
the r(¢) being parallel to (p, ¢, c?), is the right eigenvector of A}, satisfying

A
r-a— 1

ac
and ((s) is the solution of the system of the ordinary differential equation

¢ _

I = r(C) (4.13)

with ¢(2) = (p4, u+, p4).
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Replace the last equation in (4.6) by the thermodynamic relation (2.10),
then the boundary conditions on z = ¢; can be written as
i = ¢u(pa = p-) = (patta — p-u-) =0,
Fy = ¢up(patia — p-u-) = (Pa + paug — p— — p-uZ) =0, (4.14)
Fy = (p— — pi*pa)p — (pa — n?p-)p- = 0.
Denote the solution (pp, u, p) of (4.13) as two equations
Gi(pp,u,p) =0, Ga(pp,u,p) =0.
Then (¢, pas Po, U, p) can be uniquely determined if and only if

O(F1, Fy, F3,Gh, G2)>
A = det 0. 4.15
( a(¢lt7 Pa, U, P, pb) # ( )

The Jacobian in (4.15) can be computed explicitly

Pa — P b1 —u —Pa 0o 0
Pallq — P—U— (¢lt - u)u pa((mt - 2“) -1 0
0 F3,, 0 F3, 0 (4.16)
0 0 G Glp Glpb
0 0 G2u G2p G2pb
Obviously (4.16) is non-singular if and only if
(u— ¢lt)22 2pa(u — dut) 1 0
—(p— + 1°p) 0 p-—1*pa 0
det |~ 0, 417
0 Gy Gip Gip, 7 ( )
0 G2u G2p G2pb
or equivalently
mpp omyz 0
(4.18)

det | Gy Glp Glpb 7'50,
G2u G2p G2pb

where (my1, m;2) are defined as in (3.15).

Since the eigenvector 7(¢) is parallel to (pp,cp, ), hence (G, G2) can
be chosen such that (G1,,, G1u, G1p) is parallel to the vector (—py, ¢, 0) and
(G2p,, Gou, G2p) is parallel to the vector (0,1, —cp)

Then (4.18) becomes

my myz 0

det | ¢ 0 —pp
1 —¢ O

which is obvious by (3.16). This concludes the proof of 0-order compatibility.

= Pbe(mll + mlg) 75 O, (4.19)
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4.2  The first order compatibility £ =1

We need to show that the first order derivatives of Uy (2, 7,9, 2), W (2, 8,9, 2)
and ¢y (t,y, 2),0:(t,y, 2), x¢(t, 8,9, z) can be uniquely determined at I". From
the 0-order compatibility, these functions and their tangential derivatives

with respect to I' are already known.
As in [1], let H(v,n) be the matrix satisfying

_ A0
H 1<A1 - XyA2 - XZA3)H = <0 Ab> <é d) )

where the superscript b denotes the last four rows.
From (4.4) we have

H=Y (W + AWy, + AsW,,)
= _H_I(Al —xtl — A2Xy — Asxz)Ws/Xs

— <Xt —A O> Ws/xs = (0 O) Ws/Xs-

* * EONE 3
Then the first row becomes
(H YW, + AsW,, + AsW,))t = 0.
Multiplying (4.4) by H~! we have
XsH YWy + AWy, + AsW.,) + (d — x¢) H ' Wsu = 0.
Differentiating with respect to t gives

thH_l(Wt + AQWy + A3Wz) + XS(H_I(Wt + AQWy + A3Wz))t
+(d - Xt)tH_IWs + (d - Xt)(H_IWs)t =0.

Since xs =0 at t = 0, (4.23) yields

Xts (H-L(W; + AW, + AsW,))°
+A = X0 (H'W) + (A — o) (H'W,)! = 0.

From (4.24) we have

Xts (H YW + AW, + A3W7,))"
FOP = X)) (H W) + (HIW)P - 5 = %,

22
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here * stands again for the known terms. Therefore, the value of (H~'W;)®
at any s € [1,2] can be uniquely determined by its value at s = 2. On the
other hand, the value (H~'W;)! is determined from (4.22). Hence the value
of all the components of H~'TW; are uniquely determined, and so are all the
components of Wj.
Once Wy is known, we can obtain yy; by differentiating (4.2) with respect
to t:
Xtt = AWWt — Aant - ACth. (426)

Since the tangential derivatives of U, and U. on =z = x(t,1,y, 2)
x1(t,y, z) are equal, therefore the value of the tangential derivative D, Uy
(0r + x1t02)Up is known. Therefore

Drpy =%, Dyup =%, Dyp==x%, Dyvy=2x%, Dypwp=x, (4.27)

with
D, = 0; + (u + Cb)aa: = D¢ + cy0,

since at the origin x1(0,0,0) = u + ¢p.

Because x1¢ = Ay is an eigenvalue for the system (2.8), only two of the
first three relations in (4.27) are independent. Hence (4.27) consists of only
four independent relations for (pp, up, vp, Wy, pp) which we denote as

Dpr = >l<7 Dpr = >|<7 D,,,’Ub = >|<’ Dwa = k. (428)

Similar as in the SCS case in section 3, we can also obtain (3.18) and (3.20)
from (4.6) and (4.7).

Remark 4.2 For the sound wave which is treated as a degenerate rarefac-
tion wave, 1 = x2t = A+ and we obtain the same (4.27) and (4.28). Since
the degeneracy at one point on I' does not ensure the degeneracy in its neigh-
borhood, the additional requirement of uniform degeneracy is needed as in
Remark 2.2. Then all the following arguments also apply to the degenerate
case.

The linear system (3.18), (3.20), (3.21), (4.26), (4.28) consists of 23
equations for the 23 variables

(Duets Orts X1tt> Uat, Ua, Upt, Upg ).

By the same argument as in the SCS case, (vat,Vaz, Wat, Waz) can be
eliminated from (3.18) and (3.21), (Vpt, Vps, Wht, Wpe) can be eliminated from
(3.21) and (4.28). (04, x1t) can be eliminated from (3.20) and (4.26).
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Again eliminating ¢y from (3.18) yield (3.22). Then (pat, paz) can be
eliminated since (Djpq, Dcpa) can be eliminated from (3.21) and (3.22),
(pvt, ppe) can be eliminated from (3.21) and (4.28). Finally (D.ppy, Dcup)
can also be eliminated from (3.20).

After these simplifications, we are left with 6 equations for 6 variables
(Dyug, Dipa, Doty Depa, Druy, Dypp). For convenience, we rewrite these 6
equations as follows:

(

(mn,mm)Dl[ ZZ }Z(mu,mzz)wc + (i — Ua)ax]|: ZZ } = x;

D u, + #(b)axpa(b) =X

(4.29)
Dcpa + pa(b)cz(b)axua(b) =%

D,py, = (0,1)[D, + cb(‘)x][ b ] — x.
Db

Using four interior equations in (4.29) to eliminate (O, g, OyPa, Oxtp, OxPb),
we obtain two equations for (D ug, Dcpq)

(mll7ml2)(I - Bléaa)Dc[ Za ] = *]

(4.30)
(0, )(I = Cb_ltg’a)Dc[ " } = *.
Pa
(4.30) is non-degenerate if
myy — muzBi(Capa)  —muiBi(capa) Tt +mug
det # 0, (4.31)

-1
- 1

which follows readily from the fact that m;; > 0, m;; > 0 by (3.16), and
B1 < 0 by (3.29).
4.3 The k-th order compatibility

We apply the tangential derivatives lefl to (3.18), D*~1 to both (3.20) and
(3.21), D51 to (4.28), and 9F ! to (4.26), This gives 23 linear equations

ak-‘rl Hoal® + H! — H! DkUa: )
{ T Gi[Hoal2 + (¢uHpy — Hiy) Dy * (4.32)

(p— + 1?*p)Df pa + (42pa — p—)Dfpa = *.
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D¥ paw) + pan) D~ 0pttgy = *,
DFugpy + ——DE10,pgp) = *,

Pa(b) €
vaa(b) = *, in Qa(b) (433)
DFwgp) = *,

Dfpa(b) + Pa(b)ci(b)Df_laxua(b) = *.

o9 — DFu, = x, D¥p, — DFpy = %, DFu, — DFuy = +. (4.34)
Dfpb = *, Dfpb = X, vab = x*, fowb = %, (4.35)
85—HX = 87{6_1()‘WWt - )‘T]th)' (4.36)

For (4.32)-(4.36), there are 23 independent variables
af+1¢lu 8tk+195 8£€+1X17 DécUa(b)a Dfilaan(b)-
By the same argument as in the first order compatibility, the 12 variables
X1, 05110, DEvay, DY 0404y, Diwasy, DE ™' 0pwa ), DEuy, Dipy

can be eliminated immediately. Straightforward computations further elim-
inate the following 5 variables

OF M b1, D pavy, DE 02 paqh)
from (4.32), (4.33) and (4.35).
There are six equations left:
(

Uu
(mllamZZ)D[k[ “ :| = %,
Pa

Dhu + #@D(I:g_lﬁxpa(b) = *,

4.37
DEP + Pa) oy De ™ Duttayy = *; 437

Dpy = (LO)DE 10 | =
Db

for the six variables
D]ccuv Dﬁ:pa D(]:ﬁ_lawua(b)v Dls_laxpa(b)'

As shown in Lemma 3.1 for the SCS case, we can use (3.35) to replace
(DFuq, DFp,) by (D¥u,, DEp,). On the other hand, similar to (3.28), we
have here

DT[ZZ}:(I—&,)DC[Z]+*, (4.38)
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and also

D,’S[Z: ] :(I—gb)kD’j[Z]—i—*:Qk1(I—£b)Df[Z]+*. (4.39)

Therefore (4.37) can be reduced to the following 2x 2 system for (D¥u, D¥p):

(mq1, mi2)d; (cur — ﬁzéaa)Df{ Z } = *,
(4.40)
(1,0)26=1 (1 — &) Dﬁ[ Z ] = x.

(4.40) is non-degenerate if

_ _ —1
dot | MCu mi2Bi(capa) —miiBi(capa) +ml2alk]#07 (4.41)

1 —(cppp) !

which follows readily from m;; > 0, mys > 0, 5; < 0 and ag; > 0.

Once (D¥u, D¥p) is known, we can determine (Df_laxua(b), Dﬁ_laxpa(b)).
Then using interior equation (3.21) and induction, we can determine all the
derivatives (Df_jﬁiua(b), Df_jaipa(b)) for j =2,3,...,k.

This finishes the proof of the compatibility for SCR wave combination.

5 Compatibility for the RCR combination of waves

The compatibility for the RCR wave combination can be obtained simi-
larly as for the SCR case.
Omitting the tedious details, the proof is outlined as follows.

1. The 0-order compatibility follows from the condition (C);

2. For the first order compatibility, let
D.=0+ud,, D= D.— 0y, Dy =D.+ cp0;. (51)

Noticing that the eigenvalues corresponding to the two rarefaction
waves are \x = u £ ¢, and then taking tangential derivatives (Dy, D,)
to the boundary conditions on = = x;(,), and taking derivative D. to
the boundary condition on x = 6, we obtain a linear system similar
to (4.32)-(4.36) with k£ = 1, except the condition (4.32) is replaced
by corresponding equations (4.35) and (4.36). After simplification, we
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have a system similar to (4.29), again with first equation replaced by
a corresponding equation as the last one:

(

Dipy = (0, 1)Dl[ Za } = *,

D.u+ ﬁw)azpa(b) =%

5.2
Dep + pa(b)cz(b)axua(b) =% (5:2)
Dypy = (07 1)Dr|: b :| = *.
\ Db
From the interior equations in (5.2), we have by (5.1)
D, [ ta ] = (I +&) D, [ i } + %,
Pa p (5.3)
D, [ Ub } — (I - &) D, [ i ] + .
by p
Therefore, we obtain from (4.39) and (5.2)
u
(0,1) (I + &) D, [ ] = *,
b (5.4)
(0,1) (I — &) D [ Y } = ¥,
p
i.e.,
CaPa 1 U
D, = %, 5.5
[ —cppp 1 } [ p ] (5:5)

which is obviously non-degenerate.

3. For the k-th order compatibility, take tangential derivatives (le , Df)
to the boundary conditions on = = x;(,), take derivative DF to the
boundary condition on 2 = @, and D¥~! to the interior equations in
Qa(b).

This yields a linear system similar to (4.32)-(4.36), except the con-
dition (4.32) is replaced by corresponding Eqs (4.35),(4.36). After
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simplification, we are left with a system similar to (4.37):

Dfpb = (0, 1)D;“[ Za ] = x,

a

D/g’u + #@Dg_lazpa(b) = *,

\

DFp, = (0, 1)D£[ o } = *.
Do
From (5.3) and (5.6), we obtain
(0.1) (1 + &)+ DE |
(0,1) (I — &)" DF [ ] = x.
By (4.39), (5.7) is equivalent to
Capa 1 k| U
D = x,
[—Cbpb 1] ’“’[p]

which is obviously non-degenerate.
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