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Abstract

We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along
a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact
discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data
are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is
established.
© 2014 Published by Elsevier Inc.

MSC: 35L60; 35L65; 35L67; 76L.05

Keywords: Cauchy problem; Euler systems; Discontinuous initial data; Shock; Rarefaction wave; Contact discontinuity

1. Introduction

The study of the quasilinear hyperbolic systems of conservation laws originates from many
physical problems. A fundamental problem for the systems is the Cauchy problem: to determine
the solution satisfying given initial data. An important phenomenon for nonlinear hyperbolic
systems of conservation laws is that a general solution may develop singularities, no matter how
smooth the initial data are. Therefore, one must study the weak solutions of the systems, i.e., the
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solutions with singularities. Hence it is natural to study the Cauchy problem with discontinuous
initial data.

In one-space-dimensional case the typical Cauchy problem with discontinuous data is the
Riemann problem, in which the initial data are two constant states with discontinuity at the
origin. For the Riemann problem of the genuinely nonlinear or linearly degenerate hyperbolic
systems the theory on existence, uniqueness and stability has been established. In accordance, the
Riemann problem for the gas dynamic system is completely solved (see [13,25]). Furthermore,
when the initial data are not piecewise constant, but only piecewise smooth, the local existence
of the solution to quasilinear hyperbolic system is also established (see [16]). Particularly, if the
initial data have only one discontinuity at the origin, and are smooth up to this point, then the
solution often has the following structure: several waves, including shocks, rarefaction waves
and/or contact discontinuity, issuing from the origin. These waves shape like a fan, and such a
structure is called fan-shaped structure (see [7]).

The one-space-dimensional model assumes that all quantities under ¢onsideration gre uniform
with respect to other space variables. Obviously, many physical problems do not have such a
property. Therefore, it is necessary to study the multi-dimensional quasilinear hyperbolic systems
including their Cauchy problems or various boundary value problems. Due to the complexity
of characteristic varieties of multi-dimensional systems, the nonlinear wave structure for these
systems is gbundant.

In the two-space dimensional case considered in this paper, the initial data are assumed to be
discontinuous along a smooth curve, and the data are smooth up to the curve. Then the solution
would usually contain several nonlinear waves issuing from such an initial curve. The nonlinear
waves are composed of shocks, simple waves and contact discontinuity. They form a twisted fan
so that the wave structure is still called fan-shaped structure.

The study of the Cauchy problem of multi-dimensional hyperbolic system of conservation
laws with discontinuous data attracted gne’s attention for a long time. In 1983 A. Majda started
the study of weak solutions to multidimensional system of conservation laws. He applied the
theory of microlocal analysis to prove the stability and existence of the solution to the Cauchy
problem of nonlinear multidimensional hyperbolic systems involving a shock front, which issues
from a curve carrying the discontinuity of the initial data [17]. Later, in 1989 S. Alinhac [1] em-
ployed Nash—Moser iterative scheme to overcome the “derivative loss” difficulty on the charac-
teristic boundary and proved the existence of the solution with a rarefaction wave for the Cauchy
problem of nonlinear multidimensional hyperbolic systems, where the rarefaction wave also is-
sues from the curve carrying the discontinuity of the initial data. More recently, J. Coulombel
and P. Secchi [8] proved the corresponding local existence of solution with a contact discontinu-
ity to Cauchy problem of the Euler system, using a delicate analysis on the Kreiss—Lopatinskii
condition.

In all these works the initial data are highly restricted to ensure that one and only one nonlinear
wave will issue from the initial curve of discontinuity. Such demanding restrictions are called
compatibility conditions which consist of many equalities involving the value of the initial data
and their derivatives along the given curve of discontinuity. Obviously, such conditions are not
only difficult to satisfy, but also difficult to check.

When the initial data do not satisfy the above restrictions, the weak solution may contain more
than one nonlinear wave, like two shocks (see [4,20,23]), one shock and one rarefaction wave
(see [15]). Other results on physical problems with fan-shaped wave configurations can also be
found in [5] for the supersonic flow past a curved wedge, in [6] for shock reflection by a smooth
surface, in [20] for propagation of sound waves etc.

Please cite this article in press as: S. Chen, D. Li, Cauchy problem with general discontinuous initial data along a

smooth curve for 2-d Euler system, J. Differential Equations (2014), http://dx.doi.org/10.1016/j.jde.2014.05.027

© 0O N o 0 A WO N

38

40
4
42
43
44
45
46
47


Original text:
Inserted Text:
is

Original text:
Inserted Text:
such a

Original text:
Inserted Text:
issue

Original text:
Inserted Text:
considerations

Original text:
Inserted Text:
is

Original text:
Inserted Text:
more plentiful

Original text:
Inserted Text:
on

Original text:
Inserted Text:
attracts

Original text:
Inserted Text:
people

Original text:
Inserted Text:
difficulty

Original text:
Inserted Text:
waves


-

© 0O N o O »~ W N

JID:YJDEQ AID:7503 /FLA [m1+; v 1.192; Prn:28/05/2014; 13:14] P.3 (1-50)
S. Chen, D. Li/ J. Differential Equations eee (eeee) eee—see 3

In general, for the smooth data containing discontinuity on a given smooth curve, one would
expect that the weak solution should develop all three kinds of nonlinear waves (shock, rarefac-
tion wave and contact discontinuity), without satisfying the complex and demanding compati-
bility conditions. We notice that in 1-d case, for both Riemann problem and general Riemann
problem, such restrictions are not necessary. That is, if the difference of the right and left limit
of the initial data at the point carrying the discontinuity of the data is small, then the Cauchy
problem is solvable, and a solution with fan-shaped wave structure can be constructed. It is then
natural to try to remove or simplify such restrictions given in [1,8,17]. Correspondingly, we try
to answer the following questions. Are such general multidimensional Cauchy problems still
solvable? What is the wave structure near the curve carrying initial discontinuity?

In this paper, we will prove that the similar conclusion for the two-dimensional Euler systems
is still valid. For convenience, we will consider only isentropic Euler system, while the discus-
sion can be extended to the general quasilinear hyperbolic system later. Our main conclusion in
this paper can be described as follows: if the frozen Riemann problem at the origin has a corre-
sponding 1-d piecewise solution with stable complete nonlinear wave structure and the stability
condition of the 2-d contact discontinuity is satisfied, then the two-dimensional Cauchy problem
also has a local piecewise smooth solution with the same fan-shaped wave structure near the
initial curve of discontinuity.

Denote p, p the density and pressure of the fluid, (u, v) the velocity in the (x, y) direction. In
two space dimension, the Euler system of isentropic flow can be written as follows:

dap  9(pu) 3(pv) _0
ot dx dy ’
d(pu A(p + pu? d(puv
(p )+ (p+p )+ (p ):0’ (1.1)
at dx ay
apv  d(puv A(p + pv?
dpv (o )+ (p+p )20’
ot dx ay
or simply written as
0;Hy + 0y Hy + 0yHy =0,
with
p pu pv
Hy=| pu |, H; = p—l—,ou2 , H, = puv
pU pUL p—l—,ov2

Denote U = (p, u, v) the unknown functions. For smooth solutions, the system (1.1) is equiv-
alent to the following

HyU; + H{Uy + HyU, =0,
or equivalently,

LU =0,U 4+ A (U)3, U + Ay(U)d, U =0. (1.2)
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Here, U = (p, u, v) and

1 0 O u P 0 o
Hy=|u p 0], H =|c*+u*> 20u 0 |: ou |,
v 0 p uv oV pu 2 4 v? 2pv
u p O v 0 p
Ai=|c*/p u 0|, Ar=| 0 wv 0],
0 0 u Alp 0 v

with ¢2 = p’(p) > 0.
Consider the Cauchy problem for (1.1). Let I": x = ¢9(y) be a smooth curve on the initial
plane with ¢ (0) = 0, ¢((0) = 0. The initial data are given as

_ { U_(x,y), ifx<g¢o(y), (13)

Uy(x,y), ifx > ¢o(y).

We assume that U_(x, y), Uy (x, y) are smooth up to the curve I". Here and afterwards, the word
“smooth” means C°°-smooth, unless specified otherwise.
The matrix A1(U) + A2(U)¢, has three distinct real eigenvalues

Ao =u—vpy —a,/1+¢3,

)‘OZM_U‘Pyv

A=u—vhy+a,/l+¢3

with A_ < Ag < A4.

Remark 1.1. Since we only consider the local existence and structure of the solution near the
origin, then we may assume the flow, including the initial data and the curve x = ¢o(y) being
periodic with respect to y. Therefore, we only have to consider the problem (1.3), (1.5) in a
period of the variable y, so that gne can avoid the trouble of divergence of integration in the
variable y (see [5]). Such a remark or a corresponding treatment is omitted in [1,9] and tacitly
assumed.

In our discussion of (1.1), (1.3), we will refer to the following accompanying 1-d Riemann
problem with constant initial data

ap  d(pu) _o
ot ox ’
1.4
dou  d(p + pud) 14
TR PP,
ot 0x
(o_(0,0), u_(0,0)), ifx <0,
(P, 1(0,2) = { (04(0,0), 14(0,0)), ifx > 0. (1.5)

Please cite this article in press as: S. Chen, D. Li, Cauchy problem with general discontinuous initial data along a
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The Riemann problem (1.4), (1.5) is the 1-d version of (1.1), (1.3) with the constant initial data
with the values of (o4, u+) at the origin (0, 0).

It is well known that for the Riemann problem (1.4), (1.5), shocks or rarefaction waves may
be produced from the initial discontinuity. The four possible combinations are SS, SR, RS and
RR, where “S” stands for a shock, and “R” stands for a rarefaction wave [25], while the first letter
represents a left-propagating wave, and the second letter represents a right-propagating wave.

In some special cases, shock or rarefaction waves may degenerate into a characteristic carrying
weak discontinuities (of the derivatives of the solution), called sound wave [22]. In this paper
we will not consider these degenerate cases. Meanwhile, we assume 0 * vg, hence a contact
discontinuity for the 2-d Cauchy problem will appear.

The main theorem of this paper can be stated as follows.

Theorem 1.2. For the Cauchy problem (1.1), (1.3), assuming that

(C1) The problem (1.4), (1.5) has a solution with complete nonlinear wave configuration, i.e.,
one of the four combinations: SS, SR, RS or RR;

(C2) The shocks satisfy the Lax’s inequality, i.e., supersonic flowing into the shock front and
subsonic flowing out of the shock front;

(C3) At origin (0,0,0): [v° — v9r| > 2/2¢, with ¢ being the sonic speed of the center state
between two nonlinear waves produced by (1.4), (1.5),

the 2-d Cauchy problem of the isentropic Euler system (1.1), (1.3) admits a unique piecewise
smooth solution with fan-shaped wave structure in a neighborhood of the origin.

Remark 1.3. In the study of 1-d Riemann problem (1.4), (1.5) (see e.g. [25]), the tool of wave
curve is often used. Given a state (p_, u_), it can be connected from right with (p, u) either by a
left-propagating shock, or by a left-propagating rarefaction wave. The possible state (p, u) thus
connected to (p—, u_) forms a curve issuing from (p_, u_) on the (p, u) plane, called the wave
curve X (p_,u_). There is also a similar wave curve X' (p, uy) for right-propagating waves.
In terms of wave curves, the condition (C1) in Theorem 1.2 is equivalent to the requirement
that the two wave curves X (p_,u_) and X' (p4, u) intersect transversally at a point other than

(p—,u—)or (p4,uy).

Remark 1.4. If the shocks in (C1) are understood to be stable in the sense of Lax, then the
condition (C2) is automatically satisfied.

In Theorem 1.2, the neighborhood of the origin is divided by nonlinear waves to several
sectors, while the solution of the Euler system is C° smooth in each sector. If the initial data,
including the curve x = ¢o(y), are only finitely smooth up to the curve I", then we can also
obtain a piecewise finitely-smooth solution. Moreover, the smoothness of the solution will be
much lower than the smoothness of the initial data on both sides of I", as in the discussions of
the rarefaction wave or the contact discontinuity (see [1,9]). However, to focus our attention to
the existence and wave structure of the solutions we will not discuss the case for the piecewise
finitely smooth data.

The Cauchy problems with discontinuous data for Euler system involving only one nonlinear
wave were discussed in [1,9,17] separately. The linear estimates in these works are the basis of

Please cite this article in press as: S. Chen, D. Li, Cauchy problem with general discontinuous initial data along a
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the linear estimates used in proving Theorem 1.2. By localization, we are able to use the results
for linear estimates in [1,8,9,17].

When only one nonlinear wave was discussed for the Cauchy problems with discontinuous
data, a very strong compatibility condition is always required to obtain the existence of the so-
lution, see [1,9,17]. The advantage of treating all three waves at the same time lets us to reduce
the compatibility requirement to the minimum (C1), (C2), and to obtain an approximate solution
which is C* compatible. Such approximate solution will serve as starting term in the process of
iteration to establish the precise solution.

The rest of the paper is arranged as follows. The compatibility conditions will be carefully dis-
cussed in Section 2. We will show how to determine the derivatives at the origin of the piecewise
smooth solution in all sectors under the assumptions (C1), (C2). Then we use Borel technique to
construct a C* smooth approximate solution. In Section 3 we reformulate the Cauchy problem
for two-dimensional Euler system to a set of boundary value problems. In Section 4 we describe
the Nash—Moser iteration scheme employed for all reduced boundary value problems. In Sec-
tion 5 by employing the estimates for linearized problems in each case, we summarize a unified
estimate to the whole problem. Finally, in Section 6 we prove the convergence of the revised
Nash—Maser iteration and hence prove the main Theorem 1.2.

2. Compatibility

In the study of initial-boundary value problems or free boundary problems, the compatibil-
ity is a standard requirement for the existence of smooth or piecewise smooth solutions. Such
requirement is necessary so that the initial and boundary conditions do not conflict with the par-
tial differential equations at the intersection curve of the initial manifold and the boundary. The
compatibility conditions usually consist of a system of algebraic equations for the initial data and
their derivatives. The higher the order of compatibility, the higher the order of the derivatives are
involved, and the more equations are contained in the system.

Even though such conditions are necessary for the existence of the expected solution, practi-
cally it is very tedious to verify and difficult to satisfy them for a given set of initial data. For the
problem considered in this paper, due to the fact that the solution includes the complete set of
wave patterns, the situation actually becomes much better, i.e.,

Theorem 2.1. For the Cauchy problem (1.1), (1.3) under the assumptions (C1) and (C2), the
compatibility conditions are automatically satisfied up to any order k for any smooth initial
data Ux.

In this section, we are going to prove Theorem 2.1 for all three possible fan-shaped wave
structures: SCS, SCR, and RCR (here, “S” stands for shock, “R” stands for rarefaction wave and
“C” stands for contact discontinuity) respectively.

2.1. Compatibility condition for the case SCS

The wave configuration of the case SCS is illustrated in Fig. 2.1. The left-propagating shock
and right-propagating shock are denoted by S;: x = ¢; (¢, y) and S,: x = ¢, (¢, ¥), the contact
discontinuity is denoted by C: x =6(¢, y).

Please cite this article in press as: S. Chen, D. Li, Cauchy problem with general discontinuous initial data along a
smooth curve for 2-d Euler system, J. Differential Equations (2014), http://dx.doi.org/10.1016/j.jde.2014.05.027
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1

2

3 Sy ix=¢,(1,y)

4

5

6 S

7

8 Fig. 2.1. SCS wave configuration.

9

1:’ Let U, (¢, x,y) (Up(t, x,y), resp.) be the solution in the angular domain £2, (£2p, resp.) be-
tween S; (S,, resp.) and C. And U (¢, x, y) (U(¢, x, ¥), resp.) is the solution in the domain £2;

12 .

s (£2,, resp.) left (right, resp.) to S; (S, resp.).

. Then Uy, Up, U; and U, satisfy Eqs. (1.1) in their individual domain and the initial condition:

15 .

6 Ui(0,x,y) =U_(x,y) inx<do(y);

17 Ur0,x,y) =Uys(x,y) inx>o(y);

18

19 ¢1(0,y) =¢,(0,y) =0(0, y) = ¢o(y). 2.1

Z? Besides, they also satisfy the following Rankine-Hugoniot ¢onditions:

22

23 $u:[Hol™ + ¢y [H2]2 — [H1]2 =0 onx =¢(t,y); (2.2)

24 ¢rilHol, + ¢y [Haly — [HN1} =0 onx =¢,(, ); (2.3)

25

2 Or + vpty —up =0,

27 0ob — pa =0, onx =46(t,v); (2.4)

28 Oy(Up — vg) — (up —uy) =0

29

so  with the notation [ f]* = f, — f_ as usual.

31 The compatibility requires that one can uniquely determine the values of the functions

32 (Ug, Up, ¢, ¢r,0) and their derivatives at I" from Eqs. (1.1) and the boundary conditions
33 (2.2)—(2.4). It is equivalent to the existence of an approximate solution which satisfies (1.1) and
34 (2.2)~(2.4) near I" up to the order O (:**1) (for the k-th order compatibility).

35 The 0-order compatibility does not involve the derivatives of (U,, Ujp) and we have 9 variables
36

a7 Ua (07 ¢O(J’)a )’)’ Uh(oa ¢0(}’)» y)a 8t¢l(0ﬂ )’)» al¢r(0v Y)a 81‘9(07 y)

38

39 to satisfy 9 equations in the boundary conditions (2.2)—(2.4).

40 Due to the continuity in the variable y, by the implicit function theorem we need to show that
41 at the origin (0, 0, 0), the system (2.2)—(2.4) has one solution

42

4 Ua(0,0,0), Up(0,0,0), 3,¢1(0,0), 3(0,0), 3,6(0,0),

44

45 and the corresponding Jacobian non-degenerate.
46 The existence of one solution at (0, 0, 0) is guaranteed by the non-degenerate condition (C1)
47010 in Theorem 1.2. Indeed, at (0, 0, 0) the equations in (2.2)—(2.4) become
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Pa — P— Palla — P-U—
¢1:0) | patta —p-u— | — | pa+ pauy—p- —p-u* | =0, 2.5)
PaVa — P-V— PallqVq — P—U_V—
Pb — P+ PoUp — P+U+
¢r1(0) | poup — prus | = | po+ppup — pr — prud | =0, (2.6)
PbVp — P+V+ PbUpVp — P4 — U4V
Pa = Pb, ug = up = 6;(0). 2.7

v, and vp, each appears only in one equation of (2.5), (2.6) and each has non-zero coefficient
Pa (1 — uy) or pp(¢ry — up) by (C2). Eliminating v, vy, pp, up and 6;(0) from (2.5)—(2.7), we
end up with a 4 x 4 system for (o4, ug, 11, r1):

Pa — - Palta — P—U—
¢mm< ¢ )—( NI 2>=Q (2.8)
Pallq — P-U— Da + palty — p— — p—uZ
ob— P Pblty — P41
¢n(0)< " >—( v ) —0. (2.9)
PplUp — Pyl4 Db+ pplUlyy — Py — Py

These equations are nothing but the Rankine—Hugoniot conditions for the Riemann prob-
lem (1.4), (1.5), for which the existence of solution is provided by the condition (C1).

Denote the left hand sides of (2.2)—(2.4) by Fi, F», F3, then we need to prove the Jacobian to
be non-zero at the origin (0, 0, 0)

I(F1, F2, F3)
det J|o = det (0,0, 0) 0. (2.10)
3(¢ll‘7 ¢rl‘7 Ota PasUas Va, Pb, Up, Ub)

The Jacobian J is the coefficient matrix of the linearized system (2.2)—(2.4). Similarly as
above, we can eliminate (6, vy, vp) from this linear system. By (2.7), we can also eliminate
0b, up and (2.10) can be reduced to

Pa — P— 0 1 — Ug —Pa
Ug — p—U_ 0 Ug — ¢ —u? —2pqu
det Palla — P Pirig a a D1t Pa Palla £0.
0 Pa — P+ Grt — Uq —Pa
0 Palta — P+U+  Prillg — CZ - M,% GrtPa — 2Palla

Noticing that ¢y (0q — p-) = patta — p—t— and ¢yt (0q — P+) = Palta — P4U+, (2.10) is
equivalent to

2+ (G — ua)? %—%>¢o 2.11)

detJ]o =204(0a — p-)(pa — p )det<
¢ - C§+(¢rt_ua)2 Pre — Uq

That (2.11) is true follows from the Lax’ shock inequality (C2):

ug — ¢y >0>ug — Py

This finishes the proof of 0-order compatibility.
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For the first order compatibility, we notice that once the values of (U,, Uy, ¢y, ¢, 0) are
determined at the initial discontinuity I”, then all their derivatives tangential to I" are uniquely
determined. Therefore, the first order compatibility consists of 15 linear equations for the 15
variables

Uar (0, 90(). ¥), Uan (0, ¢0(»), ¥). Upe (0, 0(»). ), Upn (0, do(»). y).
¢1tl(09 )’)7 ¢rtl(0’ y)7 911(07 y)

Here (Uy;,, Upy,) denote the normal derivative to I.

Again by the continuity in y and the implicit function theorem, we need only to show that
the Jacobian of these 15 equations is non-degenerate at (0,0, 0). At the origin, (Uyp, Upy) =
(Uax, Upx), ¢ly = ¢ry = ey =0and 6, =u, =up =u.

Let (Dy, D, D,) denote the differential operators:

Dy = 0; + ¢y 0, D¢ =0; + udy, Dy = 0 + ¢y 0x.

Taking tangential derivatives of Eqgs. (2.2)—(2.4) in the —x plane and evaluating them at (0, 0, 0),
we obtain

b [Hol® + (¢ H) — H{) DU, = %, (2.12)
brie[Holy, + (¢re Hy — H{) Dy Up =, (2.13)
with
dLerye — U —p 0
iy Hy — H{ = | u(dirye — ) — (i — 2u) 0
V(i — u) —pv o (Pirye — u)
and
Ott — Deug =,

Dcpg — Depp = #,
Dcug — Deup = *, 2.14)

where * stands for terms already determined by lower order compatibility.
At the origin (0, 0, 0), the interior equation (1.2) becomes

Dcpapy + 00xitgp) = *,
Detta@p) + ¢/ pdxpapy =%, i 2a). (2.15)
Devapy =*,

The linear system (2.12)—(2.15) consists of 15 equations for the 15 variables

(d’ltn ¢rtta O, Uat, Uy, Upt, Upy),

we are going to confirm that the system has a unique solution for these variables.
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Now the system (2.12)—(2.15) can be simplified.

The variable 6, appears only in one equation (2.14) and can be eliminated. Since there is
no restriction in (2.14) on (v, vx), S0 (Var, Vax) and (v, vpx) are uncoupled with each other.
In addition, (v4, v4y) appear only in the third equation of (2.15) in the form D.v, and they
appear only in the third equation of (2.12) in the form D;v, both with non-zero coefficients.
Since D, D; are not parallel, (vy, v4y) can be uniquely determined by (D.v,, D,v,), which
in turn can be uniquely determined by other variables from (2.15), (2.12). Same argument also
applies to (vpy, Upy)-

Therefore, we can eliminate the variables (6, vqr, Vax, Upt, Upyx) from (2.12)—(2.15) and ob-
tain 10 equations for the 10 variables (@jsr, Pat» Paxs Uats Uax s Prits Pbts Pbxs Ubt> Ubx)-

From (2.14) and (2.15), we have

Dcpg — Depp = *, Deug — Deup = *;

0xPa — Ox Pp = *, Oxltg — Oxlp = *.

Hence, we can further eliminate D.pp, D up, 0xpp and d,up and use the same equation (2.15)
for both (o4, us) and (pp, up). For convenience, we will drop the subscript “¢” and denote in the
following p, = p and u, = u.

Now there remain 6 equations for the 6 variables (¢y;;, Dcp, Dett, Py, Uy, Prer):

p—p- G —u —p } |:pi|
¢m[¢zr(ﬂ—p)} [M(@t—u)—cz g —20 ] Lu] T 210
p— p- Gre —u —p ] |:,0:|
» + D, = %; 2.17
¢”|:¢rt(;0_,0—)] [u(d)n—u)—cz plr—2uy] " Lu] T @17
{ Dep + ;Ozax“ =*, (2.18)
D.u+c“/poxp = *.
The system (2.18) can be written as
Dc[p]+cé"8x|:'o:|=*,
u u
with
55[ 0 p/c}:@fo‘—l. (2.19)
c/lp O
Hence
{Dl =D¢+ (P —u)oy =0 _,Blé())Dc» (2.20)
Dy, =D¢~+ (¢pry —u)oy =0 — ,BréD)Dc
with
ﬁ[ = ¢ll _M’ ,Br = ¢rt —I/l. (221)
c c

By the Lax’ shock inequality (C2), we have || < 1 and |B,| < 1 in (2.21).
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Using (2.20) to replace (px, uy) in (2.16), (2.17), we obtain a system of 4 equations for the 4
variables (@11, ¢rie, Dep, Deu).
Eliminating ¢y, and ¢,;; from (2.16), (2.17), we obtain a 2 x 2 system for (D.p, D.u)

G —u —p ,Oi|
_ 1 I — 3 &)D, =%;
(=0u )[M(¢1z—u)—62 p<¢1,—2u>}( 2 [u *
Gre—u —p L ¥ ol _
(=0 ”[uwn—u)—cz p(asn—zu)](l ﬁ’g)D“[u}_*’

which can be simplified into

o)
1 —/31;
[—(pr —u)* —c* 20(d —u)] c Dcmma
—Bi— 1 u
1 57 (2.22)
_p”
[— (@ — ) =% 2p(dy —2u)] c D) |=x
_ﬂr_ 1 u
0

The system (2.22) has a unique solution if and only if the following determinant is non-zero

[ [(prr — u)? + 21+ 2Bic(die —u)  Bil(dr — w)? + 21+ 2c(yr — u) }
[(pre — ) + P+ 2Brc(prs — 1) Brl(re — ) + 1+ 2¢(dre —u) |

This is true because from 8; <0 < B, and |B;| < 1, |B+| < 1, we have

[ — w)? + *] + 2B1c(dus —u) > 0, Bi[ (b — u)* + ]+ 2c(¢y — u) <0,
[(re —)* + ) +2B,¢(pe —u) >0,  B[(dre —w)? + 2] +2¢(¢re — u) > 0.

Consider now the general k-th order compatibility. Taking the tangential derivatives of
Eqgs. (2.2)—(2.4) and then evaluating them at the origin (0, 0, 0), we obtain

3k+l Hol* + H — H! DkU = %,
! i g1 HolZ + (1 Hy — H{) D} Ug (2.23)

0k ¢, [Hol,. + (i HY — H]) DEU, = %,
310 — DFu, =,
DX py — DX pp, = x, (2.24)

DXu, — Dup, = .
From the interior equation (1.2), we have

Dip + pdx Df~'u=x,
Dfu+c?/pa, Do =%, in Q. (2.25)

ko _
D;v =%,
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The linear system (2.23)—(2.25) consists of 15 equations for the 15 variables
O, 9f Ny, 910, 9 Uas 9 Uax, 0 Uy, F ' Upy.
As in the first order case, the variables (8{‘“9, B,k Vg, 8,kflvax, Btkvb, Btk*lva), as well as the

variables LD(’?. Obs Dfub, Df_l Pbxs Df‘l upy) can be eliminated.
We end up with 4 equations for the 4 variables (8,k+1¢>1, 8{‘“(1&,, Df.,o, Df,u):

s [ p=p- }Jr[ i —u —F }Dk[’)]z : 226
o b1 (p — p-) W —u)— plgy—2uy) L Lu] =T (2:20)
gkt r[ P rr ]+[ i~ —r ]D"[”}: . 227
e ére(p — p4) Wre —u) — 2 ol —2w) | Lu] (2:27)

Eqgs. (2.26), (2.27) are similar to Eqs. (2.16), (2.17), except for the terms (DF, Df).
Using the interior equation (2.25) and (2.20) to replace (le,o, D{‘u) and (Df 0, Dfu) by
(ch‘p, Difu), we need the following lemma.

Lemma 2.1. The operators (D, Df) always have the following form

Df =8 — Bi&)DY,  Df = 8. (e — B E) D}, (2.28)

where 0 < |B)| <ox < 1and 0 < |B,| < ari < 1. 8; and 8, are two positive constants which may
depend on k and the explicit form of which is of no consequence in our discussion.

Proof. For k =1, (2.28) is (2.20), which is obvious by Lax’ shock inequality (C2).
By induction, assume (2.28) for k — 1, then

DF = 8(aug—1) — B1E)(1 — Bi&)DE = (1 + ay—1) (i — B16) DE.

We need only to show that

a1y + B
= LD TP ). (2.29)
I+ oayk—1)

Eq. (2.29) follows from

aig—1) = 1Bil — awg—ny | Bil + B = (=1 — 1B (1 = 1B1) >0

by induction assumption. The same argument also applies to Df. This concludes the proof of
Lemma2.1. O

Eliminating (85*'¢;, 91¢,) from (2.26), (2.27) and applying Lemma 2.1, we obtain two
equations for two variables (DX p, D*u):
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‘ (—¢i 1)[ i -’ ](azk—ﬂzé")Dk[’o}=*'
2 ’ (g —u)—c*  p(eu — 2u) “lul ™7
° bri —u P _ k P} _
: (= D [u(d)n = pdn —m} @i = B [u = G0
& The system (2.30) can be written as
7
8 _BL
) [~ —u)? — 2 20(451:—14)][ o ﬂ’C}D’J[”]m;
10 —Bi, o u
11 2 2 Oy _ﬁlg k| o .

[—(@ri —u)" =™ 2p(prs —2u)] f D, =%
12 _.Br; Ork u
13

14 which has a unique solution (Df, 0, Dfu) if and only if the following matrix is non-degenerate

16 [ al(pn —u)? + 1+ 2Bic(di —u), Bl — w)? + 1+ 2aurc (i — u)

. 2.31
arl(pre —u)? + 21+ 2Brc(pre —u),  Brl(re — )? + 1 + 2akc(ys — u)} 3D

19 Because oj; > |B;| and oy > |B,| by Lemma 2.1, we have for the elements in the first column
20 of (2.31)

- aik[(@i — uw)* + ] +2B1c (i — u) > 0,
24 ark[(@re — u)* + ]+ 2B,c($r —u) > 0.
25
26 Since f; <0< B, and ¢y —u <0 < ¢+ — u, we have for the elements in the second column
27 of (2.31)
28
b —u
- Al @ —w? + ]+ 20 (@ — ) = =——[20c® + (G — ) +¢*] <0,
81 2, 2 Gri —u 2 2, 2
" Br[(@re —u)* + %] 4 2apkc(¢pys —u) = T[Zarkc + (¢r1 —u)” +¢*] > 0.
33
34  Therefore, (2.31) is non-degenerate.
35 Once (D’C‘,o, D’C‘u) is determined, one can obtain (Df‘l,ox, D’C‘_lux) from Eqgs. (2.25). Repeat-

36 ing using (2.25) yields all the k-th derivatives of (p, u). This finishes the proof of Theorem 2.1
37 for the SCS wave pattern.

38
389 2.2. Compatibility condition for the case SCR

40

4104 The wave pattern for the case SCR is as follows, See Fig. 2.2.

42 The initial data are given as (1.3), with the curve I" carrying the discontinuity of the initial data

43 being t =0, xo = 0. The left-propagating shock front is denoted by S;: x = ¢;(t, y), the contact
44 discontinuity is denoted by C: x = 6(¢, y). The rarefaction wave is described by an angular
45 domain between two characteristics L™: x = x (¢, y) and L™: x = x (¢, y). The solution in
46 the angular domain 2, (£§2p, resp.) between S; (L™, resp.) and C is denoted by U,(t, x, y)
47 (Up(t, x,y), resp.), the solution in the domain 2z formed by the rarefaction wave between L _
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Fig. 2.2. SCR wave configuration.

and L7 is denoted by U,, the solution in the domain left to S; is denoted by U; (¢, x, y), and the
solution in the domain right to S, is denoted by U, (¢, x, y).
By the finite speed propagation property for hyperbolic systems, the solution Uj, U,, and the
location of the characteristic L™ are already uniquely determined by the initial data U_ and U..
The functions U, (¢, x, y), Up(t, x, y), Uc(¢, x, y) satisfy the system (1.1)

LU, =0 in £,
LU,=0 1in §2p,
LU.=0 in Qg. (2.32)

Due to the multivaluedness of U, at I", we introduce a parameter s to blow up the wedge area
of 2 asin [1]. Let x = x(¢,s,y) (1 <s <2) be the family of characteristics issuing from I
inside 2g. Then x (¢, s, y) satisfies

det|A; — xr — xyA2| =0, (2.33)

or more precisely
xe =rU:—=xy), (2.34)

where A(U; n) is the maximal eigenvalue of the matrix A 4+ nAs.
Introduce the function W (z, s, y):

Wi(t,s,y)= Uc(t, x(t,s,y), y), (2.35)
which satisfies

- aw oW ow
LW = x| — +A>s— |+ (A1 — xr — xyA2)—— =0. (2.36)
at dy as

In addition to Eqgs. (2.32) and (2.34), the functions U, (¢, x, y), Up(t, x,y), W(t, s, y), x(t,s,¥),
¢i(t,y), 0(t, y) should also satisfy the following boundary conditions:

¢u:[Hol + ¢iy[Ha]l — [Hi1=0 onx=¢(z,y), (2.37)
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0; +vpby —up =0,
Pa— pp =0, onx =6(y), (2.38)
Oy (vp — va) — (up — uq) =0,

x@, 1,y)=x"(y),

X2, ) =x"(y),

(2.39)
W, 1,y) =Up(t, x(t, 1, y). y),
W(t,2,y)=Ug(t, x (1.2, 7). ).
Finally, we have the initial conditions at I":
#(0,y)=60(0,y)=0=x(0,s,y) =0, (2.40)
with the assumption as in [1]
xs=y(@,s,y)t withy(t,s,y)>56>0. 2.41)

The k-th order compatibility conditions require that one can find an approximate solu-
tion U,(t,x,y), Up(t,x,y), ¢(t,y), 6(t,y) and W(z,s,y), %(t,s,y) such that Egs. (2.32),
(2.36)—(2.39) are satisfied up to the order O (t5+1h.

The 0-order compatibility k = 0.

As in the SCS case, we need only to consider the case that U; (=U-), U, (=Uy), U, Up
are all constant. Also we can assume that (¢, 6;, x; , xt+) are all constant, and x; depends only
ons. W(t,s,y)= W(s) satisfies
{ (A1 = () W'(s) =0, 042

W) =Uy;.

From (2.38) we see that p, = pp, us = up, and vy, vp, g can be determined separately. There-
fore, the problem becomes connecting the state (po—,u_) with the state (o4, u4+) by a shock
x = ¢;(t) and a rarefaction wave x = y (¢, s). The existence of (o, ug = up, ¢, x:(s)) is guar-
anteed by the condition (C1) on the accompanying problem (1.4), (1.5).

Specifically, let w(s) = (o (s), u(s)) be the solution of (1.4), (1.5) such that

(A} = X ) 1)w'(s) =0,
w@ = up),  wh)= e, D) =x", (243)

with

o u P
A1_|:C2/,O M:|

From (2.43) we see that x;(s) = A(w(s)) and w’(s) = r(w), where r(w) is the right eigenvector
of A/, satisfying

oA
=1

w
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and w(s) is the solution of the system of the ordinary differential equation

d
& ) (2.44)
ds
with w(2) = (o4, u4).
Write the solution of (2.44) as G(p, u) = 0 and denote the Rankine-Hugoniot conditions on
x = ¢i(r) (= pot) as

F1=¢o(pqg — p-) — (patta — p—u—) =0,
F> = ¢o(patta — p-u-) = (pa + paug — p— — p-uZ) =0. (2.45)

Then (¢o, Py, Ug) is uniquely determined if and only if

Fl o) Fl Pa F lug

A(F1, F>,G
A= det<w> =det| Fapy Fap, Fou, | #0. (2.46)
a((pO’ pav Ma)
0 G, G,

a

Noticing that the right-eigenvector r(w) in (2.44) is parallel to the vector (p,c) and hence
(Gp, Gu,) is parallel to the vector (c, —p), we find that (2.46) is equivalent to

p—p- do—u —p
Ap=det| ¢o(p—p=) ulo—u)—c* p(go—2u) | #0. (2.47)
0 c —p

Because the flow is subsonic behind the shock front by (C2), direct computation of the determi-
nant in (2.47) yields

—(po—u)?> —c* 2p(¢po —u)
¢ —p

Al ~det< >=,0(¢0—u—c)2;£0. (2.48)

This concludes the proof of 0-order compatibility.

Next we consider the first order compatibility k = 1. We need to determine the first order
derivatives of U, (¢, x, ¥), Up(t, x,y), W(t,s,y) and ¢y (¢, y), 0:(t, y), x:(t,s,y) at I'. From the
0-order compatibility, these functions and their tangential derivatives with respect to I" are al-
ready known.

The following ¢computation in the domain §2g follows [1], and for readers’ convenience we
briefly repeat it here.

Let H (v, nn) be the matrix satisfying

H_I(Al—XyAz)H=<g fb) Ea), (2.49)

where the superscript b means the last two rows.

Please cite this article in press as: S. Chen, D. Li, Cauchy problem with general discontinuous initial data along a
smooth curve for 2-d Euler system, J. Differential Equations (2014), http://dx.doi.org/10.1016/j.jde.2014.05.027

© 0O N O O A WO N =


Original text:
Inserted Text:
computations


© 0O N o o~ WO N =

JID:YJDEQ AID:7503 /FLA [m1+; v 1.192; Prn:28/05/2014; 13:14] P.17 (1-50)
S. Chen, D. Li/ J. Differential Equations eee (eeee) eee—see 17

From (2.36) we have

-1 -1 Wi
H (W +A W) =—H (A1 — /I — Azxy)X—
N
(= 0) g Ws (000 o Ws (2.50)
* * Xs * % Xs ’
Then the first row becomes
(H™' (W, + AaW)' =0. 2.51)
Multiplying (2.36) by H~! we have
Xs H™' (Wi + A2Wy) + (d — x)H ™' Wyu =0.
Differentiating with respect to ¢ gives
Xes H™ (W, + AaWy) + x5 (HH (W, + A2 Wy)),
+d—x)H "W+ (d — x)(H'W;), =0. (2.52)

Since xs =0atr =0, (2.52) gives
- b - b - b
Xis (H™ (Wi + AaWy)) + (A2 — ), (H™'Wo)” + (AP = o) (H™' W) =0, (2.53)
On the other hand, by differentiating (2.34) with respect to t we can obtain
Xt = )\.WW[ — )\.y]th. (254)

Substituting y;, into (2.53) we have
(A =) (H'W)"),+ (7 W)=, (2.55)

where * stands for known terms. Therefore, the value of (H “Tw,)P at any s € [1,2] can be
uniquely determined by its value at s = 2. On the other hand, the value (H~!W,)! is determined
from (2.51). Hence the value of all the components of H~! W, are uniquely determined, and so
are all the components of W;.

Since the tangential derivatives of U, and U, onx = x (¢, 1, y) = x "~ (¢, y) are equal, therefore
the value of the tangential derivative D, U, = (9; + x; 0x)Up is known. Evaluating the tangential
derivatives at the origin and noticing x ~(0,0) =u +c,

D, =0, + (u+c)d, = D + coy,

we have
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D, pp = *,
Drub = *a
D,vp = *. (2.56)

Since x1; = A4 is the eigenvalue for the system (1.2), we obtain only two independent relations
for (pp, up, vp) from (2.56):

D, pp = #,
D,vp = *. (2.57)

Similarly as in the SCS case, we can derive the conditions on (¢, 64+, Ugs, Ugy). Differenti-
ating (2.37) in the tangential direction and evaluating at the origin yields

b1 [Hol + (¢ Hy — Hy) DiU, = *. (2.58)

Differentiating (2.38) leads to the following same equations as in (2.14):

Ot — Dettg = *,
D¢pa — Depp = *,
Deuy — Deup, = . (2.14)

The linear system (2.54), (2.57), (2.58), (2.14), together with the system (2.15) in the £2, and
£2p consists of 15 equations (one in (2.54), two in (2.57), three in (2.58), three in (2.14), six
in (2.15)) for the 15 variables (@y1, 011, Xi7 > Uars Uax, Upt, Upy)-

As in the SCS case, (0, Vat, Vax, Ubt, Upyx) as Well as (0ps, Ppx, Upe, Upx) can be eliminated
from the system. And yx,, can be eliminated by (2.55).

After the simplification, we end up with five linear equations for the five variables

9

(Piss5 Pat s Paxs Uar, Uax): (We will drop the subscript “g” in the following.)

p—p- b —u —p p]
b |:¢lt(,0 — p_)} ] [u(% —wy -2 oy — 2u)} D [M} = *; (2.59)
(D +c&dy) (5) = %, (2.60)
(De +cde)p = *. 2.61)

As in the case of SCS, we can use (2.60) to replace (py, ux) by (Dcp, Dcu):

1
3X(p):——£’DC<’O>+* and D;=( - B&E)D,.
u c u

Eliminating ¢;;; from (2.59) yields

(=@ —w)?=c* 2p(n —w) 1 = Bi&)D, [;’] =, (2.62)
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By (2.60), (2.61) becomes
(1 0)(1—£)DC[’Z]=*. (2.63)

The coefficient matrix for (2.62) and (2.63) is

[[—(@, —u)? = =2Bic(du —u)  BLl(dn —w)? + 21+ 2p (i — u)]
1 —p/c

which is non-degenerate because
0
(@ —w? =] = 2Bie@u —w) <0, B~ [@u—w) + ] +2p(u —u) <0.

This completes the proof of the first order compatibility.

For the general k-th order compatibility, we apply the tangential derivatives D’f’l to (2.57),
D7 to (2.58), D! to (2.14), as well as 8f ! to the interior equations in (2.15). By the
same argument as in the first order compatibility, we can eliminate the variables (a{‘+1¢l,
9k, 951y, D*U,, D*v,) and obtain the four linear equations for (DX p,, DXuy, D¥~' p,.,
D’C‘_luax) (the subscript “g” is dropped again in the following):

(=~ = 2p(gn —uw)1U = Bi&) D [5 ] =¥; (2.64)
(D¢ + ¢&3,) Dk (5 ) =%, (2.65)
(1 0)(Dc+cax)k[ﬂ=*. (2.66)

Using (2.60) to replace dy by D., we have

ax["}z—lé@c[‘)} 2.67)
u C u
Then (2.66) becomes

(1 0)(I—&)FDk |:'(u)i|=>l<. (2.68)

It is readily checked that (I & &)X =2K=1(I & &). Hence (2.68) is reduced to
k| P
(1 —%)Dc[u}z*. (2.69)
On the other hand, by Lemma 2.1 we have from (2.64)

8= —u)* = 2p(¢u — )] (o — i) D; [ﬂ =, (2.70)
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1 C:x= e(tzy)
2 Ly ix=x (t,y)
3 L ix=y (1)
: & + +
_ _ L™ :x= t,
6 L[ :x:xl (1‘7y) r Xr ( y)
7
8 x
9 0
10
1" Fig. 2.3. RCR wave configuration.
12
13 Similarly as in the first order case, (2.69), (2.70) have a unique solution if and only if the
14 following matrix is non-degenerate:
15
10 —an((fr — u)* + ) = 2Bc(dy —u) B ((du — u)* + ) + 200 p (1 — u)
17 1 _p
18 c
19 . .
0 which has non-zero determinant because
21

o —au((pu —u)* +c*) = 2Bic(dy — u) <0, ﬂzg((dm —u)? + )+ 20up (s —u) <0

24 by Lax’ inequality (C2) and |B;| < oy in Lemma 2.1.

25

%23 Compatibility condition for the case RCR

27

z:% The discussion of compatibility condition for the case RCR follows almost exactly the case
% SCR. See Fig. 2.3. Omitting the tedious details, we just mention the following main issues:

z; (1) The O-order compatibility follows from the condition (C1);

s (2) The eigenvalues corresponding to the two rarefaction waves are A = u =+ ¢, the k-th order
o compatibility can be reduced, just as in the SCR case, to

35

a (1 0)<Dc—cax>k[‘)}=*,

37 u

38 0

39 (1 0)<Dc+cax>k[u}=*. 2.71)
40

j; Replacing d, by D, in (2.71) according to (2.67), we obtain

43

“ (1 0)(1+é@)’<1)§[’)}=(2’” 0)(1+£)D§[p}=*,

45 u u

“ k| © K[ o

. (1 0O —-&) Dc[u}=(2k_1 0)(1—£)DC[J=*. (2.72)
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It is equivalent to

Df,o + BDIC‘M =,
o (2.73)
Df,o - —Dé‘u =,
C

So that the derivatives of k-th order for p, u can be uniquely determined.

2.4. Approximate solution of infinite compatibility

Usually, the k-th order approximate solution follows immediately from the k-th order compat-
ibility. One needs only to construct the approximate solution by using the Taylor series. However,
for the construction of infinite order approximate solution, one should use Borel technique to
construct a C* smooth approximate solution.

Denote briefly the nonlinear waves by ¢ and the solution by U. More precisely, in SCS case
¢=(¢1,0,0,),U =(Ug, Up),in SCR case ¢ = (¢,60, x ), U = (U,, Up, Ug) and in RCR case
¢ = ()(l+, 0, x7), U = (Ug,,Ug, Up, Ug,). Then from Theorem 2.1, we obtain the following
existence of approximate solutions.

Theorem 2.2. Under the assumptions (C1) and (C2), for the Cauchy problem (1.1), (1.3) with
smooth initial data U+, there exists an approximate solution (U?, %) which:

o Is C* in their respective domains;

o Satisfies the initial conditions (2.1);

e For any k € N, (U%, ¢%) satisfies the interior equations (1.1) and boundary conditions
(2.2)—~(2.4) up to the order oftk neart =0.

Proof. Obviously the explicit form of the proof of Theorem 2.2 depends upon the specific SCS,
SCR, or RCR wave configurations. But the general idea behind all the proofs is the same: given
the values of all the (¢, x) derivatives of a function w along the initial curve I': x = ¢o(y),
construct a C* function w in the neighborhood of I" and t = 0, assuming the given values of
all the derivatives on I" and r = 0. Next we give a generic construction of the function w. To
simplify notations we omit the variable y.

Let o = (o, 1) be the multi-index corresponding to the variables (¢, x) with the convention
|| =g+ a1, a! = aplaq! and

%w = 3,09 w.
Let ¢(t, x) € CS°(R?) satisfy
suppe C (=1, 1) x(=1,1) and ¢=1 in(—1/2,1/2) x (=1/2,1/2).
Let {s,} be an increasing sequence defined by

so= Y max|pP|(1+|as|)n!, (2.74)

lee|=n,|Bl<n—1

where ¢#) denotes the derivatives of ¢.
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Now we define

wit, =Y ¢(S|a‘t,5|a|x)%t°‘0x“1. (2.75)

la|=0

Every term in (2.75) is C* for all (¢, x) and satisfies
a,, =a;
= { vy (2.76)

[0
D” t, —1%0x™1
<¢(S|a S|a\X)a! x ) 0. ya

t=x=0

In order to prove that (2.75) is the C*° function, we need only to show that all its term-wise
DY -derivative converges uniformly for all (7, x). Obviously we need only to consider the terms
with |a| > |y |+ 2:

a
DY (¢(S|a|t, S|a|x))a—ojta0xal

= v! B) Bl 0—vo+Bo a1 —ri+y
_ﬂz ﬁ!(V—ﬂ)!(a—y+,3)!¢ Sjo| G * : (2.77)
=y

In view of the finite support of function ¢ and the choice of s, in (2.74), we have in (2.77)

Sja) - 1t <1, Sl - [xI = 1,

1 1
[0Paal 1= |6 Pae]Ixl = o @.78)

Noticing that Z\alzo % = ¢2, we obtain the estimate of (2.77) for all (¢, x)

| 2
= Z ! = vS - ’
S lal@—y+ P!~ lel(lal = 1)

DY (¢ (Sja 1 511 X)) %t“oxal (2.79)

This implies the uniform convergence of w") for (2.75), 0O
3. Transformation and reformulation

The proof of Theorem 1.2 should be carried out for all three cases — SCS, SCR, RCR —
separately. Among the three cases, the SCR is the most general and typical case of the three
possible wave combinations. As far as the approach and methods are concerned, the discussion
on the other two cases can be found in SCR case. To avoid repetition and tediousness, we will
here only present the proof for the SCR case.

Consider the initial value problem (1.1), (1.3), with a left-propagating shock front S;: x =
¢1(t, y), a contact discontinuity C: x = 6(t, y), and a right-propagating rarefaction wave in an
angular domain between two characteristics L™: x = x~(t,y) and L™: x = x (¢, y). These
surfaces divides the upper half-space to the domain £2;, £2,, 2, £2g and £2,, as shown in Fig. 3.1.
In accordance, the solution in each domain is denoted by Uy, U,, Uy, U, and U, respectively.
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C:x=0(t,y) L :x=x (t,y)

LY ix=x*(t,y)

Fig. 3.1. SCR wave configuration.

By the finite speed propagation property for hyperbolic systems, the solution Uj, U,, and the
location of the characteristic L™: x = x (¢, y) are already uniquely determined by the initial
data U_ and Uy..

We are looking for the SCR solution of (1.1), (1.3) consisting of the functions U, (¢, x, y),
Up(t,x,y), Uc(t, x,y) and the functions ¢;(¢, y), 0(¢, y), x (¢, y) such that

e (U, Up, U,) satisfy the system (1.1) in their respective domains £2,, 25, 2g;
e ¢i(t,y),0(t,y), x (¢, y) are the boundaries dividing the four domains £2;, £2,, §2;, $2r; and
satisfying

di(t,y) <0, y) < x—(t,y) < x+(t,y) whent >0,
$1(0,y) =0(0,y) =x (0, y) = x1(0,y) = ¢o(»),
¢ (0,y) <6,(0,y) < x,(0,y) < x,7(0, y). 3.1)

e On x = ¢ (¢, y), the Rankine—Hugoniot condition (2.37) is satisfied;
On x = 6(¢, y), the contact-discontinuity condition (2.38) is satisfied;
Onx=x"(t,y),Uy=Usandx=x"(¢,y), U.=U,.

e There exist two smooth functions @* (¢, x, y) defined on £x > 0 respectively, satisfying the
eikonal equations

@f—l—va@;—uazo, inx <O,
O +v,0) —up=0, inx>0 3.2)

with
OF(1,0,y)=06(t,y) and 0,0%(t,x,y)>« > 0. (3.3)

As in [8], the satisfaction of eikonal equations (3.2) is required near x = 0 instead of only on
the boundary x =0 as in (2.38), because the weak Lopatinskii condition applies only for the
uniformly characteristic boundary as discussed in [19]. For the linearly degenerate eigen-
value ¢ for the Euler system (1.1), it can always be achieved by choosing an appropriate
coordinate of variables (x, y).

o In 2p, U, takes the form of (2.35), i.e., there exists a function y(¢,s,y), such that
W(t,s,y)=Uc(t, x(t,s,y),y) satisfies:
(1) x=x(t,s,y) (0<s <1)isafamily of characteristics (2.34): x; = A+ (U; —xy);
() x(0,5,y) =do(y);
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7
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x
-1 0 1 2

Fig. 3.2. SCR wave configuration on (7, ) plane.

B) x(t, L,y)=x",y), xt,2,y)=x"y);
4) xs=y,s,y)t with y(t,s,y) >85> 0asin (2.41);
(5) the function W (z, s, y) satisfies (2.36):

~ ow aw ow
LW = x| — +A2— |+ (A1 — Xy — xyA2)— =0. (34
at ay as

Now we are going to make singular coordinates transforms in the three angular domains 2,
2p, 2R to change them into standard cylindrical domains with fixed boundary. The surfaces
x=¢i(t,y),0(t,y), x " (t,y), xT(t,y) defined in (3.1) will be the boundary values of a family
of surfaces which are also used in the construction of the rarefaction wave in the domain $2y.

Denote

Q;={0,%7y:7>0, j—1<i<j} (j=0,12). (3.5)
Let V) (7, %, 7) be defined on £2; as

o O 5,5 =0 +5)6(,y) — i, ),

oV (@, %,5) =10 -D0, y)+Fx (7,5,

oD (E %, 5) = x{7,2 -7, 7). (3.6)

Then we have

Ot —1,y) =12, y),

¢ t.0.y) =9V (t.0,y)=0(.y),

oV, 1,y) =P, 1,y) = x"(t.).

@, 2,y) =xt(t.y). 3.7

For ¢ > 0, the transformations

x=¢V (@ 5,5, y=3  t=i (j=0,1,2) (3.8)

4706 are bijections from S~20 to £2,, from le to £2, and from sz to §2g respectively. See Fig. 3.2.
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Under these transformations, the system of equations (1.2) becomes a singular system defined
in .Q Denoting the new unknown function in .Q as U, we obtain the transformed system

0f(1.2) in2; (j=0,1,2)

U + Ar(U)a5U) + (A1 (UD) = — ¢ 4, (UD)) 30D =0 (3.9)

d:p)
The system (3.9) is singular because 8;(;5(1) = 0().

To formally remove this singularity, as well as to derive the required estimates, we introduce
another coordinate transform (see also [4]),

f=e", withd;=e""0;. (3.10)
With the transform (3.10), the domain Q j becomes w;:
wj={( %79 :TeR, j—1<i<j} (j=012). (3.11)
And the system (3.9) becomes
g(j)(U(j), ¢<j)) = arU(j) + e’Az(U(j))8~U(j)

+

3 ¢<f> (AL(UY) = eV — ¢t Ar (UW)) 3 U

=0 inw;(j=0,1,2). (3.12)

In particular, the 7"-weighted integration in the domain §2 i becomes the hyperbolic n-weighted
integration in w;:

/f”|U(j)(f,i,§)|2dfdidy:/e(”+1)f|U<j)(r,fc,§)|2drdid§. (3.13)

2; @j
Besides, we denote

AU 90) = 0.0 O1Hol — " [H] + "5 V1], oni=~1,  (3.14)
—r¢(0) (1)¢(0> (1)

s

AOWO,UD, ) =1 p0 _ p0 on ¥ =0. (3.15)
1 0 1 0
05 vy — ) — () —u),

To simplify the notation, we will drop the tilde in the new coordinates in the following and
replace t by ¢. In summary, the existence of SCR wave structure can be formulated equivalently
as the following boundary value problem in the domain {(¢,x,y): —1 <x <2, t > —oo}:

To find unknown functions (U (t,x,y), ¢ (t,x,y)) (j =0,1,2) in the domain wj =
{t,x,y):j—1<x<j}(j=0,1,2) satisfying
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o Interior equations:

LIUD, ¢D)=0 inw;(j=0,1,2); (3.16)

e Boundary conditions for shock and contact discontinuity:
VU9, $0)=0 onx=-1, (3.17)
@(0)(U(0),U(1)7¢(0)):O onx =0; (3.18)

Continuous boundary conditions for rarefaction waves:
vOa1,n=0%01,y», UP02,»=U0"02y); (3.19)

Rarefaction wave structure:

2 2. _4
62 (t.x,y) = 0 (U5 —42),

3dP(t,x,y) =y, x,y)e withy >8> 0; (3.20)

e Boundary surfaces conditions:
¢V (=00, x,y) =¢o(y) (j=0.1,2), (3.21)
¢V, j.y) =YV, j.y) (=01 (3.22)

Constraint: there exists a function @i(t, x,y) satisfying (3.3) and

e 'O + 0,0y —ug =0 inx <0,

e7'e + vb@; —up=0 inx>0. (3.23)
4. Iteration scheme

Our main task is to prove Theorem 1.2, the theorem on existence of the local solution, by
using the Nash—Moser iteration technique near the C°° approximate solution constructed in The-
orem 2.2. Due to the reformulation in Section 3, we need only to prove the existence of the
solution (U, ¢(j))ij =0, 1, 2) satisfying (3.16)—(3.23) in —oo < t < T for some T € R.

For the shock wave alone, the existence of the solution was established in [17], using Newton
iteration. For the rarefaction wave and contact discontinuity, the existence was proven in [1]
and [8] individually. In the proof for the latter cases a modified version of Nash—Moser iteration
scheme is employed, in which an additional error term coming from the uniformly characteristic
requirement.

In this paper we are going to combine these three cases and give a unified treatment to
the iteration scheme. Indeed, with the transformation performed in Section 3, the problem in
(3.16)—(3.23) has formally similar form near each wave. By localization in the x direction, we
can use the result already obtained in [17,1,8], in particular the estimates for the corresponding
linearized problem and the basic technique of iteration. Certainly, we should also treat the factor
" appearing in the coefficients.
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Denote U = (U, UM, UP) and ¢ = (¢©@, ¢V, ¢P). Our aim is to construct a sequence
of smooth approximate solutions (U? + Uy, ¢% + ¢y) (k =0,1,2,...) near (U?, ¢?), which
converges in appropriate space to the solution of the problem (3.16)—(3.23).

Let {6,,} be the sequence defined by

6o > 1, en:\/'g(%""na Ap =0ht1 — On. 4.1

And the sequence {A,} is decreasing with

1 1
— <A, =,/62+1-6,<—. 4.2
36, — " " "= 26 4.2)

n

The parameter 6y will be chosen sufficiently large later.

Let (U4, ¢“*) be the C* approximate solution we obtained in Theorem 2.2 which satisfies
(3.16)—(3.23) near t = —oo up to any order of ¢’, i.e., for any n > 0, the error decays faster than
the order of " near t = —o0.

We approximate the solution by a sequence of approximate solutions in the form of (U +
Uy, % + ¢y), constructed as follows

(Uo. ¢0) = (0,0),
U1 =Up + AnUm Ont1=0¢n + And).n n=0,1,2,...), 4.3)

where U, and ¢, will be the solution of an appropriate boundary value problem for a linear
hyperbolic system specified as follows.

4.1. Interior equation

First, let’s consider the interior equation part of the Nash—Moser iteration scheme, which
yields the interior system the functions (U, ¢,) should satisfy.

For simplicity of notation, denote

LW, ¢) = (LOWU,p®), 2D (UD, D), 2@ (U2 @)

Consider the }inearization of the nonlinear operator .Z (U, ¢) at a given state (U, ¢). Introduce
a new variable V (see [1] and [8]):

.. U,
V=U--"¢. 44
¢x¢ (4.4)

Then the linearized operator £(U, qb)(U , (;3) of the nonlinear operator .Z (U, ¢) at the state
(U, ¢) can be expressed

LU, (U, d) =L (U,$)V + B(U, )V + faxzw, ), 4.5)

where the operators ./ (U, ¢) and B(U, ¢) are defined as
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t

LU, ¢) =0, + e Ay (U)dy + ;—(Al (U) = e — dy A2 (U))dy, (4.6)

t
B(U.¢) = ;—Bl (U. )+ ' Ba(U. ¢)
el

bx

For simplicity of notations, we introduce the notation .Z, (U, ¢,):

(A1 (U) — ¢y AS(U)) Uy + €' A5 (U)Uy. 4.7

LaUn, ¢n) =L (U + Uy, 9" + ¢).

Similarly, we will use the notations

La(Un, ¢n) EE(UH + Un, ¢* +¢n)s Ba(Un, ¢n)s Ba(Un, b)), - ...

Then we have

LUns1, Ont1) — LU, ¢n) = LaUn, $0) Un, o) Ay + Apely

where e | is the standard quadratic error in the Newtonian iteration.

Because of the loss of regularity in the tame estimate for the linearized problem, the Nash—
Moser iteration applies a smoothing (or regularizing) operator .#;, to the value of (U, ¢,,) before
iteration, therefore,

ga(UwH ) ¢n+1) - fa(Un, ¢n) = Za(rjﬂnUnv ynd)n)((]n: ¢n)An + Apeni (48)

where e,1 = ], + ¢, with e/, being the smoothing error.
Using‘the new variable V,, in (4.4) and introducing the operator l,(U, ¢)V =Z/(U,¢) vV +
B(U, ¢)V, we have

ZI(UH+1’ Gnt1) — Zy(Uny, On) = AnZa (“nUn, ynd)n)vn + Ap(ent +en2), 4.9

where e,2 = 20— 0 [La(SuUn. Sun)].

In order to appfy the estimates established for the linearized system in [1] and [8] where the
boundaries x = 0 as well as x = o with 1 < o <2 are required to be uniformly characteristic, the
values (4, Uy, 7, ¢,) need to be further adjusted. Hence the introduction of the error term e,3
is required. In the rarefaction wave case the adjusted operator can be obtained by changing some
coefficients in £,. In the contact discontinuity case the adjusted operator is obtained by replacing
(%uUpn, -/ $n) by suitable (Uy, ¢,), which is denoted by (Uy+1/2, put1/2) in [8. Section 7.4].

Formally we denote the linear operator obtained from £, (U,, ¢,,) through this adjustment as L
La(Un: én) = La(Un, $n). (4.10)
Then we obtain the following relation

Za(Uni1, $ni1) — La(Un, ¢n) = ApLa(Un, o) Vi + Aen, (4.11)
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where

en =en1 +enn + ens.

Since in the domain 0 < x < 1 (—1 < x < 0, resp.) two nonlinear waves — contact disconti-
nuity and rarefaction wave (shock, resp.) are involved, the adjustment should be described more
carefully. First, in the pure rarefaction wave region 1 < x < 2, the adjustment ]LE,Z) is the same
as did in [1, Section 3.3], where the coefficient matrix of the system is decomposed according to
its eigenvectors and then its coefficients are changed to make the boundaries x = 1, 2 uniformly
characteristic. The adjusted operator is denoted by Z(U,,, ¢p) in [1].

In the domain 0 < x < 1 the adjusted operator LV is chosen as

LY (Un, ¢n) = () LU, ¢) + (1 = 0(x))€a(Un, $n).
where ¢(x) is the C* function defined by

0 x<1/3,

o) = { 1 x>2/3,
and (U,,, qﬁ_n) is the (Up+1/2, Pu+1/2) introduced in 8, Section 7.4].
In the domain —1 < x < 0, the adjusted operator L(? is chosen as

@(x + 1)a(Un, ) + (1 — o(x + D) Ea(Un, dn),

because in the neighborhood of shock wave x = —1, the linear iteration could proceed without
introducing the smoothing operator .#;, and no adjustment is needed for the uniform characteris-
tic requirement. And the new variable V,, is also not needed. Since no characteristic adjustment
is made, the error term e,3 at the shock wave x = —1 is zero.

Let Fn be chosen such that

n n—1
Y AiF =S Fr LU ¢%) — S ) Are. (4.12)
k=0 k=0

Here the operator .#r is the extension operator from (—oo, T) to (—o0, 00) as in [1]. Then we
finally obtain the iteration scheme in the interior, i.e., the value of increment (V,,, ¢,,) should
satisfy the hyperbolic system

La(Un"Pn)Vn:Fn- (413)
4.2. Boundary conditions
There are three different types of conditions on the boundaries x = —1, x =0, and x = 1.
At the shock wave boundary x = —1, the linearization of the nonlinear operator

BDWO, 6Oy at (UO, @) is BED@W D, @)@, $O)
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BCD (U(O), ¢(0))(U(0)’ 4'5(0))
= [0 )Jad® + [ (U)o
+ [qﬁt(O)Hé(U(O)) _ etHl/(U(O)) + etq&)(,O)HZ/(U(O))]U(O)
(0)
F 0 HU) = (0 + 0 U]
X
= b(_l)(U(O), ¢(0))¢')(0) + MDD (U(O), 4)(0))('](0). 4.14)

Since Uy ) / ¢(O) is bounded, 5D ©®, ¢©) is an operator with bounded coefficients.
Replacing the variable U in (4.17) by vO = ¢ we have

B(*l)(U(O)’ ¢(0))(V(O), qg(o))
— b(_l)(U«)), ¢(0))¢(0) + M(_l)(U(O), ¢(0))%¢(0) + M(_l)(U(O), ¢(0))V(0)_ (4.15)
x

Here the notation B(—!) means an operator acting on (v, $) instead of w, é).
Therefore, on x = —1 we have

AU o) =2 (0. 0)

=ABS (AU, Z06\0) + Apd(TV (4.16)

with d,ffl) = d}g;l) + d,(lgl) being the standard Nash—Moser error term consisting of quadratic
error and regularization error:

BV = DU %) — 2 (U 00) ~ B W 000 40)

dyy " =BTV, 6" (V. 617) BTV (AU 700 7) (V0. 610).

Meanwhile, G.ffl) is chosen to satisfy

n n—1
Y 6 VA=A T BV (U 6% — Y diTV A (4.17)
k=0 k=0
In accordance, the increment (U © qb(O)) should satisfy
-1 0) )\ (170 ;0 (=1
B (U, 6) (Vi d) = GV (4.18)

This is the linearized boundary condition at x = —1.
At the contact discontinuity boundary x = 0, we use the same iteration scheme as in [8]. First,

0,1 0 . H 0
AOUOD0,) - 5O U, 40) = 5O (U0 60) (Ve 60) 0 + 08, @19
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with /3(0) in (4.19) being the linearization of %, O at Uy ©.1) ¢(O)) and d,(g) being the quadratic er-

ror. Applying smoothing operator .#, to (U, @0 qb(o)) in the coefficients of the operator ,Béo) and
making further adjustment to satisfy the uniform characteristic conditions in eikonal equations
in (3.2), the relation (4.19) changes into

AP 4%) - 7D U )

=B, 6 (10, 40) 8, + 4, “20)
where
0) _ 400 (0) (0)
dr(z ) _dnl +dn2 +dn3

with d (g) and d, (0) being the substitution errors.
Then the boundary iteration scheme on x = 0 should be

B (U, 6,7) (Vi 87) = G 421)

with G',SO) chosen according to the following

n—1
ZG(O)A =2 FrBO(U¢") — S0 Y d” Ar. (4.22)
k=0

At the rarefaction wave boundaries x = 1, the solution should be continuous, i.e. UV = U®
at x = 1. Here we notice that the boundary L+ and the value of U® on it are already known from
the initial value Uy (x, y) in (1.3) and Eqgs. (1.1). Correspondingly, V@, ¢®@ are also known.

We will adopt the boundary iteration scheme as in [1]:

vl —U® =ud —U® +AGD + ad, (4.23)

where d,gl) is the error and Gf,l) is chosen to secure the convergence of the iteration.

Since the boundary L7 is characteristic, the matrix A oy — 8,(])(1) — Az(U(l))ay(p(l) is
degenerate. In the process of iteration one must adjust the approximate solution Uy, ¢, to U,, (5,, R
so that the adjusted boundary matrix

AL(O) — 3,00 — A (TV),0" (4.24)

is degenerate with rank 2 (correspondingly, the operator becomes the above-mentioned ad-
justed operator). Its eigenvectors form a new orthogonal basis in the space R3. Denote by
11, D=p7 (U, () _,(,1)) the matrix formed by these three unit column ¢igenvectors, we may obtain
an orthogonal transformation from the original basis to the new basis. Without loss of general-
ity we may assume that the first column vector corresponds to the right-propagation rarefaction
wave. This vector spans an one-dimensional subspace in which the matrix (4.24) is degenerate,
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and non-degenerate in its orthogonal complement. Denoting the operators projecting to the non-
degenerate and degenerate subspaces by P, and I — P, respectively, we derive the boundary
conditions on x =1 as

pOVD _ p@y@ = pWGH onx =1, (4.25)
(1=PDWD —(1-PP)WD =z1¢D +(1-PD)GP onx=1. (426

Here Gf,j ) is the modified error as shown in the following (4.31),

a2 | 72 a(l) | 71
zM=(1- P(Z))—Ux - + U"; —(1- P(l))—Ux + Unx (4.27)
n - n - n 1 - - .
62 + i i + o
We remark here that
e'z(V £0. (4.28)
. . a(l) | z(1) . . a(l) . .
’ X nx X
Indeed, in the above equality ¢~ + ¢,y is the approximation of ¢, "~ which satisfies
¢;¢(1) > Cyet (4.29)

with C > 0 because of (2.41). Then the denominator of the second term in the right hand side
of (4.27) obeys the inequality (4.29). In the meantime, we also have Uff(l) + 0,5}2 = 0(e') due
to the smoothness of U in wi. Therefore, the fraction in (4.27) is bounded as t — —o0. Hence
the argument in Proposition 6.3 of [1] implies (4.28).

For simplicity of notation, we will denote the boundary iteration scheme (4.24) and (4.25) on
x=1as

B (U, 00) (VD d) = GV (4.30)

with Gf,l) chosen according to the following

n n—1
Y 6 ac =~ Fr BV (U ¢Y) — S > d) A (4.31)
k=0 k=0

5. Estimate of linearized problem
5.1. Remarks on the reformulation

The Nash—Moser iteration method depends on obtaining the “tame” estimate in appropriate
spaces for the linearized problem (see [12]). The tame estimate for the linearized problems in-
volving rarefaction wave or contact discontinuity was established in [1,8], while the estimate
established in [17] can also be regarded as a special case of tame estimate. Next we need to
combine all three estimates in one framework. Meanwhile, we will also indicate that the refor-
mulation of the problem in Section 3 does not introduce any new difficulty in establishing the
whole tame estimate.
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Firstly, the formulation of the problem involving rarefaction wave in [1] is identical to the
formulation in this paper after the transform (3.8), and consequently is equivalent to the formu-
lation after the transform (3.10). In particular, the 7-weighted norm near ¢ ~ 0 is equivalent to
the e’-weighted norm near t ~ —o0. Since the factor e’ is introduced only in the coefficients of
tangential derivative terms or lower order terms, it has no effect upon the well-posedness of the
rarefaction wave problem.

Secondly, for the case involving shock or contact discontinuity we also apply the blow up
domain transformation (from ¢ > 0 to ¢t > —00), as well as the introduction of the small factor
e’ near t ~ —oo. Hence we need to address these differences as well as the possible difficulty
caused by the localization process.

The domain change actually does not cause any difficulty. Indeed, in the discussion of both
shock wave [17] and contact discontinuity [8], the estimate is always for the value between
the unknown functions and the approximate solutions. Therefore, it is always assumed that the
estimated quantity is identically zero in 7 < 0, and the discussion is carried out formally in —co <
t < T with 0 < T < 1. In this paper, we will consider the formally same domain —oco <t < T,
but with —7 > 1.

On the other hand, the introduction of the small factor ¢’ in our formulation does not cause
any new difficulty in obtaining the estimate for linearized problem. For both shock wave and con-
tact discontinuity, the linearized estimates are obtained by micro-local analysis on the cotangent
bundle s> + w? = 1. In our formulation, notice that the factor ¢’ appears simultaneously in the
coefficients of tangential derivative 9y terms, in both the interior equations and in the boundary
conditions, so the factor ¢’ only increases the weight on s and the analysis can proceed as usual.
On the other hand, the factor e’ in the lower order terms can only have a beneficial effect in
obtaining the estimate since ¢’ < 1 near t = —00.

Finally, since all three types of wave are involved in the linear estimate, we have to resort
to the localization. Now near different kinds of waves, the linearized estimates are different.
We need to patch them together to obtain the general estimate for the whole wave structure
discussed here. Here we will adopt the weakest estimate in three wave patterns. This means,
even though we could have a standard estimate for the linearized shock wave, we will use only
a watered-down weak version of “tame” estimate which would match the estimates available for
the contact discontinuity. In this way, we can overcome the difficulty caused by the localization.

5.2. The family of spaces

In this paper, we will use the n-weighted norms both in the interior domains and on the
boundaries. Such n-weighted norms are in form the same as the standard n-weighted norms
usually used in the study of hyperbolic problems. However, our norms are defined in the region
—o00 <t < T, in contrast to the standard region of 0 < ¢t < T'. Indeed the norms we used here are
equivalent to the ¢-weighted norms used in [1], see (3.13). Meanwhile, they have many similar
properties, such as the Sobolev imbedding into continuous functions, Banach algebra property
for index s > [n/2] + k, trace theorem, etc.

For a non-negative integer s, let k = (ko, k1, k2) be the multiple index with |k| = ko + k1 + k2.
We define H;; (a)jT) to be the Sobolev space defined by the norm

2 ko k1 qk - 2
||U||Hg(wlr)= > |0 DY 23T (e U (x, y, 1)) | “dydxdt, (5.1)
’ OS\kH—mesz
J
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where 7 is a fixed sufficiently large constant, D, = x(x — 1)(x — 2)0dy is an operator tangential
to the boundaries x =0, 1, 2.
The norm defined in (5.1) is obviously equivalent to the following

2 _ 2ko—kL) | —nt ok0 ki ok 2
||U||Hg(w,r)— § 070 |79, DY 02T U (x, y, 1) | dydxdt. (5.2)
’ 0<|k|+2m=s “p
w’
J

Let I'[ (j =—1,0,1,2) be the boundary
FJ.T:{(t,x,y); —oco<t<T, x=j, yeR}. (5.3)

And the Sobolev space on the boundary I” jT can be defined similarly

k - 2
|U|§$(m= Yo [l UG, n),_ [ dvdr. (5.4)
T Oslkiss )y

J

The Sobolev spaces H, (a)jT) can be imbedded in the spaces of bounded and continuously differ-
entiable functions

H(o])CC™,  fors>2+2m. (5.5

And also we have the trace theorem

s>1,  ueH)(0]) = uh—j1€H, "),  uh=jeH'UT),  (5.6)
and the corresponding inverse trace theorem.
5.3. The well-posedness of the linearized problem

The well-posedness of the linearized shock wave, contact discontinuity, and rarefaction wave
has been discussed separately in [17,8,1]. In this paper, we will apply the results obtained therein
to study the combination of such waves. For the well-posedness of the linearized waves, the
preceding terms (U, ¢,) are always assumed to be near the background waves. Just as in the
discussion of each separate wave, we will assume throughout the following discussion of the
linearized problem that there exists a small constant k¢ > 0, such that the values of (U, ¢,,) in
the coefficients of the linearized problem satisfy

||Un||H3(wT) + ||¢n||H3(1"T) =K < Kp. 5.7

The satisfaction of (5.7) guarantees the well-posedness of the linearized problems and the validity
of the estimate for its solution, uniformly with respect to x < k.

We formulated the three linearized boundary value problems of (4.13) with the boundary
conditions (4.18), (4.21) or (4.29). To apply the estimates established in [17,8] or [1] for the
single shock wave, contact discontinuity or rarefaction wave case, we have to derive three Cauchy
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problems, each of them only involving a single wave. To this end we use partition of unity. As
before, let p(x) € C*°(—00, 00) satisfying

0 x<1/3,

bl = {1 x>2/3.

Define

@ =e(l+x)(1-ex)), () =) (1 —p(x —2)),
So(x) =511 +x). (5.8)

Noticing that {;(x) =1 as x = j — 1, we consider the boundary value problems satisfied by
&V,

,(lj )) with j =0, 1, 2 and derive the estimates for them respectively. Since

supp ¢o C (—=5/3, —1/3), supp {1 C (=2/3,2/3), supp &2 C (1/3,8/3),
we can make the zero extension into x € R, and the problems for (¢;(x) v, y ), ¢>,(,j )) become the
same problem discussed in [1,8,17]. This fact allows us to apply the estimates established in [1,
8,17] to our problem.

5.3.1. The linearized problem near x = —1
Near x = —1, we have the linearized problem:

{L§%U$%¢$U@W$ﬁéfﬂ=¢wﬁm+%£%U¢mﬁ95“”¢m’ b )
X

B (00, 00) (V0 60) = 650, x= -1

To establish the estimates for the solution of (5.9), we apply the results in [17]. In [17], the
n-dimensional Cauchy problem of a general quasilinear hyperbolic system with a single shock
wave was studied, and the solution includes the shock front location and status on both sides
of the shock front. In our case with left-propagating shock, the status to the left of the shock
is known by the property of the finite propagating speed. Therefore, the only unknowns are
the location of the shock front and the status to the right of the shock. Such situation permits
some simplification of the estimates in [17], and the estimates involve only the unknowns &g Vn(o)
(we also notice that o ',,(0) & V,,(O) on the boundary x = —1) and ¢,§0). Consequently, we have
the following lemma. (In all the lemmas in this section, the conditions in Theorem 1.2 and the
conditions (3.16)—(3.23) are always assumed.)

Lemma 5.1. Let the integer s > so > 4 and n be sufficiently large, F,EO) € H,; (a)g) and G,(q_l) €
Hg ()/_Tl). Then the solution (o Vn(o), .,(LO)) of (5.9) satisfies

. 2 . 2
1120V sy + 190V, U 1
e g ”2;;(1_5) e DO ||§1,§(1“_T1) + | Dy ||25(F_T1)

. 2 . < 2
< CIIEO Py oy + 1O 600 7 oy + 165 P
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1 + (1B oy + 12000 6)50) Vi ooy + 1657 Vo)

2

3 (14 [|coeft =D )] (5.10)
4

5 Here the constant Cs depends only on kg, while the notation ||coeff||s represents the terms

6

7

6 leoetf VN, = 102 oty + 1027 N gy + 0957 s

9
10 5.3.2. The linearized problem near x =0
11 Near x = 0, we have the linearized equation (4.13) with the contact discontinuity linearized
12 boundary conditions (4.18):
13
14

LOW. 00) 0V, 60) =01 A0 +
L(l)(U(l) ¢(l))( "/(1) "(11)) =0 F,SI) +

2V, 4OV, x <0,

a

LU, ¢Me) VD, x>0, (5.11)

-
o
—_~~ o~

16 a
17 BO(UOD, g0) (VO $0) = O =0
18
19 :
2 Since ¢ vanishes outside (—2/3, 2/3), then by extending &; Vn(o’l) as zero outside (—2/3,2/3),
o1 the problem (5.11) becomes the same problem studied in [8]. It is established in [8] the corre-
o sponding tame estimate (Proposition 6) as follows:
23 o1
24 Lemma 5.2. Let an integer s > so > 4 and n be sufficiently large, F,E D e H,;‘H(a)g’]) and
25 G(O) € HS FT) Then (5.11) has a unique solution (g“lV(O) qb(o)) (&1 Vn(l), é,(,l)) (or simply de-
% oted by (&1 V(0 D d)(O 1)) with noticing ¢(0) ¢(1) on x =0), satisfying
27
2 7(0.1) )5 17(0.1)
29 ’7||§1Vn ' ”H‘(w +”P CIV ”HV(I"T
30
—t 2 (0 —t 0 ()
31 + ’7“@ &y )“Hg(rOT) + ”e D )” Hy () + ” Dy‘ﬁr(z )”H,;'(FOT)
32
(0,1 / 0,1 0 (0,1 ~(—1
33 = CS[HG“an( )”H,-;“(wgl) N ” (%(U,S )"Pr(, ))gl)vn( )”Hg(w(TO‘l)) + ||G£, )||H;;+1(F0T)
34
SO, . 0,1) 1 (0) S0,1) ] (—1 )
35 + (” Fn( “H,jo(w )+ ”( U »Pn )gl)vn( HH,;O(w(Y(-).l)) + HGn )”H;O(FOT))
36
0
o (14 [eoetf @ L 5)]- (5.12)
38

39 Here PO is the projection operator onto the non-degenerate components of vector Vn(o’l) at the

40 boundary x =0. And | coeff©@ |ls+3 represents the terms
4

42Q14
leoef O,y = 100 |gssir ) + IO Lgesiry + 160 Lagosry

44
45 Remark 5.1. Proposition 6 in [8] also requires that the integer s < 2u — 1, with u being the com-
46 patibility order of the initial data. Here we do not need this condition, because our approximate
47 solution has infinite compatibility by Theorem 2.2.
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5.3.3. The linearized problem near 1 <x <2
Near 1 < x <2, we have the linearized equation (4.13) with the rarefaction wave linearized
boundary conditions (4.29):

LW 900200 60) = £FO + (200 9)e) V0, <1,
LU, 62) (V2. 97) = F2, 1< <2 o
B0 0) (7. 6) = 61

B (U2 6) (V2. 47) = 6.

Since ¢ =1 in the domain 1 < x < 2, the function ¢, ‘-/n(z) equals V,,(z) in the second equation

of (5.13). Since ¢, vanishes as x < 1/3, we can extend {2\7,,(1) as zero into —oo < x < 1/3.
Besides, from the property of the finite propagation speed, the right-propagating rarefaction wave
is known, and the solution to the right of the characteristics is also known. Therefore in applying
the resultin [ 1], we don’t need to list the equation in the domain x > 2. Hence the well-posedness
result of the boundary value problem (5.13) studied in [ 1] gives us the following:

Lemma 5.3. Let integer s > so > 6 and let n be sufficiently large. If F,El’z) € H) (a)lTl)
and G(1 2)
(1,2) 5(1,2) - . .
&2V ? gy, satisfying the following estimate

€ H,§+1(F1T2), then the boundary value problem (5.13) has a unique solution

’|§2Vn(1’2) ||H5(a)T y T ”‘isr(zl'z) ”Hg—‘(wsz)
=Glle' el pyor ) + 1(ZaU8 2 6DV 2 | gy or )y + 1632 g
+ (e B2 o or ) + 102 8:0)2) Vi 2 [ oo oy + 1632 o)

(1 + [coeff ™2 )]. (5.14)
Here, the term ||coeff!-?) |4 is defined similarly as above.
5.4. Summary of the linear estimate
To simplify the notation, we introduce the following notations:
= (LO,LO,LO),

(B(_l)»Bt(zo)sz(zl)’B((f))’
U(O), U,gl), U}gZ)), o= ( (0)’ (1) (2))’

n

00 00 0@), V= (VO VDO VD), = (0.4, 62).

Then the linearized problem (5.10), (5.12) and (5.14) at x = —1, 0, 1 and 2 respectively can be
briefly written as follows
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{]La(Ung ¢n)(vn9 ¢ﬂ):Fn’ (515)

Ba(Un, ¢n) (V. n) = G-
To combine the estimates obtained in Section 5.3 we notice
So(x)+8i(x)=1 in —1=x=0,
() +o@=1 m0=<x=<l,

and
Ox)=1 inl<x=<?2.

Then it is easy to have

” Vn(o) “H,;(wg) = ” gQO“/n(O) ” H3 (o)) + ”51 V’SO) ” H (o)’ (5.16)
” Vn(l)”H,;(wg) = ” g1 Vn(l) ” Hy(o]) + ||§2V,,(1) ” H (o] ) (.17

Besides, in view of (5.7) and the boundedness of all derivatives of ¢; we can sum up the esti-
mates (5.10), (5.12), (5.14) to obtain the following

Theorem 5.2. For the complete linearized shock-contact-rarefaction wave problem (5.15), as-
sume

o (5.7) is satisfied;

o Integer sy > 6 and even integer s > o,
o —T>1;

o FyeHi(@") and G, € HIT\(I'T).

Then the solution of (5.15) satisfies the following estimate

”Vl‘l ”H},(wT) + ”(ﬁn”H:]’*l(pT) = CY[”Fn”H,;(u)T) + ”Gn ”Hngl(pT) +

+ (1l oy + 16l o o)) (1 + llcoeffllg3) ], (5.18)

Remark 5.3. The estimate (5.18) is a weak combination of the estimates (5.10), (5.12) and (5.14).
As the grders of both the left-hand side terms and right-hand side terms in these estimates are
different from wave to wave, we simply adopt the weaker version among the three estimates.

6. Nash—Moser iteration and convergence

Using the energy estimates obtained in Section 5 for the solution of the linearized problem,
we will now perform the Nash—Moser iteration to establish the existence of the solution for
(3.16)—(3.23).

The existence of shock wave, rarefaction wave, and contact discontinuity has already been
established separately in [17,1,8]. We will establish the existence of solutions containing all
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three different waves. We are going to show that it is possible to use the Nash—-Moser iteration
scheme to produce a convergent sequence of approximate solutions.

Let (U,,¢,) (n =0,1,2,...) be the sequence of the approximate solutions in (4.3) with
(U%, %) being the C* approximate solution for (3.16)—(3.23) established in Theorem 2.2.

Next we will introduce the recurrence hypotheses which include a family of estimates for
(Uk, <i>k) as well as for the differential operators .2 (Uy, ¢x) in the interior domain with the
boundary operators Z(Ux, ¢r). The recurrence hypotheses are slightly different from those used
in [1] and [8]. Meanwhile, we notice here that to obtain a unified estimate to proceed with the
iteration scheme, we need to have the same estimate in the overlapping interior domain, while
the boundary estimates need only to match the corresponding interior estimate for each separate
wave.

On the other hand, we always have better estimate for the solutions of linearized shock waves,
compared with the rarefaction wave and contact discontinuity. We have the same order of es-
timate for the boundary value as for the interior and without any loss of regularity for the
solution [17]. Indeed, we can establish the convergence of the sequence of approximate solu-
tions without using Nash—Moser type iteration. Since the Nash—-Moser iteration also works for
the shock wave as well, as indicated in [15], we can simply adopt the same form of estimate for
shock wave as for contact discontinuity. And we will always do so in the following.

Consequently, the main issue here is for the combination of rarefaction wave and contact
discontinuity, i.e., we should focus on the domain a)lT lying between rarefaction wave and contact
discontinuity.

Let (77;,) be the following recurrence hypotheses:

| Wk, 60 gy oy + 1980 g ) < 86,71, 0<k<n,so<s<sq, (6.3)
|- Uk ¢k)||Hg(wT) <86;7% 0<k<n,so<s<sy—2, (6.4)
||%G(Uks¢k)||Hg([‘T)58915_“9 Ofkfl’l, S0§S§S+_l' (65)

The success of Nash—-Moser iteration depends upon the appropriate choice of constants «, §
and the integer s > 5o such that (7)) is true and (J#,—_1) implies (/7).

In the proof of the existence for rarefaction wave [1] and for contact discontinuity [8], in
addition to the choice of «, §, s, there was also an extra requirement on the compatibility order
for the initial data. Fortunately, the requirement is automatically satisfied in this paper because
of the existence of infinite approximate solution by Theorem 2.2.

Once it is shown that (7%,) is true for all n, it follows readily that the sequence of approximate
(U,, ¢n) converges in the space H,f (@T) x HS(FT) with s < «, because of the choice in (4.1):
0, ~ +/n. This implies the existence of the solution (U, ¢) € H,‘;‘_l (@") x H,‘y"_1 (rm.

Our main effort in this section is to prove the following:

Theorem 6.1. The assumptions (7¢,) are true for all n > 0 under the following choice of param-
eters

2+1
sk 1; so=06 <>%+2); oa>s)+6=12; s+ =20—s0>a+6. (6.6)

Here, the parameter « is chosen and fixed, while the parameter § will be determined later.
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the index s, one can choose the index « larger than any given integer k. Hence we obtain the
existence of the solution in H,’)‘ (w") x H,’; (I'T). Since k is arbitrary, this implies the existence
of C solution.

We will prove Theorem ?? by combining the estimates obtained for rarefaction wave in [1],
for contact discontinuity in [8], and for shock wave in [17] and [15]. We begin with the proof
that (J7,—1) = (J%,), and then we choose parameter § to satisfy (J)).

First, let’s recall some important properties for the mollifier . = ., which were used in [1,
Proposition 4.2] and in an improved form used in [8, Lemma 4]. The same notation .#; will be
used for the mollifiers in all the domain w”, as well as on the boundary I" T

Proposition 6.2. For M e Nand M >4, o, B e Nand 1 < a, 8 < M, the mollifier operator .7}
in the spaces H,/ (wT) has the following properties:

(W) 15kl yp oy < €O Nl gy

d B—a—1
3) G D=l gy < CO el oo,

COL™ Nl ooy, B <

Here 04 = max(o,0) and C =Cy.

(1)—(3) are also true if H,‘;‘ (7)) is replaced by H,‘;‘ r’.

In addition, the mollifier .%; keeps the trace on I'T of function u € HY (7 in the following
sense

|(Fu — FulitD) < COPH () — yU+D)

|FT ”H,'f(I‘T) =00, 0, 1.

‘FT HH;;‘(FT)’ j=
6.1. (J,_1) = () — 1: estimate for (U, ¢,) and solvability of linearized problem

By definition (4.3), we have

n—1

(Un, #) = Y (Ur, 1) A

k=0

From the property of mollifier .#% in Proposition 6.2, it is easy to obtain from (6.3)—(6.5) that
for any fixed € > 0 and 0 < k < n we have

o For (Ug, ¢r):
n—1

”(Uka ¢k)HH,§(wT) = /;” (Uk7 ¢k) ||Hy§(wT)Ak

n—1 n—1

Z 1 Z
< C8 85—0{—1_ — C8 85—0[—2
=i et
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then

H(Uk’ ¢k)H H3 (") = 891?_“”7 S0 <S5 <84, SFa,

(6.7)
H (Ukv ¢k) H Hﬁ‘(wT) =< ) long,
o For the mollification (A, Uy, S ¢xi):
Uk, Zid) | ™) = CooTOT 5> 50, (e =0if s # );
|(Ux — S Uk, o — Fibr) ||H$(wr) <C80;7%, so<s<s;4. (6.8)

The estimates for (. Uy, Sx¢x) in (6.8) follow readily from .7, and Proposition 6.2.

e For the regularization (Uy, ¢_>k):
In the contact discontinuity case the regularization Uy, ék) is the solution of a boundary
value problem of the constraint equation (3.23) with the boundary value as Q} ks (ﬁk) ((Ug, q_&k)
is denoted as (Uk+% , ¢k+%)) in [8, Proposition 7]. Hence the estimates for (Ug, (;Sk) can be

obtained by this fact and the estimate for QA] ks ¢A>k).

|k, @0 Hy @) = C59;+(s_a)+7 s >50 (€ =0if s #a);

Uk — Ux, . — 1) | ) S C80% s = <sy. (6.9)

In particular, in order that the iteration could proceed infinitely, we will require the linearized
problem to be well-posed at each step. Since the linear problem is well-posed at (Up, ¢p) and
stable under a small perturbation of the coefficients, the linearized problem with uniform char-
acteristic boundaries at FOTI,Z remains well-posed for

|(Ur — Uo, 1 — ¢o)|C1 <L

Here, | - |1 denotes the uniform C I horm. This is true if o > S0 > % + 2 and § < 1, by Sobolev
imbedding.

6.2. (J,—1) = () — 2: estimate for error term (ex,dy) (k <n —1)

Having established the feasibility of each iteration, we next estimate the error terms (e, d)
(k <n —1). Noticing the form of energy estimate in Section 5 for the linearized problem, we
need to estimate

||ek||H,;(wT) and ||dk||H]§(rT)-

e First, let’s look at the shock front x = —1. As shown in Section 4, in the neighborhood of
shock front, we have 0k = % Uy, and the error e = ex| + ex» with e being the standard
Nash—Moser error (quadratic linearized error plus the smoothing error) and e;, being the
error incurred by the introduction of new variable Vj:
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ex1 = ey + e}y = {€a Uk, o) Uk, 1) — La Uk, o) (U, 1) }
+{ L Ui, drr1) — LUk, $) — La(Uk, o) Uk, )}, (6.10)

e = — o (L b0). 6.11)
¢x +¢kx

The error d,gfl) = d,if]) + d,ﬁ; D has only the standard Nash—-Moser part coming from regu-
larization and linearization

d/gl—l)E]B(—l)(U(O) ¢(0))(“,(O) 43(0))_B(—l)(UéO),@O))(Vk(O) ¢(0))’ (6.12)
4" = 201 90) - 20 97) ~ B0 900 40). ©13)

The first term e,/{ 1 in (6.10) and the term d,g;l) in (6.12) are the errors caused by smoothing
the coefficients.
By the mean value theorem

1
e = [/%(ﬁk + (U — U), i +7(hx — (f;k))df:|(Uk, ¢ Uk — Uk, ¢ — i),
0

we have

Hellcl || HS (7))

< C[[1+ 80k, U, . #0][8 (Ui g0 [0Wk = U dic = 80 ][ gy oy (6:14)
From the inequality

vl g3 oy = € (Il 3 0 101 20 oy + 18120 101 5 07 (6.15)
and (6.3), (6.7), (6.9), and for 5o <s <s4 —2 and o > 59 + 6, we obtain

’ 2 (p€+(s+1—a)y 4250—2a+1 e+(so+1—a)t ns+s0+1—"2a
e Hy (@) = C8%(6; O + 6 Ok )

< gyt (6.16)
The error e has the similar form as ek I

1

e = [ / € (Up + tUr, éy + r<z'>k>dr](0k, &) (U, 1)

0

Therefore e}/, can be estimated in the same way as e, except that we need to replace the
estl‘mat.es of (U — ﬁk, bk — (;3/() and o(Uy, — 01« br — <f>k) by the estimates of (Uk, dﬁk) and
9 (Uk, ¢x)-
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Noticing that the estimates (6.3) and (6.9) have the same form, we find that the estimates for
(Uk, ¢x) have an extra factor 6, ! than the estimate for (Uy — Ug, ¢r — ¢r). Hence for 5 > 1,
ey, is negligible compared with e}, . Therefore, we have for so <s <s4 —2, a > 50+ 6:

ekt | gy ory < €876, 0T334 (6.17)

For the error ej, noticing (4.3), we have

% [ LU o]

||€k2||H,;(wT) =

¢ + b Hy (")
o My
+ | ————0:[-Zu Uk, 1) — ZLa (Ui, ¢ ] (6.18)
¢ + bix H (@)
For the first term in (6.18),
’LAaxo%(Uk, 079 < C| de[9f + brx |[0x-Zu Uk, 9] | HS ()
¢$ + Dix Hy (@) "
we consider two cases: 5o <§s <s;y —S5o0ors; —5<s <sp —2.
If so <s <s4 — 5, then from (6.3), (6.4), (6.7) and (6.8), we have
P
H ————— 024 (Ur, $1)
¢S + Prx Hy (")
< C829;+(SO+1—0!)+9;+50—20! + 0/:+(~Y+1—a)+01350_20“ (619)

Noticing @ > s9 + 6, hence for s > o — 1, we have

e+(+1—a)s +2so—20)=€e+s+1—a+2s)— 2«
=€e+s+s0—20+Go+1—a) <s+s59—2c.

For s <o — 1, we have
e+ (+1—a)r +(2so—2a) <1425 —20 <s+s0+1—20c.

Therefore for so <s <s; — 5,

< csPp ot (6.20)
Hy ()

— 0x Ly (U, ¢1)

H Px
¢§: + ¢kx

If sy —5 <s <sy —2, weneed only to consider the term
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||¢k ”H]‘;O(wT) ||¢? + ¢kx || H,;O(wT) ||8)C"2ﬂa(Uk’ ¢k) ”an(wT)
< Cszelzo—a—19;+(S0+1—06)+9;+(s+2—06)+

= 8200 g T
Since by (6.6), & < s4 — 6, then

s—a+2>sy —5—a+2=5;y—-3—-a>0,

and the same estimate (6.20) can be obtained by estimating 9% (U, ¢) directly from (6.7)
without using (6.4).
For the second term in (6.18), from (6.3), (6.7) and (6.9) and applying the mean value for-
mula, we obtain for 5o <s <sy —2
o .
————0y [Za Uk, ¢x) — Za(Uy, ¢k)]
¢fx1- + ¢kx

< C|ge[1 + 6% Wk Uk, b 0 ][9° (Wi = Us i = 8] | s o

H (@)

< 82 ot 6.21)

The boundary errors di; and di> have exactly the same form as e,’{1 and el/c/l and can be
estimated similarly. The main difference here is that instead of the interior norms for (U, ¢x)
(0k, ¢A>k) and (Ug, ék), we should use their boundary norms on x = —1. But the latter have
the same estimates as the interior estimates at the shock front, as pointed out at the beginning
of the section. Also noticing that on the boundary x = —1, the operator involves at most the
first order derivative, we obtain

il gy iy < €6 0272 (6.22)

Combining (6.17)—(6.22), we obtain the estimates for the error terms ex and dy (k <n — 1)
near the shock front x = —1:

lewll oy + Nl sy < €876 072 (6.23)

with so <s <sy — 2.

e Near the rarefaction wave 1 < x <2, such estimates are already obtained in [1] in the form
of equivalent #-weighted norms.
Indeed, the interior error estimates of ex and ex> can be obtained similarly as in the case
near shock front x = —1.
In particular, the estimate of e,’(’ | here is denoted as e,’c’ in [1]. It was required in [1] certain
appropriate choice of €y to obtain the estimate of ¢//;. It is readily checked as shown above
that €g can be simply chosen as € = 2.
The error ex3 comes from replacing the operator L by L, the estimate is obtained in [1,
Propositions 6.4.1] as follows
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s+s0+3—2
lews gy oy < €826, 70T (6.24)

Again following [1, Proposition 6.4.2], we have the estimates for the boundary error d.
Hence near the rarefaction wave 1 < x < 2, we also have the estimate

lewllpgiory + Nl sy < €876 0372 (6.25)
with 5o <s <s; —4.

e Near the contact discontinuity x = 0, the estimates for the interior error terms ex; and ex>
are obviously the same as near shock wave and rarefaction wave. For the error ex3, we can
use the result obtained in [8].

In [8], the error e;3 is denoted as e,’c”, which is introduced by replacing (ﬁk, qgk) by (U, qsk)
(denoted as (Vi11/2, Wk+1/2) in [8])

2 (nS+Sso+2—2a
||ek3||H$(wT <Cs (ek

+ 9]£S+1701)++2S0+27201). (626)
If s+1—a >0, then by (6.6)

+1—a)s+2s0+2—20=s5+s0+2—20+(o—a+1)
<s4+s0+2—2a.

If s+ 1—«a <0, then by (6.6)
+1—a)+ +250+2—-200=250+2 -2 <s+s50+2—20.
Therefore, we have
2 (pS+S0+3—2x
llexsll s ry < €87 (6 )- (6.27)

/

For the estimates of the boundary error dy, we have from [8] (denoted as ¢; and El’! in [8,
Lemma 8 and Lemma 9])

il sy < €876,
where
m(s) Emax{(s +1—a)r +2s0 —2c; s +50+2— Za} <s+s0+2—2a. (6.28)
Consequently we obtain
il gy iy < €826 70172 (6.29)
Therefore we have near the contact discontinuity, for so < s < s; —2 (see Lemma 13, in [8])

3-2
lewl sy wr) + Idell g rry < €826 07 (6.30)
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1 Combining (6.23), (6.25) and (6.30), we have for so <s < sy — 4,
2
3-2
j ekl g @ry + i gy < Ca2g) o (6.31)
Z In the domain 0 < x < 1 the perturbation of the operator in (4.13) is the combination
7 = ~ - -
8 @X)L(Un, ¢n) + (1 — 0(0))€a(Un. ).
9
10 Obviously, the error term ex3 satisfies (6.24).
11 ..
1o 0.3 (JG1) = (I4) - 3: estimate for (Fy, Gy)
13
14 From (4.12), we have
15
16 . u
17 AnFnz_(%z Fn— 1) JTg ue, +ZAkek — InAp—1en—1,
18
19 .
20 MGy = (T = Su-0)| FrB(U¢) + Z Adi | = Sy Dpordn-1. (632)
21
22Q18
03 Notice that A,_1/A, ~ 1, then by the properties of .#; in Proposition ?? and from (6.31),
24 A
2 H 21 e < 820032 (6.33)
2 An Hy (07)
27
28 forsg<s <s;y—4. Asfors>s; —4>s9, we have
29
% | Znen- 1l 0r) < ClTnen1llyee-sbn Y,
31
32 C829’~1§+_4+50+3_2‘19;_(~9+_4) < C829;+s0+3_2a.
33
34 On the other hand, by (6.31)
35
36 n—2
3 3 Avex < C82) " At IR < optgyrt e (6.34)
38 k=0 it wT) k=0
39

40 therefore from the item (2) of Proposition 6.2 we have for all s > s,

42 n—2 n—2
—(s4—H—1
w [T = S Y A <co, VTN Ave
44 n k=0 HS (wT) k=0 s+—4
45 <Cs 95 (s4—4)— 19s++5072a
46
a7 < C82gstsoti— (6.35)
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Finally, we have

1
~ =S Frz (Ut o) <co, P2 (U, 9%)

” HS(oT) = (6.36)

”Hﬁ(wf)'

In (6.36), let B = 20 — 59 — 4. Also notice that (U, ¢“) is the C* approximate solution we
obtained in Theorem 2.2. Then for —T >> 1 we can achieve

ClL W ) yp r) = 0 (6.37)
Therefore, we have
Ain [ = S0 Fr LU 8) | o o) < C2p8 o032 (6.38)
Combining (6.33)—(6.38), we obtain that for all s > s,
1Eall iy ory < €826, 90372 (6.39)

Similarly, we can also obtain exactly the same estimate for the boundary term G,
||Gn ||H,A]'(FT) =< C329};+S0+3_2a. (6.40)
6.4. (A1) = (Hy) - 4: estimate for (U, ), £ (Us, di) and BUr, i)

From the estimate (5.13) for the linearized problem in Theorem 5.2, and noticing the expres-
sion of V,,, we have for all so <s < s

| @ 6 50y = Cor N Eull g oy +1Gnll iz o
+ (1l gaory +1Gull s ) (U4 | O )| gsseor))]- (64D
By (6.39), (6.40) and (6.8), we obtain
||(Un, d’")”H,;‘(wT) < CS+52[9;+SO+5—2¢1 +9118+s0—2a9;+(s+4—a)+]_ (6.42)
By the choice of 59 and « in (6.6), we have
S+so+5—2a=s—a—1+(@Gp+6—a)<s—a—1. (6.43)

For 8 + 5o — 20 + (s +4 — o), we have

ifs+4—a>0:
8+so—20+e+(+4—a)y=s—a—14+(p+12-20)<s—a—1;

. (6.44)
ifs+4—a<0:

8+so—20+G+4—a);=s—a—14+09—a)<s—a—1.
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Combining (6.42)—(6.44) and choosing § < 1 such that §Cy, < 1, we obtain (6.3) for k = n:

[ O ) gy oy = 867" (6.45)

The estimate for ||, || s+ can be obtained similarly.
n

rr
Next consider (6.4) for £, (U, ¢r). From (4.11) and the choice of Fn in (4.12), we have

j(Un»¢n)—JTg Uu +ZFkAk+ZekAk

n—2
= (l — <Sﬂn_l) |:37]‘.=?(U“7 d)a) + ZekAk:| +en_1A,-1. (646)
k=0
By Proposition 6.2, we obtain
0 = 0 Zr 2 (0% 6y < CO LW ) gy 64D

and combining (6.31), we have for so <s <s; —4

n—2
(55=4) $2 N (53— +s0+3-20
A=) eAr| <Co 8 Ze
k=0 K k=0
< 082930tz < 52957, (6.48)

In (6.47) and (6.48), choose —T >> 1 such that C||.Z(U*, ¢a)||H;7x(wT) < %8, and choose § < 1

such that C§ < %, we obtain (6.4) for k =n.
The estimate for %, (U, ¢,) in (6.5) can be proven exactly in the same way.
This finishes the proof that (7%,—1) implies (7,).

6.5. Proof of (J4)
Forn=0
ZaUo, p0)=2Z(U%, ¢%),  Ba(Uo, ¢o) = B(U*, ¢°).

Ifa+4<s <sy+2,wechoose 6y > 1 such that
)

|2 (ue, ¢”)HHY++2 + 207 w2 < me , (6.49)
and therefore
1206y or, + 180 6 i,
<1200 | sz, + 1206 |yt g,
< (lfTﬂeg—“‘3 <8657 (6.50)
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If 5o <5 <« + 4, then we choose —T >> 1 such that

120" 8) g, + 1206 L gosir, = g7 @5
and therefore
1208 g, + 120" ) g o,
< |28 g, + 120 6 g,
—<1+8—cs+>9m 3 < g3, (6.52)

These are (6.4) and (6.5) for n=0
From the expressions for (Fy, Go),

AoFy = —AFr LU, ¢°). AoGo=—SFr AU, ¢°),

and the estimate (5.13) for solutions of linearized problem, we obtain similarly as (6.41)

| @0, 60| 13 1y = Cos lIF0N gy + 1Go0l iz )]

S+[”$(Ua )”H‘Jr2 @h T ”*%J(Ua a) “H,-;”(FT)]' (6.53)

From (6.49)—(6.52), we have for sg <s < sy +2

a a a a 8 S—o—
|2, ) gy oy + 12U ¢ )“HY(FT)—rC)OO >, (6.54)

Combining (6.53) and (6.54) gives (6.3) for n = 0.
This completes the proof of the convergence of the iteration scheme.
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