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Abstract

We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along 
a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact 
discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data 
are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is 
established.
© 2014 Published by Elsevier Inc.
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1. Introduction

The study of the quasilinear hyperbolic systems of conservation laws originates from many 
physical problems. A fundamental problem for the systems is the Cauchy problem: to determine 
the solution satisfying given initial data. An important phenomenon for nonlinear hyperbolic 
systems of conservation laws is that a general solution may develop singularities, no matter how 
smooth the initial data are. Therefore, one must study the weak solutions of the systems, i.e., the 
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solutions with singularities. Hence it is natural to study the Cauchy problem with discontinuous 
initial data.

In one-space-dimensional case the typical Cauchy problem with discontinuous data is the 
Riemann problem, in which the initial data are two constant states with discontinuity at the 
origin. For the Riemann problem of the genuinely nonlinear or linearly degenerate hyperbolic 
systems the theory on existence, uniqueness and stability has been established. In accordance, the 
Riemann problem for the gas dynamic system is completely solved (see [13,25]). Furthermore, 
when the initial data are not piecewise constant, but only piecewise smooth, the local existence 
of the solution to quasilinear hyperbolic system is also established (see [16]). Particularly, if the 
initial data have only one discontinuity at the origin, and are smooth up to this point, then the 
solution often has the following structure: several waves, including shocks, rarefaction waves 
and/or contact discontinuity, issuing from the origin. These waves shape like a fan, and such a 
structure is called fan-shaped structure (see [7]).

The one-space-dimensional model assumes that all quantities under consideration are uniform 
with respect to other space variables. Obviously, many physical problems do not have such a 
property. Therefore, it is necessary to study the multi-dimensional quasilinear hyperbolic systems 
including their Cauchy problems or various boundary value problems. Due to the complexity 
of characteristic varieties of multi-dimensional systems, the nonlinear wave structure for these 
systems is abundant.

In the two-space dimensional case considered in this paper, the initial data are assumed to be 
discontinuous along a smooth curve, and the data are smooth up to the curve. Then the solution 
would usually contain several nonlinear waves issuing from such an initial curve. The nonlinear 
waves are composed of shocks, simple waves and contact discontinuity. They form a twisted fan 
so that the wave structure is still called fan-shaped structure.

The study of the Cauchy problem of multi-dimensional hyperbolic system of conservation 
laws with discontinuous data attracted one’s attention for a long time. In 1983 A. Majda started 
the study of weak solutions to multidimensional system of conservation laws. He applied the 
theory of microlocal analysis to prove the stability and existence of the solution to the Cauchy 
problem of nonlinear multidimensional hyperbolic systems involving a shock front, which issues 
from a curve carrying the discontinuity of the initial data [17]. Later, in 1989 S. Alinhac [1] em-
ployed Nash–Moser iterative scheme to overcome the “derivative loss” difficulty on the charac-
teristic boundary and proved the existence of the solution with a rarefaction wave for the Cauchy 
problem of nonlinear multidimensional hyperbolic systems, where the rarefaction wave also is-
sues from the curve carrying the discontinuity of the initial data. More recently, J. Coulombel 
and P. Secchi [8] proved the corresponding local existence of solution with a contact discontinu-
ity to Cauchy problem of the Euler system, using a delicate analysis on the Kreiss–Lopatinskii 
condition.

In all these works the initial data are highly restricted to ensure that one and only one nonlinear 
wave will issue from the initial curve of discontinuity. Such demanding restrictions are called 
compatibility conditions which consist of many equalities involving the value of the initial data 
and their derivatives along the given curve of discontinuity. Obviously, such conditions are not 
only difficult to satisfy, but also difficult to check.

When the initial data do not satisfy the above restrictions, the weak solution may contain more 
than one nonlinear wave, like two shocks (see [4,20,23]), one shock and one rarefaction wave 
(see [15]). Other results on physical problems with fan-shaped wave configurations can also be 
found in [5] for the supersonic flow past a curved wedge, in [6] for shock reflection by a smooth 
surface, in [20] for propagation of sound waves etc.
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In general, for the smooth data containing discontinuity on a given smooth curve, one would 
expect that the weak solution should develop all three kinds of nonlinear waves (shock, rarefac-
tion wave and contact discontinuity), without satisfying the complex and demanding compati-
bility conditions. We notice that in 1-d case, for both Riemann problem and general Riemann 
problem, such restrictions are not necessary. That is, if the difference of the right and left limit 
of the initial data at the point carrying the discontinuity of the data is small, then the Cauchy 
problem is solvable, and a solution with fan-shaped wave structure can be constructed. It is then 
natural to try to remove or simplify such restrictions given in [1,8,17]. Correspondingly, we try 
to answer the following questions. Are such general multidimensional Cauchy problems still 
solvable? What is the wave structure near the curve carrying initial discontinuity?

In this paper, we will prove that the similar conclusion for the two-dimensional Euler systems 
is still valid. For convenience, we will consider only isentropic Euler system, while the discus-
sion can be extended to the general quasilinear hyperbolic system later. Our main conclusion in 
this paper can be described as follows: if the frozen Riemann problem at the origin has a corre-
sponding 1-d piecewise solution with stable complete nonlinear wave structure and the stability 
condition of the 2-d contact discontinuity is satisfied, then the two-dimensional Cauchy problem 
also has a local piecewise smooth solution with the same fan-shaped wave structure near the 
initial curve of discontinuity.

Denote ρ, p the density and pressure of the fluid, (u, v) the velocity in the (x, y) direction. In 
two space dimension, the Euler system of isentropic flow can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0,

∂(ρu)

∂t
+ ∂(p + ρu2)

∂x
+ ∂(ρuv)

∂y
= 0,

∂ρv

∂t
+ ∂(ρuv)

∂x
+ ∂(p + ρv2)

∂y
= 0,

(1.1)

or simply written as

∂tH0 + ∂xH1 + ∂yH2 = 0,

with

H0 =
⎛
⎝ ρ

ρu

ρv

⎞
⎠ , H1 =

⎛
⎝ ρu

p + ρu2

ρuv

⎞
⎠ , H2 =

⎛
⎝ ρv

ρuv

p + ρv2

⎞
⎠ .

Denote U = (ρ, u, v) the unknown functions. For smooth solutions, the system (1.1) is equiv-
alent to the following

H ′
0Ut + H ′

1Ux + H ′
2Uy = 0,

or equivalently,

LU ≡ ∂tU + A1(U)∂xU + A2(U)∂yU = 0. (1.2)
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Here, U = (ρ, u, v) and

H ′
0 =

⎡
⎣ 1 0 0

u ρ 0

v 0 ρ

⎤
⎦ , H ′

1 =
⎡
⎣ u ρ 0

c2 + u2 2ρu 0

uv ρv ρu

⎤
⎦ , H ′

2 =
⎡
⎣ v 0 ρ

uv ρv ρu

c2 + v2 0 2ρv

⎤
⎦ ,

A1 =
⎡
⎣ u ρ 0

c2/ρ u 0

0 0 u

⎤
⎦ , A2 =

⎡
⎣ v 0 ρ

0 v 0

c2/ρ 0 v

⎤
⎦ ,

with c2 = p′(ρ) > 0.
Consider the Cauchy problem for (1.1). Let Γ : x = φ0(y) be a smooth curve on the initial 

plane with φ0(0) = 0, φ′
0(0) = 0. The initial data are given as

U =
{

U−(x, y), if x < φ0(y),

U+(x, y), if x > φ0(y).
(1.3)

We assume that U−(x, y), U+(x, y) are smooth up to the curve Γ . Here and afterwards, the word 
“smooth” means C∞-smooth, unless specified otherwise.

The matrix A1(U) + A2(U)φy has three distinct real eigenvalues

λ− = u − vφy − a

√
1 + φ2

y,

λ0 = u − vφy,

λ+ = u − vφy + a

√
1 + φ2

y

with λ− < λ0 < λ+.

Remark 1.1. Since we only consider the local existence and structure of the solution near the 
origin, then we may assume the flow, including the initial data and the curve x = φ0(y) being
periodic with respect to y. Therefore, we only have to consider the problem (1.3), (1.5) in a 
period of the variable y, so that one can avoid the trouble of divergence of integration in the 
variable y (see [5]). Such a remark or a corresponding treatment is omitted in [1,9] and tacitly 
assumed.

In our discussion of (1.1), (1.3), we will refer to the following accompanying 1-d Riemann 
problem with constant initial data

⎧⎪⎪⎨
⎪⎪⎩

∂ρ

∂t
+ ∂(ρu)

∂x
= 0,

∂ρu

∂t
+ ∂(p + ρu2)

∂x
= 0,

(1.4)

(ρ,u)(0, x) =
{

(ρ−(0,0), u−(0,0)), if x < 0,
(1.5)
(ρ+(0,0), u+(0,0)), if x > 0.
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The Riemann problem (1.4), (1.5) is the 1-d version of (1.1), (1.3) with the constant initial data 
with the values of (ρ±, u±) at the origin (0, 0).

It is well known that for the Riemann problem (1.4), (1.5), shocks or rarefaction waves may 
be produced from the initial discontinuity. The four possible combinations are SS, SR, RS and 
RR, where “S” stands for a shock, and “R” stands for a rarefaction wave [25], while the first letter 
represents a left-propagating wave, and the second letter represents a right-propagating wave.

In some special cases, shock or rarefaction waves may degenerate into a characteristic carrying 
weak discontinuities (of the derivatives of the solution), called sound wave [22]. In this paper 
we will not consider these degenerate cases. Meanwhile, we assume v0− �= v0+, hence a contact 
discontinuity for the 2-d Cauchy problem will appear.

The main theorem of this paper can be stated as follows.

Theorem 1.2. For the Cauchy problem (1.1), (1.3), assuming that

(C1) The problem (1.4), (1.5) has a solution with complete nonlinear wave configuration, i.e., 
one of the four combinations: SS, SR, RS or RR;

(C2) The shocks satisfy the Lax’s inequality, i.e., supersonic flowing into the shock front and 
subsonic flowing out of the shock front;

(C3) At origin (0, 0, 0): |v0− − v0+| > 2
√

2c, with c being the sonic speed of the center state 
between two nonlinear waves produced by (1.4), (1.5),

the 2-d Cauchy problem of the isentropic Euler system (1.1), (1.3) admits a unique piecewise 
smooth solution with fan-shaped wave structure in a neighborhood of the origin.

Remark 1.3. In the study of 1-d Riemann problem (1.4), (1.5) (see e.g. [25]), the tool of wave 
curve is often used. Given a state (p−, u−), it can be connected from right with (p, u) either by a 
left-propagating shock, or by a left-propagating rarefaction wave. The possible state (p, u) thus 
connected to (p−, u−) forms a curve issuing from (p−, u−) on the (p, u) plane, called the wave 
curve Σ(p−, u−). There is also a similar wave curve Σ(p+, u+) for right-propagating waves.

In terms of wave curves, the condition (C1) in Theorem 1.2 is equivalent to the requirement 
that the two wave curves Σ(p−, u−) and Σ(p+, u+) intersect transversally at a point other than 
(p−, u−) or (p+, u+).

Remark 1.4. If the shocks in (C1) are understood to be stable in the sense of Lax, then the 
condition (C2) is automatically satisfied.

In Theorem 1.2, the neighborhood of the origin is divided by nonlinear waves to several 
sectors, while the solution of the Euler system is C∞ smooth in each sector. If the initial data, 
including the curve x = φ0(y), are only finitely smooth up to the curve Γ , then we can also 
obtain a piecewise finitely-smooth solution. Moreover, the smoothness of the solution will be 
much lower than the smoothness of the initial data on both sides of Γ , as in the discussions of 
the rarefaction wave or the contact discontinuity (see [1,9]). However, to focus our attention to 
the existence and wave structure of the solutions we will not discuss the case for the piecewise 
finitely smooth data.

The Cauchy problems with discontinuous data for Euler system involving only one nonlinear 
wave were discussed in [1,9,17] separately. The linear estimates in these works are the basis of 
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the linear estimates used in proving Theorem 1.2. By localization, we are able to use the results 
for linear estimates in [1,8,9,17].

When only one nonlinear wave was discussed for the Cauchy problems with discontinuous 
data, a very strong compatibility condition is always required to obtain the existence of the so-
lution, see [1,9,17]. The advantage of treating all three waves at the same time lets us to reduce 
the compatibility requirement to the minimum (C1), (C2), and to obtain an approximate solution 
which is C∞ compatible. Such approximate solution will serve as starting term in the process of 
iteration to establish the precise solution.

The rest of the paper is arranged as follows. The compatibility conditions will be carefully dis-
cussed in Section 2. We will show how to determine the derivatives at the origin of the piecewise 
smooth solution in all sectors under the assumptions (C1), (C2). Then we use Borel technique to 
construct a C∞ smooth approximate solution. In Section 3 we reformulate the Cauchy problem 
for two-dimensional Euler system to a set of boundary value problems. In Section 4 we describe 
the Nash–Moser iteration scheme employed for all reduced boundary value problems. In Sec-
tion 5 by employing the estimates for linearized problems in each case, we summarize a unified 
estimate to the whole problem. Finally, in Section 6 we prove the convergence of the revised 
Nash–Maser iteration and hence prove the main Theorem 1.2.

2. Compatibility

In the study of initial–boundary value problems or free boundary problems, the compatibil-
ity is a standard requirement for the existence of smooth or piecewise smooth solutions. Such 
requirement is necessary so that the initial and boundary conditions do not conflict with the par-
tial differential equations at the intersection curve of the initial manifold and the boundary. The 
compatibility conditions usually consist of a system of algebraic equations for the initial data and 
their derivatives. The higher the order of compatibility, the higher the order of the derivatives are 
involved, and the more equations are contained in the system.

Even though such conditions are necessary for the existence of the expected solution, practi-
cally it is very tedious to verify and difficult to satisfy them for a given set of initial data. For the 
problem considered in this paper, due to the fact that the solution includes the complete set of 
wave patterns, the situation actually becomes much better, i.e.,

Theorem 2.1. For the Cauchy problem (1.1), (1.3) under the assumptions (C1) and (C2), the 
compatibility conditions are automatically satisfied up to any order k for any smooth initial 
data U±.

In this section, we are going to prove Theorem 2.1 for all three possible fan-shaped wave 
structures: SCS, SCR, and RCR (here, “S” stands for shock, “R” stands for rarefaction wave and 
“C” stands for contact discontinuity) respectively.

2.1. Compatibility condition for the case SCS

The wave configuration of the case SCS is illustrated in Fig. 2.1. The left-propagating shock 
and right-propagating shock are denoted by Sl : x = φl(t, y) and Sr : x = φr(t, y), the contact 
discontinuity is denoted by C: x = θ(t, y).
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Fig. 2.1. SCS wave configuration.

Let Ua(t, x, y) (Ub(t, x, y), resp.) be the solution in the angular domain Ωa (Ωb , resp.) be-
tween Sl (Sr , resp.) and C. And Ul(t, x, y) (Ur(t, x, y), resp.) is the solution in the domain Ωl

(Ωr , resp.) left (right, resp.) to Sl (Sr , resp.).
Then Ua , Ub , Ul and Ur satisfy Eqs. (1.1) in their individual domain and the initial condition:

Ul(0, x, y) = U−(x, y) in x < φ0(y);
Ur(0, x, y) = U+(x, y) in x > φ0(y);
φl(0, y) = φr(0, y) = θ(0, y) = φ0(y). (2.1)

Besides, they also satisfy the following Rankine–Hugoniot conditions:

φlt [H0]a− + φly[H2]a− − [H1]a− = 0 on x = φl(t, y); (2.2)

φrt [H0]b+ + φry[H2]b+ − [H1]b+ = 0 on x = φr(t, y); (2.3)⎧⎨
⎩

θt + vbθy − ub = 0,

ρb − ρa = 0,

θy(vb − va) − (ub − ua) = 0

on x = θ(t, y); (2.4)

with the notation [f ]a− = fa − f− as usual.
The compatibility requires that one can uniquely determine the values of the functions 

(Ua, Ub, φl, φr, θ) and their derivatives at Γ from Eqs. (1.1) and the boundary conditions 
(2.2)–(2.4). It is equivalent to the existence of an approximate solution which satisfies (1.1) and 
(2.2)–(2.4) near Γ up to the order O(tk+1) (for the k-th order compatibility).

The 0-order compatibility does not involve the derivatives of (Ua, Ub) and we have 9 variables

Ua

(
0, φ0(y), y

)
, Ub

(
0, φ0(y), y

)
, ∂tφl(0, y), ∂tφr(0, y), ∂t θ(0, y)

to satisfy 9 equations in the boundary conditions (2.2)–(2.4).
Due to the continuity in the variable y, by the implicit function theorem we need to show that 

at the origin (0, 0, 0), the system (2.2)–(2.4) has one solution

Ua(0,0,0), Ub(0,0,0), ∂tφl(0,0), ∂tφr(0,0), ∂t θ(0,0),

and the corresponding Jacobian non-degenerate.
The existence of one solution at (0, 0, 0) is guaranteed by the non-degenerate condition (C1) 

in Theorem 1.2. Indeed, at (0, 0, 0) the equations in (2.2)–(2.4) become
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φlt (0)

⎛
⎝ ρa − ρ−

ρaua − ρ−u−
ρava − ρ−v−

⎞
⎠−

⎛
⎝ ρaua − ρ−u−

pa + ρau
2
a − p− − ρ−u2−

ρauava − ρ−u−v−

⎞
⎠= 0, (2.5)

φrt (0)

⎛
⎝ ρb − ρ+

ρbub − ρ+u+
ρbvb − ρ+v+

⎞
⎠−

⎛
⎝ ρbub − ρ+u+

pb + ρbu
2
b − p+ − ρ+u2+

ρbubvb − ρ+ − u+v+

⎞
⎠= 0, (2.6)

ρa = ρb, ua = ub = θt (0). (2.7)

va and vb, each appears only in one equation of (2.5), (2.6) and each has non-zero coefficient 
ρa(φlt − ua) or ρb(φrt − ub) by (C2). Eliminating va, vb, ρb, ub and θt (0) from (2.5)–(2.7), we 
end up with a 4 × 4 system for (ρa, ua, φlt , φrt ):

φlt (0)

(
ρa − ρ−

ρaua − ρ−u−

)
−
(

ρaua − ρ−u−
pa + ρau

2
a − p− − ρ−u2−

)
= 0, (2.8)

φrt (0)

(
ρb − ρ+

ρbub − ρ+u+

)
−
(

ρbub − ρ+u+
pb + ρbu

2
b − p+ − ρ+u2+

)
= 0. (2.9)

These equations are nothing but the Rankine–Hugoniot conditions for the Riemann prob-
lem (1.4), (1.5), for which the existence of solution is provided by the condition (C1).

Denote the left hand sides of (2.2)–(2.4) by F1, F2, F3, then we need to prove the Jacobian to 
be non-zero at the origin (0, 0, 0)

detJ |0 = det
∂(F1,F2,F3)

∂(φlt , φrt , θt , ρa, ua, va, ρb,ub, vb)
(0,0,0) �= 0. (2.10)

The Jacobian J is the coefficient matrix of the linearized system (2.2)–(2.4). Similarly as 
above, we can eliminate (θt , va, vb) from this linear system. By (2.7), we can also eliminate 
ρb, ub and (2.10) can be reduced to

det

⎛
⎜⎜⎜⎝

ρa − ρ− 0 φlt − ua −ρa

ρaua − ρ−u− 0 φltua − c2
a − u2

a φltρa − 2ρaua

0 ρa − ρ+ φrt − ua −ρa

0 ρaua − ρ+u+ φrtua − c2
a − u2

a φrtρa − 2ρaua

⎞
⎟⎟⎟⎠ �= 0.

Noticing that φlt (ρa − ρ−) = ρaua − ρ−u− and φrt (ρa − ρ+) = ρaua − ρ+u+, (2.10) is 
equivalent to

detJ |0 = 2ρa(ρa − ρ−)(ρa − ρ+)det

(
c2
a + (φlt − ua)

2 φlt − ua

c2
a + (φrt − ua)

2 φrt − ua

)
�= 0. (2.11)

That (2.11) is true follows from the Lax’ shock inequality (C2):

ua − φlt > 0 > ua − φrt .

This finishes the proof of 0-order compatibility.
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For the first order compatibility, we notice that once the values of (Ua, Ub, φl, φr, θ) are 
determined at the initial discontinuity Γ , then all their derivatives tangential to Γ are uniquely 
determined. Therefore, the first order compatibility consists of 15 linear equations for the 15 
variables

Uat

(
0, φ0(y), y

)
, Uan

(
0, φ0(y), y

)
, Ubt

(
0, φ0(y), y

)
, Ubn

(
0, φ0(y), y

)
,

φltt (0, y), φrtt (0, y), θtt (0, y).

Here (Uan, Ubn) denote the normal derivative to Γ .
Again by the continuity in y and the implicit function theorem, we need only to show that 

the Jacobian of these 15 equations is non-degenerate at (0, 0, 0). At the origin, (Uan, Ubn) =
(Uax, Ubx), φly = φry = θy = 0 and θt = ua = ub = u.

Let (Dl, Dc, Dr) denote the differential operators:

Dl = ∂t + φlt ∂x, Dc = ∂t + u∂x, Dr = ∂t + φrt ∂x.

Taking tangential derivatives of Eqs. (2.2)–(2.4) in the t–x plane and evaluating them at (0, 0, 0), 
we obtain

φltt [H0]a− + (
φltH

′
0 − H ′

1

)
DlUa = ∗, (2.12)

φrtt [H0]b+ + (
φrtH

′
0 − H ′

1

)
DrUb = ∗, (2.13)

with

φl(r)tH
′
0 − H ′

1 =
⎡
⎣ φl(r)t − u −ρ 0

u(φl(r)t − u) − c2 ρ(φl(r)t − 2u) 0

v(φl(r)t − u) −ρv ρ(φl(r)t − u)

⎤
⎦

and

θtt − Dcua = ∗,

Dcρa − Dcρb = ∗,

Dcua − Dcub = ∗, (2.14)

where ∗ stands for terms already determined by lower order compatibility.
At the origin (0, 0, 0), the interior equation (1.2) becomes⎧⎪⎨

⎪⎩
Dcρa(b) + ρ∂xua(b) = ∗,

Dcua(b) + c2/ρ∂xρa(b) = ∗,

Dcva(b) = ∗,

in Ωa(b). (2.15)

The linear system (2.12)–(2.15) consists of 15 equations for the 15 variables

(φltt , φrtt , θtt ,Uat ,Uax,Ubt ,Ubx),

we are going to confirm that the system has a unique solution for these variables.
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Now the system (2.12)–(2.15) can be simplified.
The variable θtt appears only in one equation (2.14) and can be eliminated. Since there is 

no restriction in (2.14) on (vt , vx), so (vat , vax) and (vbt , vbx) are uncoupled with each other. 
In addition, (vat , vax) appear only in the third equation of (2.15) in the form Dcva and they 
appear only in the third equation of (2.12) in the form Dlv, both with non-zero coefficients. 
Since Dc, Dl are not parallel, (vat , vax) can be uniquely determined by (Dcva, Drva), which 
in turn can be uniquely determined by other variables from (2.15), (2.12). Same argument also 
applies to (vbt , vbx).

Therefore, we can eliminate the variables (θtt , vat , vax, vbt , vbx) from (2.12)–(2.15) and ob-
tain 10 equations for the 10 variables (φltt , ρat , ρax, uat , uax, φrtt , ρbt , ρbx, ubt , ubx).

From (2.14) and (2.15), we have

Dcρa − Dcρb = ∗, Dcua − Dcub = ∗;
∂xρa − ∂xρb = ∗, ∂xua − ∂xub = ∗.

Hence, we can further eliminate Dcρb, Dcub , ∂xρb and ∂xub and use the same equation (2.15)
for both (ρa, ua) and (ρb, ub). For convenience, we will drop the subscript “a” and denote in the 
following ρa = ρ and ua = u.

Now there remain 6 equations for the 6 variables (φltt , Dcρ, Dcu, ρx, ux, φrtt ):

φltt

[
ρ − ρ−

φlt (ρ − ρ−)

]
+
[

φlt − u −ρ

u(φlt − u) − c2 ρ(φlt − 2u)

]
Dl

[
ρ

u

]
= ∗; (2.16)

φrtt

[
ρ − ρ−

φrt (ρ − ρ−)

]
+
[

φrt − u −ρ

u(φrt − u) − c2 ρ(φrt − 2u)

]
Dr

[
ρ

u

]
= ∗; (2.17)

{
Dcρ + ρ∂xu = ∗,

Dcu + c2/ρ∂xρ = ∗.
(2.18)

The system (2.18) can be written as

Dc

[
ρ

u

]
+ cE ∂x

[
ρ

u

]
= ∗,

with

E ≡
[

0 ρ/c

c/ρ 0

]
= E −1. (2.19)

Hence {
Dl = Dc + (φlt − u)∂x = (I − βlE )Dc,

Dr = Dc + (φrt − u)∂x = (I − βrE )Dc

(2.20)

with

βl ≡ φlt − u

c
, βr ≡ φrt − u

c
. (2.21)

By the Lax’ shock inequality (C2), we have |βl| < 1 and |βr | < 1 in (2.21).
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Using (2.20) to replace (ρx, ux) in (2.16), (2.17), we obtain a system of 4 equations for the 4 
variables (φltt , φrtt , Dcρ, Dcu).

Eliminating φltt and φrtt from (2.16), (2.17), we obtain a 2 × 2 system for (Dcρ, Dcu)

⎧⎪⎪⎨
⎪⎪⎩

(−φlt 1 )

[
φlt − u −ρ

u(φlt − u) − c2 ρ(φlt − 2u)

]
(I − βlE )Dc

[
ρ

u

]
= ∗;

(−φrt 1 )

[
φrt − u −ρ

u(φrt − u) − c2 ρ(φrt − 2u)

]
(I − βrE )Dc

[
ρ

u

]
= ∗,

which can be simplified into

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[−(φlt − u)2 − c2 2ρ(φlt − u) ]

⎡
⎣ 1 −βl

ρ

c

−βl

c

ρ
1

⎤
⎦Dc

[
ρ

u

]
= ∗;

[−(φrt − u)2 − c2 2ρ(φrt − 2u) ]

⎡
⎣ 1 −βl

ρ

c

−βr

c

ρ
1

⎤
⎦Dc

[
ρ

u

]
= ∗.

(2.22)

The system (2.22) has a unique solution if and only if the following determinant is non-zero

[ [(φlt − u)2 + c2] + 2βlc(φlt − u) βl[(φlt − u)2 + c2] + 2c(φlt − u)

[(φrt − u)2 + c2] + 2βrc(φrt − u) βr [(φrt − u)2 + c2] + 2c(φrt − u)

]
.

This is true because from βl < 0 < βr and |βl | < 1, |βr | < 1, we have

[
(φlt − u)2 + c2]+ 2βlc(φlt − u) > 0, βl

[
(φlt − u)2 + c2]+ 2c(φlt − u) < 0,[

(φrt − u)2 + c2]+ 2βrc(φlt − u) > 0, βr

[
(φrt − u)2 + c2]+ 2c(φrt − u) > 0.

Consider now the general k-th order compatibility. Taking the tangential derivatives of 
Eqs. (2.2)–(2.4) and then evaluating them at the origin (0, 0, 0), we obtain

{
∂k+1
t φl[H0]a− + (

φltH
′
0 − H ′

1

)
Dk

l Ua = ∗,

∂k+1
t φr [H0]b+ + (

φrtH
′
0 − H ′

1

)
Dk

r Ub = ∗,
(2.23)

⎧⎪⎨
⎪⎩

∂k+1
t θ − Dk

cua = ∗,

Dk
cρa − Dk

cρb = ∗,

Dk
cua − Dk

cub = ∗.

(2.24)

From the interior equation (1.2), we have

⎧⎪⎨
⎪⎩

Dk
cρ + ρ∂xD

k−1
c u = ∗,

Dk
cu + c2/ρ∂xD

k−1
c ρ = ∗,

k

in Ωa,b. (2.25)
Dcv = ∗,

Original text:
Inserted Text:
\eqref {2a16}\eqref {2a17}

Original text:
Inserted Text:
\eqref {2a16}\eqref {2a17}

Original text:
Inserted Text:
,

Original text:
Inserted Text:
the equations



JID:YJDEQ AID:7503 /FLA [m1+; v 1.192; Prn:28/05/2014; 13:14] P.12 (1-50)

12 S. Chen, D. Li / J. Differential Equations ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6Q11 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
The linear system (2.23)–(2.25) consists of 15 equations for the 15 variables

∂k+1
t φl, ∂k+1

t φr , ∂k+1
t θ, ∂k

t Ua, ∂k−1
t Uax, ∂k

t Ub, ∂k−1
t Ubx.

As in the first order case, the variables (∂k+1
t θ, ∂k

t va, ∂
k−1
t vax, ∂k

t vb, ∂
k−1
t vbx), as well as the 

variables (Dk
cρb, Dk

cub, Dk−1
c ρbx, Dk−1

c ubx) can be eliminated.
We end up with 4 equations for the 4 variables (∂k+1

t φl, ∂
k+1
t φr , Dk

cρ, Dk
cu):

∂k+1
t φl

[
ρ − ρ−

φlt (ρ − ρ−)

]
+
[

φlt − u −ρ

u(φlt − u) − c2 ρ(φlt − 2u)

]
Dk

l

[
ρ

u

]
= ∗; (2.26)

∂k+1
t φr

[
ρ − ρ+

φrt (ρ − ρ+)

]
+
[

φrt − u −ρ

u(φrt − u) − c2 ρ(φrt − 2u)

]
Dk

r

[
ρ

u

]
= ∗. (2.27)

Eqs. (2.26), (2.27) are similar to Eqs. (2.16), (2.17), except for the terms (Dk
l , D

k
r ).

Using the interior equation (2.25) and (2.20) to replace (Dk
l ρ, Dk

l u) and (Dk
r ρ, Dk

r u) by 
(Dk

cρ, Dk
cu), we need the following lemma.

Lemma 2.1. The operators (Dk
l , D

k
r ) always have the following form

Dk
l = δl(αlk − βlE )Dk

c , Dk
r = δr (αrk − βrE )Dk

c , (2.28)

where 0 < |βl | < αlk ≤ 1 and 0 < |βr | < αrk ≤ 1. δl and δr are two positive constants which may 
depend on k and the explicit form of which is of no consequence in our discussion.

Proof. For k = 1, (2.28) is (2.20), which is obvious by Lax’ shock inequality (C2).
By induction, assume (2.28) for k − 1, then

Dk
l = δl(αl(k−1) − βlE )(1 − βlE )Dk

c = (1 + αl(k−1))(αlk − βlE )Dk
c .

We need only to show that

αlk = αl(k−1) + β2
l

1 + αl(k−1)

> |βl |. (2.29)

Eq. (2.29) follows from

αl(k−1) − |βl | − αl(k−1)|βl | + β2
l = (

αl(k−1) − |βl |
)(

1 − |βl |
)
> 0

by induction assumption. The same argument also applies to Dk
r . This concludes the proof of

Lemma 2.1. �
Eliminating (∂k+1

t φl, ∂
k+1
t φr ) from (2.26), (2.27) and applying Lemma 2.1, we obtain two 

equations for two variables (Dk
cρ, Dk

cu):
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(−φlt 1 )

[
φlt − u −ρ

u(φlt − u) − c2 ρ(φlt − 2u)

]
(αlk − βlE )Dk

c

[
ρ

u

]
= ∗;

(−φrt 1 )

[
φrt − u −ρ

u(φrt − u) − c2 ρ(φrt − 2u)

]
(αrk − βrE )Dk

c

[
ρ

u

]
= ∗. (2.30)

The system (2.30) can be written as

[−(φlt − u)2 − c2 2ρ(φlt − u) ]

[
αlk −βl

ρ
c

−βl
c
ρ

αlk

]
Dk

c

[
ρ

u

]
= ∗;

[−(φrt − u)2 − c2 2ρ(φrt − 2u) ]

[
αrk −βl

ρ
c

−βr
c
ρ

αrk

]
Dk

c

[
ρ

u

]
= ∗;

which has a unique solution (Dk
cρ, Dk

cu) if and only if the following matrix is non-degenerate

[
αlk[(φlt − u)2 + c2] + 2βlc(φlt − u), βl[(φlt − u)2 + c2] + 2αlkc(φlt − u)

αrk[(φrt − u)2 + c2] + 2βrc(φrt − u), βr [(φrt − u)2 + c2] + 2αrkc(φrt − u)

]
. (2.31)

Because αlk > |βl | and αrk > |βr | by Lemma 2.1, we have for the elements in the first column 
of (2.31)

αlk

[
(φlt − u)2 + c2]+ 2βlc(φlt − u) > 0,

αrk

[
(φrt − u)2 + c2]+ 2βrc(φrt − u) > 0.

Since βl < 0 < βr and φlt − u < 0 < φrt − u, we have for the elements in the second column 
of (2.31)

βl

[
(φlt − u)2 + c2]+ 2αlkc(φlt − u) = φlt − u

c

[
2αlkc

2 + (φlt − u)2 + c2]< 0,

βr

[
(φrt − u)2 + c2]+ 2αrkc(φrt − u) = φrt − u

c

[
2αrkc

2 + (φrt − u)2 + c2]> 0.

Therefore, (2.31) is non-degenerate.
Once (Dk

cρ, Dk
cu) is determined, one can obtain (Dk−1

c ρx, Dk−1
c ux) from Eqs. (2.25). Repeat-

ing using (2.25) yields all the k-th derivatives of (ρ, u). This finishes the proof of Theorem 2.1
for the SCS wave pattern.

2.2. Compatibility condition for the case SCR

The wave pattern for the case SCR is as follows. See Fig. 2.2.
The initial data are given as (1.3), with the curve Γ carrying the discontinuity of the initial data 

being t = 0, x2 = 0. The left-propagating shock front is denoted by Sl : x = φl(t, y), the contact 
discontinuity is denoted by C: x = θ(t, y). The rarefaction wave is described by an angular 
domain between two characteristics L−: x = χ−(t, y) and L+: x = χ+(t, y). The solution in 
the angular domain Ωa (Ωb, resp.) between Sl (L−, resp.) and C is denoted by Ua(t, x, y)

(Ub(t, x, y), resp.), the solution in the domain ΩR formed by the rarefaction wave between L−
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Fig. 2.2. SCR wave configuration.

and L+ is denoted by Uc, the solution in the domain left to Sl is denoted by Ul(t, x, y), and the 
solution in the domain right to Sr is denoted by Ur(t, x, y).

By the finite speed propagation property for hyperbolic systems, the solution Ul , Ur , and the 
location of the characteristic L+ are already uniquely determined by the initial data U− and U+.

The functions Ua(t, x, y), Ub(t, x, y), Uc(t, x, y) satisfy the system (1.1)

LUa = 0 in Ωa,

LUb = 0 in Ωb,

LUc = 0 in ΩR. (2.32)

Due to the multivaluedness of Uc at Γ , we introduce a parameter s to blow up the wedge area 
of ΩR as in [1]. Let x = χ(t, s, y) (1 ≤ s ≤ 2) be the family of characteristics issuing from Γ
inside ΩR . Then χ(t, s, y) satisfies

det |A1 − χt − χyA2| = 0, (2.33)

or more precisely

χt = λ(U ;−χy), (2.34)

where λ(U ; η) is the maximal eigenvalue of the matrix A1 + ηA2.
Introduce the function W(t, s, y):

W(t, s, y) = Uc

(
t, χ(t, s, y), y

)
, (2.35)

which satisfies

L̃W ≡ χs

(
∂W

∂t
+ A2

∂W

∂y

)
+ (A1 − χt − χyA2)

∂W

∂s
= 0. (2.36)

In addition to Eqs. (2.32) and (2.34), the functions Ua(t, x, y), Ub(t, x, y), W(t, s, y), χ(t, s, y), 
φl(t, y), θ(t, y) should also satisfy the following boundary conditions:

φlt [H0] + φly[H2] − [H1] = 0 on x = φl(t, y), (2.37)
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⎧⎨
⎩

θt + vbθy − ub = 0,

ρa − ρb = 0,

θy(vb − va) − (ub − ua) = 0,

on x = θ(y), (2.38)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ(t,1, y) = χ−(t, y),

χ(t,2, y) = χ+(t, y),

W(t,1, y) = Ub

(
t, χ(t,1, y), y

)
,

W(t,2, y) = UR

(
t, χ(t,2, y), y

)
.

(2.39)

Finally, we have the initial conditions at Γ :

φ(0, y) = θ(0, y) = 0 = χ(0, s, y) = 0, (2.40)

with the assumption as in [1]

χs = γ (t, s, y)t with γ (t, s, y) ≥ δ > 0. (2.41)

The k-th order compatibility conditions require that one can find an approximate solu-
tion Ũa(t, x, y), Ũb(t, x, y), φ̃(t, y), θ̃ (t, y) and W̃ (t, s, y), χ̃ (t, s, y) such that Eqs. (2.32), 
(2.36)–(2.39) are satisfied up to the order O(tk+1).

The 0-order compatibility k = 0.
As in the SCS case, we need only to consider the case that Ul (= U−), Ur (= U+), Ua , Ub

are all constant. Also we can assume that (φlt , θt , χ
−
t , χ+

t ) are all constant, and χt depends only 
on s. W(t, s, y) = W(s) satisfies

{(
A1 − χt (s)

)
W ′(s) = 0,

W(0) = U+.
(2.42)

From (2.38) we see that ρa = ρb, ua = ub , and va, vb, θ0 can be determined separately. There-
fore, the problem becomes connecting the state (ρ−, u−) with the state (ρ+, u+) by a shock 
x = φl(t) and a rarefaction wave x = χ(t, s). The existence of (ρa, ua = ub, φlt , χt (s)) is guar-
anteed by the condition (C1) on the accompanying problem (1.4), (1.5).

Specifically, let w(s) = (ρ(s), u(s)) be the solution of (1.4), (1.5) such that

(
A′

1 − χt (s)I
)
w′(s) = 0,

w(2) = (ρ+, u+), w(1) = (ρa,ua), χt (1) = χ−
t , (2.43)

with

A′
1 =

[
u ρ

c2/ρ u

]
.

From (2.43) we see that χt(s) = λ(w(s)) and w′(s) = r(w), where r(w) is the right eigenvector 
of A′

1, satisfying

r · ∂λ = 1

∂w
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and w(s) is the solution of the system of the ordinary differential equation

dw

ds
= r(w) (2.44)

with w(2) = (ρ+, u+).
Write the solution of (2.44) as G(ρ, u) = 0 and denote the Rankine–Hugoniot conditions on 

x = φl(t) (= φ0t) as

F1 = φ0(ρa − ρ−) − (ρaua − ρ−u−) = 0,

F2 = φ0(ρaua − ρ−u−) − (
pa + ρau

2
a − p− − ρ−u2−

)= 0. (2.45)

Then (φ0, ρa, ua) is uniquely determined if and only if

� = det

(
∂(F1,F2,G)

∂(φ0, ρa, ua)

)
= det

⎛
⎝F1φ0 F1ρa F1ua

F2φ0 F2ρa F2ua

0 Gρa Gua

⎞
⎠ �= 0. (2.46)

Noticing that the right-eigenvector r(w) in (2.44) is parallel to the vector (ρ, c) and hence 
(Gρa , Gua ) is parallel to the vector (c, −ρ), we find that (2.46) is equivalent to

�1 = det

⎛
⎝ ρ − ρ− φ0 − u −ρ

φ0(ρ − ρ−) u(φ0 − u) − c2 ρ(φ0 − 2u)

0 c −ρ

⎞
⎠ �= 0. (2.47)

Because the flow is subsonic behind the shock front by (C2), direct computation of the determi-
nant in (2.47) yields

�1 ∼ det

(−(φ0 − u)2 − c2 2ρ(φ0 − u)

c −ρ

)
= ρ(φ0 − u − c)2 �= 0. (2.48)

This concludes the proof of 0-order compatibility.
Next we consider the first order compatibility k = 1. We need to determine the first order 

derivatives of Ua(t, x, y), Ub(t, x, y), W(t, s, y) and φlt (t, y), θt (t, y), χt (t, s, y) at Γ . From the 
0-order compatibility, these functions and their tangential derivatives with respect to Γ are al-
ready known.

The following computation in the domain ΩR follows [1], and for readers’ convenience we 
briefly repeat it here.

Let H(v, η) be the matrix satisfying

H−1(A1 − χyA2)H =
(

λ 0
0 λb

)
(� d), (2.49)

where the superscript b means the last two rows.
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From (2.36) we have

H−1(Wt + A2Wy) = −H−1(A1 − χtI − A2χy)
Ws

χs

=
(

χt − λ 0
∗ ∗

)
H−1 Ws

χs

=
(

0 0
∗ ∗

)
H−1 Ws

χs

. (2.50)

Then the first row becomes

(
H−1(Wt + A2Wy)

)1 = 0. (2.51)

Multiplying (2.36) by H−1 we have

χsH
−1(Wt + A2Wy) + (d − χt )H

−1Wsu = 0.

Differentiating with respect to t gives

χtsH
−1(Wt + A2Wy) + χs

(
H−1(Wt + A2Wy)

)
t

+ (d − χt )tH
−1Ws + (d − χt )

(
H−1Ws

)
t
= 0. (2.52)

Since χs = 0 at t = 0, (2.52) gives

χts

(
H−1(Wt + A2Wy)

)b + (
λb − χt

)
t

(
H−1Ws

)b + (
λb − χt

)(
H−1Ws

)b
t
= 0. (2.53)

On the other hand, by differentiating (2.34) with respect to t we can obtain

χtt = λWWt − ληχyt . (2.54)

Substituting χtt into (2.53) we have

(
λb − χt

)((
H−1Wt

)b)
s
+ (

H−1Wt

)b · ∗ = ∗, (2.55)

where ∗ stands for known terms. Therefore, the value of (H−1Wt)
b at any s ∈ [1, 2] can be 

uniquely determined by its value at s = 2. On the other hand, the value (H−1Wt)
1 is determined 

from (2.51). Hence the value of all the components of H−1Wt are uniquely determined, and so 
are all the components of Wt .

Since the tangential derivatives of Ub and Uc on x = χ(t, 1, y) ≡ χ−(t, y) are equal, therefore 
the value of the tangential derivative DrUb ≡ (∂t +χ−

t ∂x)Ub is known. Evaluating the tangential 
derivatives at the origin and noticing χ−(0, 0) = u + c,

Dr = ∂t + (u + c)∂x = Dc + c∂x,

we have
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Drρb = ∗,

Drub = ∗,

Drvb = ∗. (2.56)

Since χ1t = λ+ is the eigenvalue for the system (1.2), we obtain only two independent relations 
for (ρb, ub, vb) from (2.56):

Drρb = ∗,

Drvb = ∗. (2.57)

Similarly as in the SCS case, we can derive the conditions on (φltt , θtt , Uat , Uax). Differenti-
ating (2.37) in the tangential direction and evaluating at the origin yields

φltt [H0] + (
φltH

′
0 − H ′

1

)
DlUa = ∗. (2.58)

Differentiating (2.38) leads to the following same equations as in (2.14):

θtt − Dcua = ∗,

Dcρa − Dcρb = ∗,

Dcua − Dcub = ∗. (2.14)

The linear system (2.54), (2.57), (2.58), (2.14), together with the system (2.15) in the Ωa and 
Ωb consists of 15 equations (one in (2.54), two in (2.57), three in (2.58), three in (2.14), six 
in (2.15)) for the 15 variables (φltt , θtt , χ

−
t t , Uat , Uax, Ubt , Ubx).

As in the SCS case, (θtt , vat , vax, vbt , vbx) as well as (ρbt , ρbx, ubt , ubx) can be eliminated 
from the system. And χ−

t t can be eliminated by (2.55).
After the simplification, we end up with five linear equations for the five variables 

(φltt , ρat , ρax, uat , uax): (We will drop the subscript “a” in the following.)

φltt

[
ρ − ρ−

φlt (ρ − ρ−)

]
+
[

φlt − u −ρ

u(φlt − u) − c2 ρ(φlt − 2u)

]
Dl

[
ρ

u

]
= ∗; (2.59)

(Dc + cE ∂x)

(
ρ

u

)
= ∗, (2.60)

(Dc + c∂x)ρ = ∗. (2.61)

As in the case of SCS, we can use (2.60) to replace (ρx, ux) by (Dcρ, Dcu):

∂x

(
ρ

u

)
= −1

c
E Dc

(
ρ

u

)
+ ∗ and Dl = (I − βlE )Dc.

Eliminating φltt from (2.59) yields

[−(φlt − u)2 − c2 2ρ(φlt − u) ] (I − βlE )Dc

[
ρ

u

]
= ∗. (2.62)
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By (2.60), (2.61) becomes

(1 0 ) (I − E )Dc

[
ρ

u

]
= ∗. (2.63)

The coefficient matrix for (2.62) and (2.63) is[ [−(φlt − u)2 − c2] − 2βlc(φlt − u) βl
ρ
c
[(φlt − u)2 + c2] + 2ρ(φlt − u)

1 −ρ/c

]

which is non-degenerate because

[−(φlt − u)2 − c2]− 2βlc(φlt − u) < 0, βl

ρ

c

[
(φlt − u)2 + c2]+ 2ρ(φlt − u) < 0.

This completes the proof of the first order compatibility.
For the general k-th order compatibility, we apply the tangential derivatives Dk−1

r to (2.57), 
Dk−1

l to (2.58), Dk−1
c to (2.14), as well as ∂k−1

t to the interior equations in (2.15). By the 
same argument as in the first order compatibility, we can eliminate the variables (∂k+1

t φl,

∂k+1
t θ, ∂k+1

t χ−,DkUb, Dkva) and obtain the four linear equations for (Dk
cρa,D

k
cua,D

k−1
c ρax,

Dk−1
c uax) (the subscript “a” is dropped again in the following):

[−(φlt − u)2 − c2 2ρ(φlt − u) ] (I − βlE )kDk
c

[
ρ

u

]
= ∗; (2.64)

(Dc + cE ∂x)D
k−1
c

(
ρ

u

)
= ∗, (2.65)

(1 0 ) (Dc + c∂x)
k

[
ρ

u

]
= ∗. (2.66)

Using (2.60) to replace ∂x by Dc, we have

∂x

[
ρ

u

]
= −1

c
E Dc

[
ρ

u

]
. (2.67)

Then (2.66) becomes

(1 0 ) (I − E )kDk
c

[
ρ

u

]
= ∗. (2.68)

It is readily checked that (I ± E )k = 2k−1(I ± E ). Hence (2.68) is reduced to

(1 −ρ
c
)Dk

c

[
ρ

u

]
= ∗. (2.69)

On the other hand, by Lemma 2.1 we have from (2.64)

δl [−(φlt − u)2 − c2 2ρ(φlt − u) ] (αlk − βlE )Dk
c

[
ρ

u

]
= ∗. (2.70)
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Fig. 2.3. RCR wave configuration.

Similarly as in the first order case, (2.69), (2.70) have a unique solution if and only if the 
following matrix is non-degenerate:

[−αlk((φlt − u)2 + c2) − 2βlc(φlt − u) βl
ρ
c
((φlt − u)2 + c2) + 2αlkρ(φlt − u)

1 −ρ
c

]

which has non-zero determinant because

−αlk

(
(φlt − u)2 + c2)− 2βlc(φlt − u) < 0, βl

ρ

c

(
(φlt − u)2 + c2)+ 2αlkρ(φlt − u) < 0

by Lax’ inequality (C2) and |βl| < αlk in Lemma 2.1.

2.3. Compatibility condition for the case RCR

The discussion of compatibility condition for the case RCR follows almost exactly the case 
SCR. See Fig. 2.3. Omitting the tedious details, we just mention the following main issues:

(1) The 0-order compatibility follows from the condition (C1);
(2) The eigenvalues corresponding to the two rarefaction waves are λ = u ± c, the k-th order 

compatibility can be reduced, just as in the SCR case, to

(1 0 ) (Dc − c∂x)
k

[
ρ

u

]
= ∗,

(1 0 ) (Dc + c∂x)
k

[
ρ

u

]
= ∗. (2.71)

Replacing ∂x by Dc in (2.71) according to (2.67), we obtain

(1 0 ) (I + E )kDk
c

[
ρ

u

]
= (2k−1 0 ) (I + E )Dk

c

[
ρ

u

]
= ∗,

(1 0 ) (I − E )kDk
c

[
ρ

u

]
= (2k−1 0 ) (I − E )Dk

c

[
ρ

u

]
= ∗. (2.72)
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It is equivalent to ⎧⎪⎨
⎪⎩

Dk
cρ + ρ

c
Dk

cu = ∗,

Dk
cρ − ρ

c
Dk

cu = ∗.
(2.73)

So that the derivatives of k-th order for ρ, u can be uniquely determined.

2.4. Approximate solution of infinite compatibility

Usually, the k-th order approximate solution follows immediately from the k-th order compat-
ibility. One needs only to construct the approximate solution by using the Taylor series. However, 
for the construction of infinite order approximate solution, one should use Borel technique to 
construct a C∞ smooth approximate solution.

Denote briefly the nonlinear waves by φ and the solution by U . More precisely, in SCS case 
φ = (φl, θ, φr), U = (Ua, Ub), in SCR case φ = (φl, θ, χ−), U = (Ua, Ub, UR) and in RCR case 
φ = (χ+

l , θ, χ−
r ), U = (URl

, Ua, Ub, URr ). Then from Theorem 2.1, we obtain the following 
existence of approximate solutions.

Theorem 2.2. Under the assumptions (C1) and (C2), for the Cauchy problem (1.1), (1.3) with 
smooth initial data U±, there exists an approximate solution (Ua, φa) which:

• Is C∞ in their respective domains;
• Satisfies the initial conditions (2.1);
• For any k ∈ N, (Ua, φa) satisfies the interior equations (1.1) and boundary conditions

(2.2)–(2.4) up to the order of tk near t = 0.

Proof. Obviously the explicit form of the proof of Theorem 2.2 depends upon the specific SCS, 
SCR, or RCR wave configurations. But the general idea behind all the proofs is the same: given 
the values of all the (t, x) derivatives of a function w along the initial curve Γ : x = φ0(y), 
construct a C∞ function w in the neighborhood of Γ and t = 0, assuming the given values of 
all the derivatives on Γ and t = 0. Next we give a generic construction of the function w. To 
simplify notations we omit the variable y.

Let α = (α0, α1) be the multi-index corresponding to the variables (t, x) with the convention 
|α| = α0 + α1, α! = α0!α1! and

∂αw = ∂
α0
t ∂α1

x w.

Let ϕ(t, x) ∈ C∞
0 (R2) satisfy

supp ϕ ⊂ (−1,1) × (−1,1) and ϕ ≡ 1 in (−1/2,1/2) × (−1/2,1/2).

Let {sn} be an increasing sequence defined by

sn =
∑

|α|=n,|β|≤n−1

max
∣∣φ(β)

∣∣(1 + |aα|)n!, (2.74)

where φ(β) denotes the derivatives of φ.
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Now we define

w(t, x) =
∑
|α|≥0

φ(s|α|t, s|α|x)
aα

α! t
α0xα1 . (2.75)

Every term in (2.75) is C∞ for all (t, x) and satisfies

Dγ

(
φ(s|α|t, s|α|x)

aα

α! t
α0xα1

)∣∣∣∣
t=x=0

=
{

aγ , γ = α;
0, γ �= α.

(2.76)

In order to prove that (2.75) is the C∞ function, we need only to show that all its term-wise 
Dγ -derivative converges uniformly for all (t, x). Obviously we need only to consider the terms 
with |α| ≥ |γ | + 2:

Dγ
(
φ(s|α|t, s|α|x)

)aα

α! t
α0xα1

=
∑
β≤γ

γ !
β!(γ − β)!(α − γ + β)!φ

(β)s
|β|
|α|aαtα0−γ0+β0xα1−γ1+β1 . (2.77)

In view of the finite support of function φ and the choice of sn in (2.74), we have in (2.77)

s|α| · |t | ≤ 1, s|α| · |x| ≤ 1;∣∣φ(β)aα

∣∣ · |t | ≤ 1

|α|! ,
∣∣φ(β)aα

∣∣ · |x| ≤ 1

|α|! . (2.78)

Noticing that 
∑

|α|≥0
1
α! = e2, we obtain the estimate of (2.77) for all (t, x)

∣∣∣∣Dγ
(
φ(s|α|t, s|α|x)

)aα

α! t
α0xα1

∣∣∣∣≤ ∑
β≤γ

γ !
|α|!(α − γ + β)! ≤ e2

|α|(|α| − 1)
. (2.79)

This implies the uniform convergence of w(γ ) for (2.75). �
3. Transformation and reformulation

The proof of Theorem 1.2 should be carried out for all three cases – SCS, SCR, RCR – 
separately. Among the three cases, the SCR is the most general and typical case of the three 
possible wave combinations. As far as the approach and methods are concerned, the discussion 
on the other two cases can be found in SCR case. To avoid repetition and tediousness, we will 
here only present the proof for the SCR case.

Consider the initial value problem (1.1), (1.3), with a left-propagating shock front Sl : x =
φl(t, y), a contact discontinuity C: x = θ(t, y), and a right-propagating rarefaction wave in an 
angular domain between two characteristics L−: x = χ−(t, y) and L+: x = χ+(t, y). These 
surfaces divides the upper half-space to the domain Ωl, Ωa, Ωb, ΩR and Ωr , as shown in Fig. 3.1. 
In accordance, the solution in each domain is denoted by Ul, Ua, Ub, Uc and Ur respectively.
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Fig. 3.1. SCR wave configuration.

By the finite speed propagation property for hyperbolic systems, the solution Ul , Ur , and the 
location of the characteristic L+: x = χ+(t, y) are already uniquely determined by the initial 
data U− and U+.

We are looking for the SCR solution of (1.1), (1.3) consisting of the functions Ua(t, x, y), 
Ub(t, x, y), Uc(t, x, y) and the functions φl(t, y), θ(t, y), χ−(t, y) such that

• (Ua, Ub, Uc) satisfy the system (1.1) in their respective domains Ωa, Ωb, ΩR ;
• φl(t, y), θ(t, y), χ−(t, y) are the boundaries dividing the four domains Ωl, Ωa, Ωb, ΩR ; and 

satisfying

φl(t, y) < θ(t, y) < χ−(t, y) < χ+(t, y) when t > 0,

φl(0, y) = θ(0, y) = χ−(0, y) = χ+(0, y) = φ0(y),

φlt (0, y) < θt (0, y) < χ−
t (0, y) < χ+

t (0, y). (3.1)

• On x = φl(t, y), the Rankine–Hugoniot condition (2.37) is satisfied;
On x = θ(t, y), the contact-discontinuity condition (2.38) is satisfied;
On x = χ−(t, y), Ub = Uc; and x = χ+(t, y), Uc = Ur .

• There exist two smooth functions Θ±(t, x, y) defined on ±x ≥ 0 respectively, satisfying the 
eikonal equations

Θ−
t + vaΘ

−
y − ua = 0, in x < 0,

Θ+
t + vbΘ

+
y − ub = 0, in x > 0 (3.2)

with

Θ±(t,0, y) = θ(t, y) and ∂xΘ
±(t, x, y) ≥ κ > 0. (3.3)

As in [8], the satisfaction of eikonal equations (3.2) is required near x = 0 instead of only on 
the boundary x = 0 as in (2.38), because the weak Lopatinskii condition applies only for the 
uniformly characteristic boundary as discussed in [19]. For the linearly degenerate eigen-
value λ0 for the Euler system (1.1), it can always be achieved by choosing an appropriate 
coordinate of variables (x, y).

• In ΩR , Uc takes the form of (2.35), i.e., there exists a function χ(t, s, y), such that 
W(t, s, y) = Uc(t, χ(t, s, y), y) satisfies:
(1) x = χ(t, s, y) (0 ≤ s ≤ 1) is a family of characteristics (2.34): χt = λ+(U ; −χy);
(2) χ(0, s, y) = φ0(y);
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Fig. 3.2. SCR wave configuration on (t̃ , x̃) plane.

(3) χ(t, 1, y) = χ−(t, y), χ(t, 2, y) = χ+(t, y);
(4) χs = γ (t, s, y)t with γ (t, s, y) ≥ δ > 0 as in (2.41);
(5) the function W(t, s, y) satisfies (2.36):

L̃W ≡ χs

(
∂W

∂t
+ A2

∂W

∂y

)
+ (A1 − χt − χyA2)

∂W

∂s
= 0. (3.4)

Now we are going to make singular coordinates transforms in the three angular domains Ωa , 
Ωb , ΩR to change them into standard cylindrical domains with fixed boundary. The surfaces 
x = φl(t, y), θ(t, y), χ−(t, y), χ+(t, y) defined in (3.1) will be the boundary values of a family 
of surfaces which are also used in the construction of the rarefaction wave in the domain ΩR.

Denote

Ω̃j = {
(t̃ , x̃, ỹ) : t̃ > 0, j − 1 < x̃ < j

}
(j = 0,1,2). (3.5)

Let φ(j)(t̃ , x̃, ỹ) be defined on Ω̃j as

φ(0)(t̃ , x̃, ỹ) = (1 + x̃)θ(t, y) − x̃φl(t̃ , ỹ),

φ(1)(t̃ , x̃, ỹ) = (1 − x̃)θ(t, y) + x̃χ−(t̃ , ỹ),

φ(2)(t̃ , x̃, ỹ) = χ(t̃,2 − x̃, ỹ). (3.6)

Then we have

φ(0)(t,−1, y) = φl(t, y),

φ(0)(t,0, y) = φ(1)(t,0, y) = θ(t, y),

φ(1)(t,1, y) = φ(2)(t,1, y) = χ−(t, y),

φ(2)(t,2, y) = χ+(t, y). (3.7)

For t̃ > 0, the transformations

x = φ(j)(t̃ , x̃, ỹ), y = ỹ, t = t̃ (j = 0,1,2) (3.8)

are bijections from Ω̃0 to Ωa , from Ω̃1 to Ωb, and from Ω̃2 to ΩR respectively. See Fig. 3.2.
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Under these transformations, the system of equations (1.2) becomes a singular system defined 
in Ω̃j . Denoting the new unknown function in Ω̃j as U(j), we obtain the transformed system 
of (1.2) in Ω̃j (j = 0, 1, 2)

∂t̃U
(j) + A2

(
U(j)

)
∂ỹU

(j) + 1

∂x̃φ
(j)

(
A1

(
U(j)

)− φ
(j)

t̃
− φ

(j)

ỹ
A2

(
U(j)

))
∂x̃U

(j) = 0. (3.9)

The system (3.9) is singular because ∂x̃φ
(j) = O(t̃).

To formally remove this singularity, as well as to derive the required estimates, we introduce 
another coordinate transform (see also [4]),

t̃ = eτ , with ∂t̃ = e−τ ∂τ . (3.10)

With the transform (3.10), the domain Ω̃j becomes ωj :

ωj = {
(τ, x̃, ỹ) : τ ∈R, j − 1 < x̃ < j

}
(j = 0,1,2). (3.11)

And the system (3.9) becomes

L (j)
(
U(j), φ(j)

)≡ ∂τU
(j) + eτA2

(
U(j)

)
∂ỹU

(j)

+ eτ

∂x̃φ
(j)

(
A1

(
U(j)

)− e−τ ∂τ φ
(j) − φ

(j)

ỹ
A2

(
U(j)

))
∂x̃U

(j)

= 0 in ωj (j = 0,1,2). (3.12)

In particular, the t̃ η-weighted integration in the domain Ω̃j becomes the hyperbolic η-weighted 
integration in ωj :

∫
Ω̃j

t̃η
∣∣U(j)(t̃ , x̃, ỹ)

∣∣2dt̃dx̃dỹ =
∫
ωj

e(η+1)τ
∣∣U(j)(τ, x̃, ỹ)

∣∣2dτdx̃dỹ. (3.13)

Besides, we denote

B(−1)
(
U(0), φ(0)

)≡ ∂τφ
(0)[H0] − eτ [H1] + eτ ∂ỹφ

(0)[H2], on x̃ = −1, (3.14)

B(0)
(
U(0),U(1), φ(0)

)≡

⎧⎪⎪⎨
⎪⎪⎩

e−τ φ
(0)
τ − v

(1)
b φ

(0)

ỹ
− u

(1)
b ,

ρ
(0)
a − ρ

(1)
b ,

θỹ(v
(1)
b − v

(0)
a ) − (u

(1)
b − u

(0)
a ),

on x̃ = 0. (3.15)

To simplify the notation, we will drop the tilde in the new coordinates in the following and 
replace τ by t . In summary, the existence of SCR wave structure can be formulated equivalently 
as the following boundary value problem in the domain {(t, x, y) : −1 < x < 2, t > −∞}:

To find unknown functions (U(j)(t, x, y), φ(j)(t, x, y)) (j = 0, 1, 2) in the domain ωj =
{(t, x, y) : j − 1 < x < j} (j = 0, 1, 2) satisfying

Original text:
Inserted Text:
domains



JID:YJDEQ AID:7503 /FLA [m1+; v 1.192; Prn:28/05/2014; 13:14] P.26 (1-50)

26 S. Chen, D. Li / J. Differential Equations ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
• Interior equations:

L (j)
(
U(j), φ(j)

)= 0 in ωj (j = 0,1,2); (3.16)

• Boundary conditions for shock and contact discontinuity:

B(−1)
(
U(0), φ(0)

)= 0 on x = −1, (3.17)

B(0)
(
U(0),U(1), φ(0)

)= 0 on x = 0; (3.18)

• Continuous boundary conditions for rarefaction waves:

U(1)(t,1, y) = U(2)(t,1, y), U(2)(t,2, y) = U(r)(t,2, y); (3.19)

• Rarefaction wave structure:

φ
(2)
t (t, x, y) = λ+

(
U(2);−φ(2)

y

)
,

∂xφ
(2)(t, x, y) = γ (t, x, y)et with γ ≥ δ > 0; (3.20)

• Boundary surfaces conditions:

φ(j)(−∞, x, y) = φ0(y) (j = 0,1,2), (3.21)

φ(j)(t, j, y) = φ(j+1)(t, j, y) (j = 0,1); (3.22)

• Constraint: there exists a function Θ±(t, x, y) satisfying (3.3) and

e−tΘ−
t + vaΘ

−
y − ua = 0 in x < 0,

e−tΘ+
t + vbΘ

+
y − ub = 0 in x > 0. (3.23)

4. Iteration scheme

Our main task is to prove Theorem 1.2, the theorem on existence of the local solution, by 
using the Nash–Moser iteration technique near the C∞ approximate solution constructed in The-
orem 2.2. Due to the reformulation in Section 3, we need only to prove the existence of the 
solution (U(j), φ(j)) (j = 0, 1, 2) satisfying (3.16)–(3.23) in −∞ < t < T for some T ∈R.

For the shock wave alone, the existence of the solution was established in [17], using Newton 
iteration. For the rarefaction wave and contact discontinuity, the existence was proven in [1]
and [8] individually. In the proof for the latter cases a modified version of Nash–Moser iteration 
scheme is employed, in which an additional error term coming from the uniformly characteristic 
requirement.

In this paper we are going to combine these three cases and give a unified treatment to 
the iteration scheme. Indeed, with the transformation performed in Section 3, the problem in 
(3.16)–(3.23) has formally similar form near each wave. By localization in the x direction, we 
can use the result already obtained in [17,1,8], in particular the estimates for the corresponding 
linearized problem and the basic technique of iteration. Certainly, we should also treat the factor 
eηt appearing in the coefficients.
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Denote U = (U(0), U(1), U(2)) and φ = (φ(0), φ(1), φ(2)). Our aim is to construct a sequence 
of smooth approximate solutions (Ua + Uk, φa + φk) (k = 0, 1, 2, . . .) near (Ua, φa), which 
converges in appropriate space to the solution of the problem (3.16)–(3.23).

Let {θn} be the sequence defined by

θ0 ≥ 1, θn =
√

θ2
0 + n, �n = θn+1 − θn. (4.1)

And the sequence {�n} is decreasing with

1

3θn

≤ �n =
√

θ2
n + 1 − θn ≤ 1

2θn

. (4.2)

The parameter θ0 will be chosen sufficiently large later.
Let (Ua, φa) be the C∞ approximate solution we obtained in Theorem 2.2 which satisfies 

(3.16)–(3.23) near t = −∞ up to any order of et , i.e., for any η > 0, the error decays faster than 
the order of eηt near t = −∞.

We approximate the solution by a sequence of approximate solutions in the form of (Ua +
Un, φa + φn), constructed as follows

(U0, φ0) = (0,0),

Un+1 = Un + �nU̇n, φn+1 = φn + �nφ̇n (n = 0,1,2, . . .), (4.3)

where U̇n and φ̇n will be the solution of an appropriate boundary value problem for a linear 
hyperbolic system specified as follows.

4.1. Interior equation

First, let’s consider the interior equation part of the Nash–Moser iteration scheme, which 
yields the interior system the functions (U̇n, φ̇n) should satisfy.

For simplicity of notation, denote

L (U,φ) = (
L (0)

(
U(0), φ(0)

)
,L (1)

(
U(1), φ(1)

)
,L (2)

(
U(2), φ(2)

))
.

Consider the linearization of the nonlinear operator L (U, φ) at a given state (U, φ). Introduce 
a new variable V̇ (see [1] and [8]):

V̇ = U̇ − Ux

φx

φ̇. (4.4)

Then the linearized operator �(U, φ)(U̇ , φ̇) of the nonlinear operator L (U, φ) at the state 
(U, φ) can be expressed

�(U,φ)(U̇ , φ̇) = L ′(U,φ)V̇ + B(U,φ)V̇ + φ̇

φx

∂xL (U,φ), (4.5)

where the operators L ′(U, φ) and B(U, φ) are defined as
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L ′(U,φ) ≡ ∂t + etA2(U)∂y + et

φx

(
A1(U) − e−t φt − φyA2(U)

)
∂x, (4.6)

B(U,φ) ≡ et

φx

B1(U,φ) + etB2(U,φ)

≡ et

φx

(
A′

1(U) − φyA
′
2(U)

)
Ux + etA′

2(U)Uy. (4.7)

For simplicity of notations, we introduce the notation La(Un, φn):

La(Un,φn) ≡ L
(
Ua + Un,φ

a + φn

)
.

Similarly, we will use the notations

�a(Un,φn) ≡ �
(
Ua + Un,φ

a + φn

)
, Ba(Un,φn),Ba(Un,φn), . . . .

Then we have

L(Un+1, φn+1) − L(Un,φn) = �a(Un,φn)(U̇n, φ̇n)�n + �ne
′
n1

where e′
n1 is the standard quadratic error in the Newtonian iteration.

Because of the loss of regularity in the tame estimate for the linearized problem, the Nash–
Moser iteration applies a smoothing (or regularizing) operator Sn to the value of (Un, φn) before 
iteration, therefore,

La(Un+1, φn+1) − La(Un,φn) = �a(SnUn,Snφn)(U̇n, φ̇n)�n + �nen1 (4.8)

where en1 ≡ e′
n1 + e′′

n1 with e′′
n1 being the smoothing error.

Using the new variable V̇n in (4.4) and introducing the operator �̃a(U, φ)V̇ = L ′
a(U, φ)V̇ +

B(U, φ)V̇ , we have

La(Un+1, φn+1) − La(Un,φn) = �n�̃a(SnUn,Snφn)V̇n + �n(en1 + en2), (4.9)

where en2 ≡ φ̇n

φa
x +φ̄nx

∂x[La(SnUn, Snφn)].
In order to apply the estimates established for the linearized system in [1] and [8] where the 

boundaries x = 0 as well as x = α with 1 ≤ α ≤ 2 are required to be uniformly characteristic, the 
values (SnUn, Snφn) need to be further adjusted. Hence the introduction of the error term en3
is required. In the rarefaction wave case the adjusted operator can be obtained by changing some 
coefficients in �̃a . In the contact discontinuity case the adjusted operator is obtained by replacing 
(SnUn, S φn) by suitable (Ūn, φ̄n), which is denoted by (Un+1/2, φn+1/2) in [8, Section 7.4]. 
Formally we denote the linear operator obtained from �̃a(Un, φn) through this adjustment as La :

La(Un,φn) ≡ �̃a(Ūn, φ̄n). (4.10)

Then we obtain the following relation

La(Un+1, φn+1) − La(Un,φn) = �nLa(Un,φn)V̇n + �nen, (4.11)
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where

en ≡ en1 + en2 + en3.

Since in the domain 0 < x < 1 (−1 < x < 0, resp.) two nonlinear waves – contact disconti-
nuity and rarefaction wave (shock, resp.) are involved, the adjustment should be described more 
carefully. First, in the pure rarefaction wave region 1 < x < 2, the adjustment L(2)

a is the same 
as did in [1, Section 3.3], where the coefficient matrix of the system is decomposed according to 
its eigenvectors and then its coefficients are changed to make the boundaries x = 1, 2 uniformly 
characteristic. The adjusted operator is denoted by ¯̄L(Un, φn) in [1].

In the domain 0 < x < 1 the adjusted operator L(1) is chosen as

L
(1)
a (Un,φn) = ϕ(x) ¯̄L(Un,φn) + (

1 − ϕ(x)
)
�̃a(Ūn, φ̄n),

where ϕ(x) is the C∞ function defined by

ϕ(x) =
{

0 x < 1/3,

1 x > 2/3,

and (Ūn, φ̄n) is the (Un+1/2, φn+1/2) introduced in [8, Section 7.4].
In the domain −1 < x < 0, the adjusted operator L(0) is chosen as

ϕ(x + 1)�̃a(Ūn, φ̄n) + (
1 − ϕ(x + 1)

)
�̃a(Un,φn),

because in the neighborhood of shock wave x = −1, the linear iteration could proceed without 
introducing the smoothing operator Sn and no adjustment is needed for the uniform characteris-
tic requirement. And the new variable Vn is also not needed. Since no characteristic adjustment 
is made, the error term en3 at the shock wave x = −1 is zero.

Let Ḟn be chosen such that

n∑
k=0

�kḞk = −SnFT L
(
Ua,φa

)− Sn

n−1∑
k=0

�kek. (4.12)

Here the operator FT is the extension operator from (−∞, T ) to (−∞, ∞) as in [1]. Then we 
finally obtain the iteration scheme in the interior, i.e., the value of increment (V̇n, φ̇n) should 
satisfy the hyperbolic system

La(Un,φn)V̇n = Ḟn. (4.13)

4.2. Boundary conditions

There are three different types of conditions on the boundaries x = −1, x = 0, and x = 1.
At the shock wave boundary x = −1, the linearization of the nonlinear operator

B(−1)(U(0), φ(0)) at (U(0), φ(0)) is B̃(−1)(U(0), φ(0))(U̇ (0), φ̇(0))
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B̃
(−1)

(
U(0), φ(0)

)(
U̇ (0), φ̇(0)

)
≡ [

H0
(
U(0)

)]
∂t φ̇

(0) + et
[
H2

(
U(0)

)]
∂yφ̇

(0)

+ [
φ

(0)
t H ′

0

(
U(0)

)− etH ′
1

(
U(0)

)+ etφ(0)
y H ′

2

(
U(0)

)]
U̇ (0)

+ [
φ

(0)
t H ′

0

(
U(0)

)− etH ′
1

(
U(0)

)+ etφ(0)
y H ′

2

(
U(0)

)]U(0)
x

φ
(0)
x

φ̇(0)

≡ b(−1)
(
U(0), φ(0)

)
φ̇(0) + M(−1)

(
U(0), φ(0)

)
U̇ (0). (4.14)

Since U(0)
x /φ

(0)
x is bounded, b(−1)(U(0), φ(0)) is an operator with bounded coefficients.

Replacing the variable U̇ (0) in (4.17) by V̇ (0) = U̇ − Ux

φx
φ̇, we have

B
(−1)

(
U(0), φ(0)

)(
V̇ (0), φ̇(0)

)
= b(−1)

(
U(0), φ(0)

)
φ̇(0) + M(−1)

(
U(0), φ(0)

)Ux

φx

φ̇(0) + M(−1)
(
U(0), φ(0)

)
V̇ (0). (4.15)

Here the notation B(−1) means an operator acting on (V̇ , φ̇) instead of (U̇ , φ̇).
Therefore, on x = −1 we have

B(−1)
a

(
U

(0)
n+1, φ

(0)
n+1

)− B(−1)
a

(
U(0)

n , φ(0)
n

)
= �nB

(−1)
a

(
SnU

(0)
n ,Snφ

(0)
n

)+ �nd
(−1)
n (4.16)

with d(−1)
n = d

(−1)
n1 + d

(−1)
n2 being the standard Nash–Moser error term consisting of quadratic 

error and regularization error:

�nd
(−1)
n1 = B(−1)

a

(
U

(0)
n+1, φ

(0)
n+1

)− B(−1)
a

(
U(0)

n , φ(0)
n

)−B
(−1)
a

(
U(0)

n , φ(0)
n

)(
U̇ (0)

n , φ̇(0)
n

)
�n,

d
(−1)
n2 = B

(−1)
a

(
U(0)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)−B
(−1)
a

(
SnU

(0)
n ,Snφ

(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)
.

Meanwhile, Ġ(−1)
n is chosen to satisfy

n∑
k=0

Ġ
(−1)
k �k = −SnFT B(−1)

(
Ua,φa

)− Sn

n−1∑
k=0

d
(−1)
k �k. (4.17)

In accordance, the increment (U̇ (0)
n , φ̇(0)

n ) should satisfy

B
(−1)
a

(
U(0)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)= Ġ(−1)
n . (4.18)

This is the linearized boundary condition at x = −1.
At the contact discontinuity boundary x = 0, we use the same iteration scheme as in [8]. First,

B(0)
(
U

(0,1)
, φ

(0) )− B(0)
(
U(0,1), φ(0)

)= β(0)
(
U(0,1), φ(0)

)(
V̇n, φ̇

(0)
)
�n + d

(0)
�n (4.19)
a n+1 n+1 a n n a n n n n1
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with β(0)
a in (4.19) being the linearization of B(0)

a at (U(0,1)
n , φ(0)

n ) and d(0)
n1 being the quadratic er-

ror. Applying smoothing operator Sn to (U(0,1)
n , φ(0)

n ) in the coefficients of the operator β(0)
a and 

making further adjustment to satisfy the uniform characteristic conditions in eikonal equations 
in (3.2), the relation (4.19) changes into

B(0)
a

(
U

(0,1)
n+1 , φ

(0)
n+1

)− B(0)
a

(
U(0,1)

n , φ(0)
n

)
= B

(0)
a

(
U(0,1)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)
�n + d(0)

n �n, (4.20)

where

d(0)
n = d

(0)
n1 + d

(0)
n2 + d

(0)
n3

with d(0)
n2 and d(0)

n3 being the substitution errors.
Then the boundary iteration scheme on x = 0 should be

B
(0)
a

(
U(0,1)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)= Ġ(0)
n (4.21)

with Ġ(0)
n chosen according to the following

n∑
k=0

Ġ
(0)
k �k = −SnFT B(0)

(
Ua,φa

)− Sn

n−1∑
k=0

d
(0)
k �k. (4.22)

At the rarefaction wave boundaries x = 1, the solution should be continuous, i.e. U(1) = U(2)

at x = 1. Here we notice that the boundary L+ and the value of U(2) on it are already known from 
the initial value U+(x, y) in (1.3) and Eqs. (1.1). Correspondingly, V (2), φ(2) are also known.

We will adopt the boundary iteration scheme as in [1]:

U
(1)
n+1 − U

(2)
n+1 = U(1)

n − U(2)
n + �Ġ(1)

n + �d(1)
n , (4.23)

where d(1)
n is the error and Ġ(1)

n is chosen to secure the convergence of the iteration.
Since the boundary L+ is characteristic, the matrix A1(U

(1)) − ∂tφ
(1) − A2(U

(1))∂yφ
(1) is 

degenerate. In the process of iteration one must adjust the approximate solution Un, φn to Ūn, φ̄n, 
so that the adjusted boundary matrix

A1
(
Ū (1)

n

)− ∂t φ̄
(1)
n − A2

(
Ū (1)

n

)
∂yφ̄

(1)
n (4.24)

is degenerate with rank 2 (correspondingly, the operator becomes the above-mentioned ad-
justed operator). Its eigenvectors form a new orthogonal basis in the space R3. Denote by 
Π

(1)
n ≡ Π(Ū

(1)
n , φ̄(1)

n ) the matrix formed by these three unit column eigenvectors, we may obtain 
an orthogonal transformation from the original basis to the new basis. Without loss of general-
ity we may assume that the first column vector corresponds to the right-propagation rarefaction 
wave. This vector spans an one-dimensional subspace in which the matrix (4.24) is degenerate, 
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and non-degenerate in its orthogonal complement. Denoting the operators projecting to the non-
degenerate and degenerate subspaces by Pn and I − Pn respectively, we derive the boundary 
conditions on x = 1 as

P (1)
n V̇ (1)

n − P (2)
n V̇ (2)

n = P (1)
n Ġ(1)

n on x = 1, (4.25)(
1 − P (1)

n

)
V̇ (1)

n − (
1 − P (2)

n

)
V̇ (2)

n = Z(1)
n φ̇(1)

n + (
1 − P (1)

n

)
Ġ(1)

n on x = 1. (4.26)

Here Ġ(j)
n is the modified error as shown in the following (4.31),

Z(1)
n ≡ (

1 − P (2)
n

)Ua(2)
x + Ū

(2)
nx

φ
a(2)
x + φ̄

(2)
nx

− (
1 − P (1)

n

)Ua(1)
x + Ū

(1)
nx

φ
a(1)
x + φ̄

(1)
nx

. (4.27)

We remark here that

etZ(1)
n �= 0. (4.28)

Indeed, in the above equality φa(1)
x + φ̄

(1)
nx is the approximation of φa(1)

x which satisfies

φa(1)
x ≥ C1e

t (4.29)

with C1 > 0 because of (2.41). Then the denominator of the second term in the right hand side 
of (4.27) obeys the inequality (4.29). In the meantime, we also have Ua(1)

x + Ū
(1)
nx = O(et ) due 

to the smoothness of U in ω1. Therefore, the fraction in (4.27) is bounded as t → −∞. Hence 
the argument in Proposition 6.3 of [1] implies (4.28).

For simplicity of notation, we will denote the boundary iteration scheme (4.24) and (4.25) on 
x = 1 as

B
(1)
a

(
U(1)

n , φ(1)
n

)(
V̇ (1)

n , φ̇(1)
n

)= Ġ(1)
n (4.30)

with Ġ(1)
n chosen according to the following

n∑
k=0

Ġ
(1)
k �k = −SnFT B(1)

(
Ua,φa

)− Sn

n−1∑
k=0

d
(1)
k �k. (4.31)

5. Estimate of linearized problem

5.1. Remarks on the reformulation

The Nash–Moser iteration method depends on obtaining the “tame” estimate in appropriate 
spaces for the linearized problem (see [12]). The tame estimate for the linearized problems in-
volving rarefaction wave or contact discontinuity was established in [1,8], while the estimate 
established in [17] can also be regarded as a special case of tame estimate. Next we need to 
combine all three estimates in one framework. Meanwhile, we will also indicate that the refor-
mulation of the problem in Section 3 does not introduce any new difficulty in establishing the 
whole tame estimate.
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Firstly, the formulation of the problem involving rarefaction wave in [1] is identical to the 
formulation in this paper after the transform (3.8), and consequently is equivalent to the formu-
lation after the transform (3.10). In particular, the t -weighted norm near t ∼ 0 is equivalent to 
the et -weighted norm near t ∼ −∞. Since the factor et is introduced only in the coefficients of 
tangential derivative terms or lower order terms, it has no effect upon the well-posedness of the 
rarefaction wave problem.

Secondly, for the case involving shock or contact discontinuity we also apply the blow up 
domain transformation (from t > 0 to t > −∞), as well as the introduction of the small factor 
et near t ∼ −∞. Hence we need to address these differences as well as the possible difficulty 
caused by the localization process.

The domain change actually does not cause any difficulty. Indeed, in the discussion of both 
shock wave [17] and contact discontinuity [8], the estimate is always for the value between 
the unknown functions and the approximate solutions. Therefore, it is always assumed that the 
estimated quantity is identically zero in t < 0, and the discussion is carried out formally in −∞ <
t < T with 0 < T � 1. In this paper, we will consider the formally same domain −∞ < t < T , 
but with −T � 1.

On the other hand, the introduction of the small factor et in our formulation does not cause 
any new difficulty in obtaining the estimate for linearized problem. For both shock wave and con-
tact discontinuity, the linearized estimates are obtained by micro-local analysis on the cotangent 
bundle s2 + ω2 = 1. In our formulation, notice that the factor et appears simultaneously in the 
coefficients of tangential derivative ∂y terms, in both the interior equations and in the boundary 
conditions, so the factor et only increases the weight on s and the analysis can proceed as usual. 
On the other hand, the factor et in the lower order terms can only have a beneficial effect in 
obtaining the estimate since et � 1 near t = −∞.

Finally, since all three types of wave are involved in the linear estimate, we have to resort 
to the localization. Now near different kinds of waves, the linearized estimates are different. 
We need to patch them together to obtain the general estimate for the whole wave structure 
discussed here. Here we will adopt the weakest estimate in three wave patterns. This means, 
even though we could have a standard estimate for the linearized shock wave, we will use only 
a watered-down weak version of “tame” estimate which would match the estimates available for 
the contact discontinuity. In this way, we can overcome the difficulty caused by the localization.

5.2. The family of spaces

In this paper, we will use the η-weighted norms both in the interior domains and on the 
boundaries. Such η-weighted norms are in form the same as the standard η-weighted norms 
usually used in the study of hyperbolic problems. However, our norms are defined in the region 
−∞ < t < T , in contrast to the standard region of 0 < t < T . Indeed the norms we used here are 
equivalent to the t -weighted norms used in [1], see (3.13). Meanwhile, they have many similar 
properties, such as the Sobolev imbedding into continuous functions, Banach algebra property 
for index s > [n/2] + k, trace theorem, etc.

For a non-negative integer s, let k = (k0, k1, k2) be the multiple index with |k| = k0 + k1 + k2. 
We define Hs

η(ωT
j ) to be the Sobolev space defined by the norm

‖U‖2
Hs

η (ωT
j )

=
∑

0≤|k|+2m≤s

∫
ωT

∣∣∂k0
t Dk1

x ∂k2
y ∂m

x

(
e−ηtU(x, y, t)

)∣∣2dydxdt, (5.1)
j
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where η is a fixed sufficiently large constant, Dx = x(x − 1)(x − 2)∂x is an operator tangential 
to the boundaries x = 0, 1, 2.

The norm defined in (5.1) is obviously equivalent to the following

‖U‖2
Hs

η (ωT
j )

=
∑

0≤|k|+2m≤s

∫
ωT

j

η2(k0−k′
0)
∣∣e−ηt ∂

k′
0

t Dk1
x ∂k2

y ∂m
x U(x, y, t)

∣∣2dydxdt. (5.2)

Let Γ T
j (j = −1, 0, 1, 2) be the boundary

Γ T
j = {

(t, x, y); −∞ < t < T, x = j, y ∈R
}
. (5.3)

And the Sobolev space on the boundary Γ T
j can be defined similarly

|U |2
Hs

η (Γ T
j )

=
∑

0≤|k|≤s

∫
ωT

j

∣∣∂k0
t ∂k2

y

(
e−ηtU(y, t)

)
x=j

∣∣2dydt. (5.4)

The Sobolev spaces Hs
η(ωT

j ) can be imbedded in the spaces of bounded and continuously differ-
entiable functions

Hs
η

(
ωT

j

)⊂ Cm, for s > 2 + 2m. (5.5)

And also we have the trace theorem

s > 1, u ∈ Hs
η

(
ωT

j

) ⇒ u|x=j−1 ∈ Hs−1
η (Γj−1), u|x=j ∈ Hs−1

η (Γj ), (5.6)

and the corresponding inverse trace theorem.

5.3. The well-posedness of the linearized problem

The well-posedness of the linearized shock wave, contact discontinuity, and rarefaction wave 
has been discussed separately in [17,8,1]. In this paper, we will apply the results obtained therein 
to study the combination of such waves. For the well-posedness of the linearized waves, the 
preceding terms (Un, φn) are always assumed to be near the background waves. Just as in the 
discussion of each separate wave, we will assume throughout the following discussion of the 
linearized problem that there exists a small constant κ0 > 0, such that the values of (Un, φn) in 
the coefficients of the linearized problem satisfy

‖Un‖H 5
η (ωT ) + ‖φn‖H 5

η (Γ T ) = κ ≤ κ0. (5.7)

The satisfaction of (5.7) guarantees the well-posedness of the linearized problems and the validity 
of the estimate for its solution, uniformly with respect to κ ≤ κ0.

We formulated the three linearized boundary value problems of (4.13) with the boundary 
conditions (4.18), (4.21) or (4.29). To apply the estimates established in [17,8] or [1] for the 
single shock wave, contact discontinuity or rarefaction wave case, we have to derive three Cauchy 
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problems, each of them only involving a single wave. To this end we use partition of unity. As 
before, let ϕ(x) ∈ C∞(−∞, ∞) satisfying

ϕ(x) =
{

0 x < 1/3,

1 x > 2/3.

Define

ζ1(x) = ϕ(1 + x)
(
1 − ϕ(x)

)
, ζ2(x) = ϕ(x)

(
1 − ϕ(x − 2)

)
,

ζ0(x) = ζ1(1 + x). (5.8)

Noticing that ζj (x) = 1 as x = j − 1, we consider the boundary value problems satisfied by 

(ζj (x)V̇n
(j)

, φ(j)
n ) with j = 0, 1, 2 and derive the estimates for them respectively. Since

supp ζ0 ⊂ (−5/3,−1/3), supp ζ1 ⊂ (−2/3,2/3), supp ζ2 ⊂ (1/3,8/3),

we can make the zero extension into x ∈ R, and the problems for (ζj (x)V̇n
(j)

, φ(j)
n ) become the 

same problem discussed in [1,8,17]. This fact allows us to apply the estimates established in [1,
8,17] to our problem.

5.3.1. The linearized problem near x = −1
Near x = −1, we have the linearized problem:

{
L

(0)
a

(
U(0)

n , φ(0)
n

)(
ζ0V̇

(0)
n , φ̇(0)

n

)= ζ0Ḟ
(0)
n + (

L ′
a

(
U(0)

n , φ(0)
n

)
ζ0
)
V̇ (0)

n , x > −1,

B
(−1)
a

(
U(0)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)= Ġ(−1)
n , x = −1.

(5.9)

To establish the estimates for the solution of (5.9), we apply the results in [17]. In [17], the 
n-dimensional Cauchy problem of a general quasilinear hyperbolic system with a single shock 
wave was studied, and the solution includes the shock front location and status on both sides 
of the shock front. In our case with left-propagating shock, the status to the left of the shock 
is known by the property of the finite propagating speed. Therefore, the only unknowns are 
the location of the shock front and the status to the right of the shock. Such situation permits 
some simplification of the estimates in [17], and the estimates involve only the unknowns ζ0V̇

(0)
n

(we also notice that ζ0V̇
(0)
n = V̇

(0)
n on the boundary x = −1) and φ(0)

n . Consequently, we have 
the following lemma. (In all the lemmas in this section, the conditions in Theorem 1.2 and the 
conditions (3.16)–(3.23) are always assumed.)

Lemma 5.1. Let the integer s ≥ s0 > 4 and η be sufficiently large, Ḟ (0)
n ∈ Hs

η (ωT
0 ) and Ġ(−1)

n ∈
Hs

η (γ T−1). Then the solution (ζ0V̇
(0)
n , φ̇(0)

n ) of (5.9) satisfies

η
∥∥ζ0V̇

(0)
n

∥∥2
Hs

η (ωT
0 )

+ ∥∥ζ0V̇
(0)
n

∥∥2
Hs

η (Γ T−1)

+ η
∥∥e−t φ̇(0)

n

∥∥2
Hs

η (Γ T−1)
+ ∥∥e−tDt φ̇

(0)
n

∥∥2
Hs

η (Γ T−1)
+ ∥∥Dyφ̇

(0)
n

∥∥2
Hs

η (Γ T−1)

≤ Cs

[∥∥Ḟ (0)
n

∥∥2
s T + ∥∥(L ′

a

(
U(0)

n , φ(0)
n

)
ζ0
)
V̇ (0)

n

∥∥
s T + ∥∥Ġ(−1)

n

∥∥2
s T
Hη(ω0 ) Hη (ω0 ) Hη (Γ−1)
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+ (∥∥Ḟ (0)
n

∥∥2
H

s0
η (ωT

0 )
+ ∥∥(L ′

a

(
U(0)

n , φ(0)
n

)
ζ0
)
V̇ (0)

n

∥∥
H

s0
η (ωT

0 )
+ ∥∥Ġ(−1)

n

∥∥2
H

s0
η (Γ T−1)

)
· (1 + ∥∥coeff(−1)

∥∥2
s

)]
. (5.10)

Here the constant Cs depends only on κ0, while the notation ‖coeff‖s represents the terms

∥∥coeff(−1)
∥∥

s
= ∥∥U(0)

n

∥∥
Hs

η (ωT
0 )

+ ∥∥U(0)
n

∥∥
Hs

η (Γ T−1)
+ ∥∥φ(−1)

n

∥∥
Hs+1

η (Γ T−1)
.

5.3.2. The linearized problem near x = 0
Near x = 0, we have the linearized equation (4.13) with the contact discontinuity linearized 

boundary conditions (4.18):

⎧⎪⎨
⎪⎩
L

(0)
a

(
U(0)

n , φ(0)
n

)(
ζ1V̇

(0)
n , φ̇(0)

n

)= ζ1Ḟ
(0)
n + (

L ′
a

(
U(0)

n , φ(0)
n

)
ζ1
)
V̇ (0)

n , x < 0,

L
(1)
a

(
U(1)

n , φ(1)
n

)(
ζ1V̇

(1)
n , φ̇(1)

n

)= ζ1Ḟ
(1)
n + (

L ′
a

(
U(1)

n , φ(1)
n

)
ζ1
)
V̇ (1)

n , x > 0,

B
(0)
a

(
U(0,1)

n , φ(0)
n

)(
V̇ (0)

n , φ̇(0)
n

)= Ġ(0)
n , x = 0.

(5.11)

Since ζ1 vanishes outside (−2/3, 2/3), then by extending ζ1V̇
(0,1)
n as zero outside (−2/3, 2/3), 

the problem (5.11) becomes the same problem studied in [8]. It is established in [8] the corre-
sponding tame estimate (Proposition 6) as follows:

Lemma 5.2. Let an integer s ≥ s0 > 4 and η be sufficiently large, Ḟ (0,1)
n ∈ Hs+1

η (ωT
0,1) and 

Ġ
(0)
n ∈ Hs

η (Γ T
0 ). Then (5.11) has a unique solution (ζ1V̇

(0)
n , φ̇(0)

n ), (ζ1V̇
(1)
n , φ̇(1)

n ) (or simply de-

noted by (ζ1V̇
(0,1)
n , φ̇(0,1)

n ) with noticing φ̇(0)
n = φ̇

(1)
n on x = 0), satisfying

η
∥∥ζ1V̇

(0,1)
n

∥∥
Hs

η (ωT
0,1)

+ ∥∥P(0)ζ1V̇
(0,1)
n

∥∥
Hs

η (Γ T
0 )

+ η
∥∥e−t φ̇(0)

n

∥∥
Hs

η (Γ T
0 )

+ ∥∥e−tDt φ̇
(0)
n

∥∥
Hs

η (Γ T
0 )

+ ∥∥Dyφ̇
(0)
n

∥∥
Hs

η (Γ T
0 )

≤ Cs

[∥∥ζ1Ḟ
(0,1)
n

∥∥
Hs+1

η (ωT
0,1)

+ ∥∥(L ′
a

(
U(0,1)

n , φ(0)
n

)
ζ1
)
V̇ (0,1)

n

∥∥
Hs

η (ωT
(0,1)

)
+ ∥∥Ġ(−1)

n

∥∥
Hs+1

η (Γ T
0 )

+ (∥∥Ḟ (0,1)
n

∥∥
H

s0
η (ωT

0 )
+ ∥∥(L ′

a

(
U(0,1)

n , φ(0)
n

)
ζ1
)
V̇ (0,1)

n

∥∥
H

s0
η (ωT

(0,1)
)
+ ∥∥Ġ(−1)

n

∥∥
H

s0
η (Γ T

0 )

)
· (1 + ∥∥coeff(0)

∥∥
s+3

)]
. (5.12)

Here P(0) is the projection operator onto the non-degenerate components of vector V̇ (0,1)
n at the 

boundary x = 0. And ‖coeff(0)‖s+3 represents the terms

∥∥coeff(0)
∥∥

s+3 = ∥∥U(0,1)
n

∥∥
Hs+3

η (ωT
0,1)

+ ∥∥U(0,1)
n

∥∥
Hs+3

η (Γ T
0 )

+ ∥∥φ(0)
n

∥∥
Hs+3

η (Γ T
0 )

.

Remark 5.1. Proposition 6 in [8] also requires that the integer s ≤ 2μ −1, with μ being the com-
patibility order of the initial data. Here we do not need this condition, because our approximate 
solution has infinite compatibility by Theorem 2.2.
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5.3.3. The linearized problem near 1 ≤ x ≤ 2
Near 1 ≤ x ≤ 2, we have the linearized equation (4.13) with the rarefaction wave linearized 

boundary conditions (4.29):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
(1)
a

(
U(1)

n , φ(1)
n

)(
ζ2V̇

(1)
n , φ̇(1)

n

)= ζ2Ḟ
(1)
n + (

L ′
a

(
U(1)

n , φ(1)
n

)
ζ2
)
V̇ (1)

n , x < 1,

L
(2)
a

(
U(2)

n , φ(2)
n

)(
ζ2V̇

(2)
n , φ̇(2)

n

)= Ḟ (2)
n , 1 < x < 2,

B
(1)
a

(
U(1)

n , φ(1)
n

)(
V̇ (1)

n , φ̇(1)
n

)= Ġ(1)
n ,

B
(2)
a

(
U(2)

n , φ(2)
n

)(
V̇ (2)

n , φ̇(2)
n

)= Ġ(2)
n .

(5.13)

Since ζ2 = 1 in the domain 1 < x < 2, the function ζ2V̇
(2)
n equals V̇ (2)

n in the second equation 
of (5.13). Since ζ2 vanishes as x < 1/3, we can extend ζ2V̇

(1)
n as zero into −∞ < x < 1/3. 

Besides, from the property of the finite propagation speed, the right-propagating rarefaction wave 
is known, and the solution to the right of the characteristics is also known. Therefore in applying 
the result in [1], we don’t need to list the equation in the domain x > 2. Hence the well-posedness 
result of the boundary value problem (5.13) studied in [1] gives us the following:

Lemma 5.3. Let integer s ≥ s0 ≥ 6 and let η be sufficiently large. If Ḟ
(1,2)
n ∈ Hs

η (ωT
1,2)

and G
(1,2)
n ∈ Hs+1

η (Γ T
1,2), then the boundary value problem (5.13) has a unique solution 

(ζ2V̇
(1,2)
n , φ̇(1,2)

n ), satisfying the following estimate

∥∥ζ2V̇
(1,2)
n

∥∥
Hs

η (ωT
1,2)

+ ∥∥φ̇(1,2)
n

∥∥
Hs−1

η (ωT
1,2)

≤ Cs

[∥∥et ζ2Ḟ
(1,2)
n

∥∥
Hs

η (ωT
1,2)

+ ∥∥(L ′
a

(
U(1,2)

n , φ(1)
n

)
ζ2
)
V̇ (1,2)

n

∥∥
Hs

η (ωT
1,2)

+ ∥∥Ġ(1,2)
n

∥∥
Hs+1

η (Γ T
1,2)

+ (∥∥et Ḟ (1,2)
n

∥∥
H

s0
η (ωT

1,2)
+ ∥∥(L ′

a

(
U(1,2)

n , φ(1)
n

)
ζ2
)
V̇ (1,2)

n

∥∥
H

s0
η (ωT

1,2)
+ ∥∥Ġ(1,2)

n

∥∥
H

s0
η (Γ T

1,2)

)
·(1 + ∥∥coeff(1,2)

∥∥
s

)]
. (5.14)

Here, the term ‖coeff(1,2)‖s is defined similarly as above.

5.4. Summary of the linear estimate

To simplify the notation, we introduce the following notations:

La ≡ (
L

(0)
a ,L(1)

a ,L(2)
a

)
,

Ba ≡ (
B

(−1)
a ,B(0)

a ,B(1)
a ,B(2)

a

)
,

Un ≡ (
U(0)

n ,U(1)
n ,U(2)

n

)
, φn ≡ (

φ(0)
n , φ(1)

n , φ(2)
n

)
,

U̇n ≡ (
U̇ (0)

n , U̇ (1)
n , U̇ (2)

n

)
, V̇n ≡ (

V̇ (0)
n , V̇ (1)

n , V̇ (2)
n

)
, φ̇n ≡ (

φ̇(0)
n , φ̇(1)

n , φ̇(2)
n

)
.

Then the linearized problem (5.10), (5.12) and (5.14) at x = −1, 0, 1 and 2 respectively can be 
briefly written as follows
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{
La(Un,φn)(V̇n, φ̇n) = Ḟn,

Ba(Un,φn)(V̇n, φ̇n) = Ġn.
(5.15)

To combine the estimates obtained in Section 5.3 we notice

ζ0(x) + ζ1(x) = 1 in − 1 ≤ x ≤ 0,

ζ1(x) + ζ2(x) = 1 in 0 ≤ x ≤ 1,

and

ζ2(x) = 1 in 1 ≤ x ≤ 2.

Then it is easy to have

∥∥V̇ (0)
n

∥∥
Hs

η (ωT
0 )

≤ ∥∥ζ0V̇
(0)
n

∥∥
Hs

η (ωT
0 )

+ ∥∥ζ1V̇
(0)
n

∥∥
Hs

η (ωT
0 )

, (5.16)∥∥V̇ (1)
n

∥∥
Hs

η (ωT
0 )

≤ ∥∥ζ1V̇
(1)
n

∥∥
Hs

η (ωT
1 )

+ ∥∥ζ2V̇
(1)
n

∥∥
Hs

η (ωT
1 )

. (5.17)

Besides, in view of (5.7) and the boundedness of all derivatives of ζj we can sum up the esti-
mates (5.10), (5.12), (5.14) to obtain the following

Theorem 5.2. For the complete linearized shock-contact-rarefaction wave problem (5.15), as-
sume

• (5.7) is satisfied;
• Integer s0 ≥ 6 and even integer s ≥ s0;
• −T � 1;
• Ḟn ∈ Hs

η (ωT ) and Ġn ∈ Hs+1
η (Γ T ).

Then the solution of (5.15) satisfies the following estimate

‖V̇n‖Hs
η (ωT ) + ‖φ̇n‖Hs−1

η (Γ T )
≤ Cs

[‖Ḟn‖Hs
η (ωT ) + ‖Ġn‖Hs+1

η (Γ T )
+

+ (‖Ḟn‖H
s0
η (ωT )

+ ‖Ġn‖H
s0
η (Γ T )

)(
1 + ‖coeff‖s+3

)]
. (5.18)

Remark 5.3. The estimate (5.18) is a weak combination of the estimates (5.10), (5.12) and (5.14). 
As the orders of both the left-hand side terms and right-hand side terms in these estimates are 
different from wave to wave, we simply adopt the weaker version among the three estimates.

6. Nash–Moser iteration and convergence

Using the energy estimates obtained in Section 5 for the solution of the linearized problem, 
we will now perform the Nash–Moser iteration to establish the existence of the solution for 
(3.16)–(3.23).

The existence of shock wave, rarefaction wave, and contact discontinuity has already been 
established separately in [17,1,8]. We will establish the existence of solutions containing all 
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three different waves. We are going to show that it is possible to use the Nash–Moser iteration 
scheme to produce a convergent sequence of approximate solutions.

Let (Un, φn) (n = 0, 1, 2, . . .) be the sequence of the approximate solutions in (4.3) with 
(Ua, φa) being the C∞ approximate solution for (3.16)–(3.23) established in Theorem 2.2.

Next we will introduce the recurrence hypotheses which include a family of estimates for 
(U̇k, φ̇k) as well as for the differential operators L (Uk, φk) in the interior domain with the 
boundary operators B(Uk, φk). The recurrence hypotheses are slightly different from those used 
in [1] and [8]. Meanwhile, we notice here that to obtain a unified estimate to proceed with the 
iteration scheme, we need to have the same estimate in the overlapping interior domain, while 
the boundary estimates need only to match the corresponding interior estimate for each separate 
wave.

On the other hand, we always have better estimate for the solutions of linearized shock waves, 
compared with the rarefaction wave and contact discontinuity. We have the same order of es-
timate for the boundary value as for the interior and without any loss of regularity for the 
solution [17]. Indeed, we can establish the convergence of the sequence of approximate solu-
tions without using Nash–Moser type iteration. Since the Nash–Moser iteration also works for 
the shock wave as well, as indicated in [15], we can simply adopt the same form of estimate for 
shock wave as for contact discontinuity. And we will always do so in the following.

Consequently, the main issue here is for the combination of rarefaction wave and contact 
discontinuity, i.e., we should focus on the domain ωT

1 lying between rarefaction wave and contact 
discontinuity.

Let (Hn) be the following recurrence hypotheses:

∥∥(U̇k, φ̇k)
∥∥

Hs
η (ωT )

+ ‖φ̇k‖Hs+1
η (Γ T )

≤ δθs−α−1
k , 0 ≤ k ≤ n, s0 ≤ s ≤ s+, (6.3)∥∥La(Uk,φk)

∥∥
Hs

η (ωT )
≤ δθs−α

k , 0 ≤ k ≤ n, s0 ≤ s ≤ s+ − 2, (6.4)∥∥Ba(Uk,φk)
∥∥

Hs
η (Γ T )

≤ δθs−α
k , 0 ≤ k ≤ n, s0 ≤ s ≤ s+ − 1. (6.5)

The success of Nash–Moser iteration depends upon the appropriate choice of constants α, δ
and the integer s+ ≥ s0 such that (H0) is true and (Hn−1) implies (Hn).

In the proof of the existence for rarefaction wave [1] and for contact discontinuity [8], in 
addition to the choice of α, δ, s+, there was also an extra requirement on the compatibility order 
for the initial data. Fortunately, the requirement is automatically satisfied in this paper because 
of the existence of infinite approximate solution by Theorem 2.2.

Once it is shown that (Hn) is true for all n, it follows readily that the sequence of approximate 
(Un, φn) converges in the space Hs

η(ωT ) × Hs
η (Γ T ) with s < α, because of the choice in (4.1): 

θn ∼ √
n. This implies the existence of the solution (U, φ) ∈ Hα−1

η (ωT ) × Hα−1
η (Γ T ).

Our main effort in this section is to prove the following:

Theorem 6.1. The assumptions (Hn) are true for all n ≥ 0 under the following choice of param-
eters

δ � 1; s0 = 6

(
>

2 + 1

2
+ 2

)
; α > s0 + 6 = 12; s+ = 2α − s0 ≥ α + 6. (6.6)

Here, the parameter α is chosen and fixed, while the parameter δ will be determined later.
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Remark. Following Theorem ?? and Theorem 2.2, since there is no restriction from above on 
the index s+, one can choose the index α larger than any given integer k. Hence we obtain the 
existence of the solution in Hk

η (ωT ) × Hk
η (Γ T ). Since k is arbitrary, this implies the existence 

of C∞ solution.

We will prove Theorem ?? by combining the estimates obtained for rarefaction wave in [1], 
for contact discontinuity in [8], and for shock wave in [17] and [15]. We begin with the proof 
that (Hn−1) ⇒ (Hn), and then we choose parameter δ to satisfy (H0).

First, let’s recall some important properties for the mollifier Sk ≡ Sθk
which were used in [1, 

Proposition 4.2] and in an improved form used in [8, Lemma 4]. The same notation Sk will be 
used for the mollifiers in all the domain ωT , as well as on the boundary Γ T .

Proposition 6.2. For M ∈ N and M ≥ 4, α, β ∈ N and 1 ≤ α, β ≤ M , the mollifier operator Sk

in the spaces Hα
η (ωT ) has the following properties:

(1) ‖Sku‖
H

β
η (ωT )

≤ Cθ
(β−α)+
k ‖u‖Hα

η (ωT );

(2) ‖Sku − u‖
H

β
η (ωT )

≤ Cθ
β−α
k ‖u‖Hα

η (ωT ), β ≤ α;

(3) ‖( d
dθ

Sθ )|θ=θk
u‖

H
β
η (ωT )

≤ Cθ
β−α−1
k ‖u‖Hα

η (ωT ).

Here σ+ = max(σ, 0) and C = CM .
(1)–(3) are also true if Hα

η (ωT ) is replaced by Hα
η (Γ T ).

In addition, the mollifier Sk keeps the trace on Γ T of function u ∈ Hα
η (ωT ) in the following 

sense

∥∥(Sku
(j) − Sku

(j+1)
)∣∣

Γ T

∥∥
H

β
η (Γ T )

≤ Cθ
β−α+1
k

∥∥(u(j) − u(j+1)
)∣∣

Γ T

∥∥
Hα

η (Γ T )
, j = 0,1.

6.1. (Hn−1) ⇒ (Hn) – 1: estimate for (Un, φn) and solvability of linearized problem

By definition (4.3), we have

(Un,φn) =
n−1∑
k=0

(U̇k, φ̇k)�k.

From the property of mollifier Sk in Proposition 6.2, it is easy to obtain from (6.3)–(6.5) that 
for any fixed ε > 0 and 0 ≤ k ≤ n we have

• For (Uk, φk):

∥∥(Uk,φk)
∥∥

Hs
η (ωT )

≤
n−1∑
k=0

∥∥(U̇k, φ̇k)
∥∥

Hs
η (ωT )

�k

≤ Cδ

n−1∑
θs−α−1
k

1

θk

= Cδ

n−1∑
θs−α−2
k

k=1 k=1
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then

⎧⎨
⎩
∥∥(Uk,φk)

∥∥
Hs

η (ωT )
≤ δθ

(s−α)+
k , s0 ≤ s ≤ s+, s �= α,∥∥(Uk,φk)

∥∥
Hα

η (ωT )
≤ δ log θk;

(6.7)

• For the mollification (SkUk, Skφk):

∥∥(SkUk,Skφk)
∥∥

Hs
η (ωT )

≤ Cδθ
ε+(s−α)+
k , s ≥ s0, (ε = 0 if s �= α);∥∥(Uk − SkUk,φk − Skφk)

∥∥
Hs

η (ωT )
≤ Cδθs−α

k , s0 ≤ s ≤ s+. (6.8)

The estimates for (SkUk, Skφk) in (6.8) follow readily from Hn and Proposition 6.2.
• For the regularization (Ūk, φ̄k):

In the contact discontinuity case the regularization (Ūk, φ̄k) is the solution of a boundary 
value problem of the constraint equation (3.23) with the boundary value as (Ûk, φ̂k) ((Ūk, φ̄k)

is denoted as (U
k+ 1

2
, φ

k+ 1
2
)) in [8, Proposition 7]. Hence the estimates for (Ūk, φ̄k) can be 

obtained by this fact and the estimate for (Ûk, φ̂k).

∥∥(Ūk, φ̄k)
∥∥

Hs
η (ωT )

≤ Cδθ
ε+(s−α)+
k , s ≥ s0 (ε = 0 if s �= α);∥∥(Uk − Ūk, φk − φ̄k)

∥∥
Hs

η (ωT )
≤ Cδθs−α

k , s0 ≤ s ≤ s+. (6.9)

In particular, in order that the iteration could proceed infinitely, we will require the linearized 
problem to be well-posed at each step. Since the linear problem is well-posed at (U0, φ0) and 
stable under a small perturbation of the coefficients, the linearized problem with uniform char-
acteristic boundaries at Γ T

0,1,2 remains well-posed for

∣∣(Ūk − U0, φ̄k − φ0)
∣∣
C1 � 1.

Here, | · |C1 denotes the uniform C1 norm. This is true if α > s0 > 3
2 + 2 and δ � 1, by Sobolev 

imbedding.

6.2. (Hn−1) ⇒ (Hn) – 2: estimate for error term (ek, dk) (k ≤ n − 1)

Having established the feasibility of each iteration, we next estimate the error terms (ek, dk)

(k ≤ n − 1). Noticing the form of energy estimate in Section 5 for the linearized problem, we 
need to estimate

‖ek‖Hs
η (ωT ) and ‖dk‖Hs

η (Γ T ).

• First, let’s look at the shock front x = −1. As shown in Section 4, in the neighborhood of 
shock front, we have Ûk = SkUk , and the error ek = ek1 + ek2 with ek1 being the standard 
Nash–Moser error (quadratic linearized error plus the smoothing error) and ek2 being the 
error incurred by the introduction of new variable V̇k:
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ek1 ≡ e′
k1 + e′′

k1 ≡ {
�a(Uk,φk)(U̇k, φ̇k) − �a(Ûk, φ̂k)(U̇k, φ̇k)

}
+ {

La(Uk+1, φk+1) − La(Uk,φk) − �a(Uk,φk)(U̇k, φ̇k)
}
, (6.10)

ek2 = φ̇k

φa
x + φ̂kx

∂x

(
La(Ûk, φ̂k)

)
. (6.11)

The error d(−1)
k ≡ d

(−1)
k1 + d

(−1)
k2 has only the standard Nash–Moser part coming from regu-

larization and linearization

d
(−1)
k1 ≡ B

(−1)
a

(
U

(0)
k , φ

(0)
k

)(
V̇

(0)
k , φ̇

(0)
k

)−B
(−1)
a

(
Û

(0)
k , φ̂

(0)
k

)(
V̇

(0)
k , φ̇

(0)
k

)
, (6.12)

d
(−1)
k2 ≡ Ba

(
U

(0)
k+1, φ

(0)
k+1

)− Ba

(
U

(0)
k , φ

(0)
k

)−B
(−1)
a

(
U

(0)
k , φ

(0)
k

)(
U̇

(0)
k , φ̇

(0)
k

)
, (6.13)

The first term e′
k1 in (6.10) and the term d(−1)

k1 in (6.12) are the errors caused by smoothing 
the coefficients.
By the mean value theorem

e′
k1 =

[ 1∫
0

�′
a

(
Ûk + τ(Uk − Ûk), φ̂k + τ(φk − φ̂k)

)
dτ

]
(U̇k, φ̇k)(Uk − Ûk, φk − φ̄k),

we have

∥∥e′
k1

∥∥
Hs

η (ωT )

≤ C
∥∥[1 + ∂(Ûk,Uk, φ̂k, φk)

][
∂(U̇k, φ̇k)

][
∂(Uk − Ûk, φk − φ̂k)

]∥∥
Hs

η (ωT )
. (6.14)

From the inequality

‖uv‖Hs
η (ωT ) ≤ C

(‖u‖Hs
η (ωT )‖v‖

H
s0
η (ωT )

+ ‖u‖
H

s0
η (ωT )

‖v‖Hs
η (ωT )

)
(6.15)

and (6.3), (6.7), (6.9), and for s0 ≤ s ≤ s+ − 2 and α > s0 + 6, we obtain

∥∥e′
k1

∥∥
Hs

η (ωT )
≤ Cδ2(θε+(s+1−α)+

k θ
2s0−2α+1
k + θ

ε+(s0+1−α)+
k θ

s+s0+1−2α
k

)
≤ Cδ2θ

s+s0+2−2α
k . (6.16)

The error e′′
k1 has the similar form as e′

k1:

e′′
k1 =

[ 1∫
0

�′
a(Uk + τ U̇k,φk + τ φ̇k)dτ

]
(U̇k, φ̇k)(U̇k, φ̇k).

Therefore e′′
k1 can be estimated in the same way as e′

k1 except that we need to replace the 
estimates of (Uk − Ûk, φk − φ̂k) and ∂(Uk − Ûk, φk − φ̂k) by the estimates of (U̇k, φ̇k) and 
∂(U̇k, φ̇k).
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Noticing that the estimates (6.3) and (6.9) have the same form, we find that the estimates for 
(U̇k, φ̇k) have an extra factor θ−1

k than the estimate for (Uk − Ûk, φk − φ̂k). Hence for θ0 � 1, 
e′′
k1 is negligible compared with e′

k1. Therefore, we have for s0 ≤ s ≤ s+ − 2, α > s0 + 6:

‖ek1‖Hs
η (ωT ) ≤ Cδ2θ

s+s0+2−2α
k . (6.17)

For the error ek2, noticing (4.3), we have

‖ek2‖Hs
η (ωT ) ≤

∥∥∥∥ φ̇k

φa
x + φ̂kx

∂x

[
La(Uk,φk)

]∥∥∥∥
Hs

η (ωT )

+
∥∥∥∥ φ̇k

φa
x + φ̂kx

∂x

[
La(Ûk, φ̂k) − La(Uk,φk)

]∥∥∥∥
Hs

η (ωT )

. (6.18)

For the first term in (6.18),

∥∥∥∥ φ̇k

φa
x + φ̂kx

∂xLa(Uk,φk)

∥∥∥∥
Hs

η (ωT )

≤ C
∥∥φ̇k

[
φa

x + φ̂kx

][
∂xLa(Uk,φk)

]∥∥
Hs

η (ωT )
,

we consider two cases: s0 ≤ s ≤ s+ − 5 or s+ − 5 < s ≤ s+ − 2.
If s0 ≤ s ≤ s+ − 5, then from (6.3), (6.4), (6.7) and (6.8), we have

∥∥∥∥ φ̇k

φa
x + φ̂kx

∂xLa(Uk,φk)

∥∥∥∥
Hs

η (ωT )

≤ Cδ2θ
ε+(s0+1−α)+
k θ

s+s0−2α
k + θ

ε+(s+1−α)+
k θ

2s0−2α
k . (6.19)

Noticing α > s0 + 6, hence for s > α − 1, we have

ε + (s + 1 − α)+ + (2s0 − 2α) = ε + s + 1 − α + 2s0 − 2α

= ε + s + s0 − 2α + (s0 + 1 − α) < s + s0 − 2α.

For s ≤ α − 1, we have

ε + (s + 1 − α)+ + (2s0 − 2α) ≤ 1 + 2s0 − 2α ≤ s + s0 + 1 − 2α.

Therefore for s0 ≤ s ≤ s+ − 5,

∥∥∥∥ φ̇k

φa
x + φ̂kx

∂xLa(Uk,φk)

∥∥∥∥
Hs

η (ωT )

≤ Cδ2θ
s+s0+2−2α
k . (6.20)

If s+ − 5 < s ≤ s+ − 2, we need only to consider the term

Original text:
Inserted Text:
has



JID:YJDEQ AID:7503 /FLA [m1+; v 1.192; Prn:28/05/2014; 13:14] P.44 (1-50)

44 S. Chen, D. Li / J. Differential Equations ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
‖φ̇k‖H
s0
η (ωT )

∥∥φa
x + φ̂kx

∥∥
H

s0
η (ωT )

∥∥∂xLa(Uk,φk)
∥∥

Hs
η (ωT )

≤ Cδ2θ
s0−α−1
k θ

ε+(s0+1−α)+
k θ

ε+(s+2−α)+
k

= Cδ2θ
s0−α
k θ

ε+(s+2−α)+
k .

Since by (6.6), α ≤ s+ − 6, then

s − α + 2 > s+ − 5 − α + 2 = s+ − 3 − α > 0,

and the same estimate (6.20) can be obtained by estimating ∂xL (Uk, φk) directly from (6.7)
without using (6.4).
For the second term in (6.18), from (6.3), (6.7) and (6.9) and applying the mean value for-
mula, we obtain for s0 ≤ s ≤ s+ − 2

∥∥∥∥ φ̇k

φa
x + φ̂kx

∂x

[
La(Ûk, φ̂k) − La(Uk,φk)

]∥∥∥∥
Hs

η (ωT )

≤ C
∥∥φ̇k

[
1 + ∂2(Ûk,Uk, φ̂k, φk)

][
∂2(Uk − Ûk, φk − φ̂k)

]∥∥
Hs

η (ωT )

≤ Cδ2θ
s+s0−2α+2
k . (6.21)

The boundary errors dk1 and dk2 have exactly the same form as e′
k1 and e′′

k1 and can be 
estimated similarly. The main difference here is that instead of the interior norms for (Uk, φk)

(Ûk, φ̂k) and (U̇k, φ̇k), we should use their boundary norms on x = −1. But the latter have 
the same estimates as the interior estimates at the shock front, as pointed out at the beginning 
of the section. Also noticing that on the boundary x = −1, the operator involves at most the 
first order derivative, we obtain

‖dk‖Hs
η (Γ T ) ≤ Cδθ

s+s0+2−2α
k . (6.22)

Combining (6.17)–(6.22), we obtain the estimates for the error terms ek and dk (k ≤ n − 1)

near the shock front x = −1:

‖ek‖Hs
η (ωT ) + ‖dk‖Hs

η (Γ T ) ≤ Cδ2θ
s+s0+3−2α
k (6.23)

with s0 ≤ s ≤ s+ − 2.
• Near the rarefaction wave 1 ≤ x ≤ 2, such estimates are already obtained in [1] in the form 

of equivalent t -weighted norms.
Indeed, the interior error estimates of ek1 and ek2 can be obtained similarly as in the case 
near shock front x = −1.
In particular, the estimate of e′′

k1 here is denoted as e′′
k in [1]. It was required in [1] certain 

appropriate choice of ε0 to obtain the estimate of e′′
k1. It is readily checked as shown above 

that ε0 can be simply chosen as ε0 = 2.

The error ek3 comes from replacing the operator L by ¯̄L, the estimate is obtained in [1, 
Propositions 6.4.1] as follows
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‖ek3‖Hs
η (ωT ) ≤ Cδ2θ

s+s0+3−2α
k . (6.24)

Again following [1, Proposition 6.4.2], we have the estimates for the boundary error dk . 
Hence near the rarefaction wave 1 ≤ x ≤ 2, we also have the estimate

‖ek‖Hs
η (ωT ) + ‖dk‖Hs

η (Γ T ) ≤ Cδ2θ
s+s0+3−2α
k (6.25)

with s0 ≤ s ≤ s+ − 4.
• Near the contact discontinuity x = 0, the estimates for the interior error terms ek1 and ek2

are obviously the same as near shock wave and rarefaction wave. For the error ek3, we can 
use the result obtained in [8].
In [8], the error ek3 is denoted as e′′′

k , which is introduced by replacing (Ûk, φ̂k) by (Ūk, φ̄k)

(denoted as (Vk+1/2, Ψk+1/2) in [8])

‖ek3‖Hs
η (ωT ) ≤ Cδ2(θs+s0+2−2α

k + θ
(s+1−α)++2s0+2−2α

k

)
. (6.26)

If s + 1 − α ≥ 0, then by (6.6)

(s + 1 − α)+ + 2s0 + 2 − 2α = s + s0 + 2 − 2α + (s0 − α + 1)

< s + s0 + 2 − 2α.

If s + 1 − α < 0, then by (6.6)

(s + 1 − α)+ + 2s0 + 2 − 2α = 2s0 + 2 − 2α ≤ s + s0 + 2 − 2α.

Therefore, we have

‖ek3‖Hs
η (ωT ) ≤ Cδ2(θs+s0+3−2α

k

)
. (6.27)

For the estimates of the boundary error dk , we have from [8] (denoted as ẽ′
k and ẽ′′

k in [8, 
Lemma 8 and Lemma 9])

‖dk‖Hs
η (Γ T ) ≤ Cδ2θ

m(s)−1
k ,

where

m(s) ≡ max
{
(s + 1 − α)+ + 2s0 − 2α; s + s0 + 2 − 2α

}≤ s + s0 + 2 − 2α. (6.28)

Consequently we obtain

‖dk‖Hs
η (Γ T ) ≤ Cδ2θ

s+s0+1−2α
k . (6.29)

Therefore we have near the contact discontinuity, for s0 ≤ s ≤ s+ − 2 (see Lemma 13, in [8])

‖ek‖Hs
η (ωT ) + ‖dk‖Hs

η (Γ T ) ≤ Cδ2θ
s+s0+3−2α
k . (6.30)
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Combining (6.23), (6.25) and (6.30), we have for s0 ≤ s ≤ s+ − 4,

‖ek‖Hs
η (ωT ) + ‖dk‖Hs

η (Γ T ) ≤ Cδ2θ
s+s0+3−2α
k . (6.31)

In the domain 0 < x < 1 the perturbation of the operator in (4.13) is the combination

ϕ(x) ¯̄L(Un,φn) + (
1 − ϕ(x)

)
�̃a(Ūn, φ̄n).

Obviously, the error term ek3 satisfies (6.24).

6.3. (Hn−1) ⇒ (Hn) – 3: estimate for (Ḟn, Ġn)

From (4.12), we have

�nḞn = −(Sn − Sn−1)

(
FT L

(
Ua,φa

)+
n−2∑
k=0

�kek

)
− Sn�n−1en−1,

�nĠn = −(Sn − Sn−1)

(
FT B

(
Ua,φa

)+
n−2∑
k=0

�kdk

)
− Sn�n−1dn−1. (6.32)

Notice that �n−1/�n ∼ 1, then by the properties of Sk in Proposition ?? and from (6.31),

∥∥∥∥�n−1

�n

Snen−1

∥∥∥∥
Hs

η (ωT )

≤ Cδ2θs+s0+3−2α
n , (6.33)

for s0 ≤ s ≤ s+ − 4. As for s ≥ s+ − 4 ≥ s0, we have

‖Snen−1‖Hs
η (ωT ) ≤ C‖Snen−1‖Hs+−4θ

s−(s+−4)
n ,

Cδ2θ
s+−4+s0+3−2α
n θ

s−(s+−4)
n ≤ Cδ2θs+s0+3−2α

n .

On the other hand, by (6.31)

∥∥∥∥∥
n−2∑
k=0

�kek

∥∥∥∥∥
H

s+−4
η (ωT )

≤ Cδ2
n−2∑
k=0

�kθ
(s+−4)+s0+3−2α

k ≤ Cδ2θ
s++s0−2α
n , (6.34)

therefore from the item (2) of Proposition 6.2 we have for all s ≥ s0,

1

�n

∥∥∥∥∥(Sn − Sn−1)

n−2∑
k=0

�kek

∥∥∥∥∥
Hs

η (ωT )

≤ Cθ
s−(s+−4)−1
n

∥∥∥∥∥
n−2∑
k=0

�kek

∥∥∥∥∥
s+−4

≤ Cδ2θ
s−(s+−4)−1
n θ

s++s0−2α
n

≤ Cδ2θs+s0+3−2α. (6.35)
n
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Finally, we have

1

�n

∥∥(Sn − Sn−1)FT L
(
Ua,φa

)∥∥
Hs

η (ωT )
≤ Cθs−β−1

n

∥∥L (
Ua,φa

)∥∥
H

β
η (ωT )

. (6.36)

In (6.36), let β = 2α − s0 − 4. Also notice that (Ua, φa) is the C∞ approximate solution we 
obtained in Theorem 2.2. Then for −T � 1 we can achieve

C
∥∥L (

Ua,φa
)∥∥

H
β
η (ωT )

≤ δ2. (6.37)

Therefore, we have

1

�n

∥∥(Sn − Sn−1)FT L
(
Ua,φa

)∥∥
Hs

η (ωT )
≤ Cδ2θs+s0+3−2α

n . (6.38)

Combining (6.33)–(6.38), we obtain that for all s ≥ s0,

‖Ḟn‖Hs
η (ωT ) ≤ Cδ2θs+s0+3−2α

n . (6.39)

Similarly, we can also obtain exactly the same estimate for the boundary term Ġn,

‖Ġn‖Hs
η (Γ T ) ≤ Cδ2θs+s0+3−2α

n . (6.40)

6.4. (Hn−1) ⇒ (Hn) – 4: estimate for (U̇n, φ̇n), L (Uk, φk) and B(Uk, φk)

From the estimate (5.13) for the linearized problem in Theorem 5.2, and noticing the expres-
sion of V̇n, we have for all s0 ≤ s ≤ s+

∥∥(U̇n, φ̇n)
∥∥

Hs
η (ωT )

≤ Cs+
[‖Ḟn‖Hs+1

η (ωT )
+ ‖Ġn‖Hs+2

η (Γ T )

+ (‖Ḟn‖H 4
η (ωT ) + ‖Ġn‖H 5

η (Γ T )

)(
1 + ∥∥(Ūn, φ̄n)

∥∥
Hs+4

η (ωT )

)]
. (6.41)

By (6.39), (6.40) and (6.8), we obtain

∥∥(U̇n, φ̇n)
∥∥

Hs
η (ωT )

≤ Cs+δ2[θs+s0+5−2α
n + θ8+s0−2α

n θ
ε+(s+4−α)+
n

]
. (6.42)

By the choice of s0 and α in (6.6), we have

s + s0 + 5 − 2α = s − α − 1 + (s0 + 6 − α) ≤ s − α − 1. (6.43)

For 8 + s0 − 2α + (s + 4 − α)+, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if s + 4 − α ≥ 0:

8 + s0 − 2α + ε + (s + 4 − α)+ = s − α − 1 + (s0 + 12 − 2α) ≤ s − α − 1;
if s + 4 − α < 0:

(6.44)
8 + s0 − 2α + (s + 4 − α)+ = s − α − 1 + (9 − α) ≤ s − α − 1.
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Combining (6.42)–(6.44) and choosing δ � 1 such that δCs+ ≤ 1, we obtain (6.3) for k = n:∥∥(U̇n, φ̇n)
∥∥

Hs
η (ωT )

≤ δθs−α−1
n . (6.45)

The estimate for ‖φ̇n‖Hs+1
η (Γ T )

can be obtained similarly.

Next consider (6.4) for La(Uk, φk). From (4.11) and the choice of Ḟn in (4.12), we have

La(Un,φn) = FT L
(
Ua,φa

)+
n−1∑
k=0

Ḟk�k +
n−1∑
k=0

ek�k

= (1 − Sn−1)

[
FT L

(
Ua,φa

)+
n−2∑
k=0

ek�k

]
+ en−1�n−1. (6.46)

By Proposition 6.2, we obtain∥∥(1 − Sn)FT L
(
Ua,φa

)∥∥
Hs

η (ωT )
≤ Cθs−α

n

∥∥L (
Ua,φa

)∥∥
Hα

η (ωT )
, (6.47)

and combining (6.31), we have for s0 ≤ s ≤ s+ − 4∥∥∥∥∥(1 − Sn)

n−2∑
k=0

ek�k

∥∥∥∥∥
s

≤ Cθ
s−(s+−4)
n δ2

n−2∑
k=0

θ
(s+−4)+s0+3−2α

k

≤ Cδ2θs+s0+3−2α
n ≤ Cδ2θs−α

n . (6.48)

In (6.47) and (6.48), choose −T � 1 such that C‖L (Ua, φa)‖Hα
η (ωT ) ≤ 1

2δ, and choose δ � 1

such that Cδ ≤ 1
2 , we obtain (6.4) for k = n.

The estimate for Ba(Un, φn) in (6.5) can be proven exactly in the same way.
This finishes the proof that (Hn−1) implies (Hn).

6.5. Proof of (H )
 31
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46

47

0

For n = 0

La(U0, φ0) = L
(
Ua,φa

)
, Ba(U0, φ0) = B

(
Ua,φa

)
.

If α + 4 ≤ s ≤ s+ + 2, we choose θ0 � 1 such that

∥∥L (
Ua,φa

)∥∥
H

s++2
η (ωT )

+ ∥∥B(
Ua,φa

)∥∥
H

s++2
η (Γ T )

≤ δ

2(1 + Cs+)
θ0, (6.49)

and therefore ∥∥L (
Ua,φa

)∥∥
Hs

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hs
η (Γ T )

≤ ∥∥L (
Ua,φa

)∥∥
H

s++2
η (ωT )

+ ∥∥B(
Ua,φa

)∥∥
H

s++2
η (Γ T )

≤ δ

(1 + Cs+)
θs−α−3

0 ≤ δθs−α
0 . (6.50)
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If s0 ≤ s < α + 4, then we choose −T � 1 such that

∥∥L (
Ua,φa

)∥∥
Hα+4

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hα+4
η (Γ T )

≤ δ

2(1 + Cs+)
θ

s0−α−3
0 , (6.51)

and therefore

∥∥L (
Ua,φa

)∥∥
Hs

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hs
η (Γ T )

≤ ∥∥L (
Ua,φa

)∥∥
Hα+4

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hα+4
η (Γ T )

≤ δ

(1 + Cs+)
θ

s0−α−3
0 ≤ δθs−α

0 . (6.52)

These are (6.4) and (6.5) for n = 0.
From the expressions for (Ḟ0, Ġ0),

�0Ḟ0 = −S0FT L
(
Ua,φa

)
, �0Ġ0 = −S0FT B

(
Ua,φa

)
,

and the estimate (5.13) for solutions of linearized problem, we obtain similarly as (6.41)

∥∥(U̇0, φ̇0)
∥∥

Hs
η (ωT )

≤ Cs+
[‖Ḟ0‖Hs+1

η (ωT )
+ ‖Ġ0‖Hs+2

η (Γ T )

]
≤ Cs+

[∥∥L (
Ua,φa

)∥∥
Hs+2

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hs+2
η (Γ T )

]
. (6.53)

From (6.49)–(6.52), we have for s0 ≤ s ≤ s+ + 2

∥∥L (
Ua,φa

)∥∥
Hs

η (ωT )
+ ∥∥B(

Ua,φa
)∥∥

Hs
η (Γ T )

≤ δ

(1 + Cs+)
θs−α−3

0 . (6.54)

Combining (6.53) and (6.54) gives (6.3) for n = 0.
This completes the proof of the convergence of the iteration scheme.
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