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Abstract
We study the global smooth solution for coupled Kuramoto-Sivanshinsky-

KdV system in two-dimensional space. The model is proposed to
describe the surface waves on multi-layered liquid films. The global
solution is obtained for general initial data, using an a priori esti-
mate for the nonlinear system, and the smoothness of such solution is
established in t > 0.

1 Introduction

In the study of surface waves on multi-layered liquid films, the following
coupled Kuramoto-Sivashinsky-Korteweg-de Vries equations are introduced,
see [9] and also [6] for the 2-dimensional version:{

ut + uux + ∆ux = −αuxx − γ∆2u + ε1vx,
vt + a1vx = Γ∆v + ε2ux.

(1.1)
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Here, ∆ = ∂xx +∂yy as usual. The coefficients γ, Γ, α, a1, ε1, ε2 in (1.1) are all
positive constants.

The mixed Kuramoto-Sivashinsky -Korteweg-de Vries (KS-KdV) equa-
tion finds various applications in plasma physics, hydrodynamics and other
fields, see [1, 3, 4]. The system (1.1) is a mixed KS-KdV equation, linearly
coupled with an additional linear dissipative equation for an extra real wave
field v(x, y, t).

The one-dimensional version of (1.1) was proposed in [9] based on the
KS-Kdv equation for a real wave field u(x, t), which is linearly coupled to an
additional linear dissipative equation for an extra real wave field v(x, t). The
two-dimensional version is proposed in [6] in the study of cylindrical solitary
pulses. One immediately notices that the two space variables (x, y) in (1.1)
are not symmetric. This is because of the underlying non-symmetric physics,
see [6].

The previous research by [3, 4, 5, 6, 9] on system (1.1) mainly studied
the stability of harmonic wave mode, for example, the stability of steady-
state soliton solutions is analyzed by perturbation theory and wave mode in
[6]. In [2], the linear stability is analyzed in the context of energy estimate
and local solution is established for Cauchy problem to (1.1). So far, no
global existence of solution for such system is given. On the other hand,
the existence of global solution for mixed system usually require a stronger
dissipative term, or require the initial data to be sufficiently small [10].

In this paper, we take advantage of the special form of the nonlinear term
to derive the global estimate for a weak solution in η-weighted norms (see
Theorem 3.1) and obtain smooth global solutions without the usual smallness
constraints on the initial data (see Theorem 4.3) . This method can also be
used to establish the global existence of a class of more general systems.

Specifically, we study in this paper the global (in time) solution of (1.1)
with the initial condition

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y). (1.2)

First, introduce some notations. Let (·, ·) denote the L2 inner product in
R2, and Hk(R2) be the usual Sobolev space defined by the norm

‖f‖2
k =

∫

R2

∑

|j|≤k

|Djf |2dxdy

with H0(R2) = L2(R2) and ‖f‖ = ‖f‖0 and H∞(R2) =
⋂

k≥0

Hk(R2).
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Let Πk
T be the Banach space for (u, v): (u, v) ∈ Πk

T if

u ∈ C([0, T ], Hk+2(R2)) ∩ L2([0, T ], Hk+4(R2))
v ∈ C([0, T ], Hk+1(R2)) ∩ L2([0, T ], Hk+2(R2)).

(1.3)

Also, define PT be the Banach space for (u, v):

u ∈ C([0, T ], H0(R2)) ∩ L2([0, T ], H2(R2))
v ∈ C([0, T ], H0(R2)) ∩ L2([0, T ], H1(R2)).

(1.4)

The corresponding norm will be denoted as

|||(u, v)|||2T ≡ sup
0≤t≤T

(‖u(t)‖2
0 + ‖v(t)‖2

0) +

∫ T

0

(‖u(s)‖2
2 + ‖v(s)‖2

1)ds.

The main result of this paper is the following theorem.

Theorem 1.1 Consider the initial value problem (1.1) and (1.2).

• If intitial data (u0, v0) ∈ Hk+2(R2) ×Hk+1(R2) (k = 0, 1, 2, . . . ), then
the initial value problem (1.1)(1.2) has a unique global solution (u, v) ∈
Πk

T for all T > 0.

• For any k, in particular for k = 0, the solution (u, v) is C∞ in t > 0.

The paper is arranged as follows. In section 2, we derive the energy
estimate for linearized system and establish the local existence of solution
for (1.1)(1.2). In section 3, we establish an a priori η-weighted estimate for
(1.1) and (1.2). Section 4, we prove the global existence of a weak solution.
In section 5, we show the global smooth solution with improved initial date.
Section 6 shows that the weak solution is indeed C∞ in t > 0.

2 A Priori Linear Estimate and Local Existence

For the problem (1.1)(1.2), we will derive the a priori estimate for linearized
problem and then establish the local (in time) existence of the solution.

Consider the following linearized problem for (1.1)(1.2):




ut + wux + ∆ux = −αuxx − γ∆2u + ε1vx + f,

vt + a1vx = Γ∆v + ε2ux + g,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(2.1)

We have the following:
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Theorem 2.1 Let k ≥ 0 be an integer, and assume

• u0 ∈ Hk+2(R2), v0(x, y) ∈ Hk+1(R2);

• f ∈ L2([0, T ], Hk(R2)), g ∈ L2([0, T ], Hk(R2));

• w ∈ C([0, T ], Hk(R2)) ∩ L2([0, T ], Hk+2(R2)).

Then problem (2.1) admits a unique solution (u, v) in the space Πk
T satisfying

the energy estimate

sup0≤t≤T (‖u(t)‖2
k+2 + ‖v(t)‖2

k+1)

+
∫ T

0
(‖u(s)‖2

k+4 + ‖v(s)‖2
k+2)ds

≤ Ck(‖u0‖2
k+2 + ‖v0‖2

k+1 +
∫ T

0
(‖f(s)‖2

k + ‖g(s)‖2
k)ds).

(2.2)

Here Ck is a constant depending on T . It depends on w only in its larger
norm in the spaces C([0, T ], Hk(R2)) and L2([0, T ], Hk+2(R2)).

Proof: To establish estimate (2.2), we need only to consider smooth func-
tions (u, v).

For k = 0, we take L2(R2) inner product of the equations in (2.1) with
(u, v) and integrate by parts in (x, y)-direction. A straightforward computa-
tion yields

∂t(‖u(t)‖2 + ‖v(t)‖2) + ‖u(t)‖2
2 + ‖v(t)‖2

1

≤ C(‖u(t)‖2 + ‖v(t)‖2 + ‖f(t)‖2 + ‖g(t)‖2),
∀t ∈ [0, T ] (2.3)

Applying Gronwall inequality to (2.3), we obtain further

sup0≤t≤T (‖u(t)‖2 + ‖v(t)‖2) +
∫ T

0
(‖u(s)‖2

2 + ‖v(s)‖2
1)ds

≤ C(‖u0‖2 + ‖v0‖2 +
∫ T

0
(‖f(s)‖2 + ‖g(s)‖2)ds),

(2.4)

where C always denotes a constant depending only on T and coefficients of
(2.1).

Then we take L2(R2) inner product of the equations in (2.1) with (∆2u, ∆v),
and integrate by parts in (x, y)-direction. Similarly as above and also taking
into account the estimates (2.3) and (2.4), we obtain

∂t(‖u(t)‖2
1 + ‖∆u‖2 + ‖v(t)‖2

1) + ‖u(t)‖2
4 + ‖v(t)‖2

2

≤ C(‖u(t)‖2
2 + ‖v(t)‖2

1 + ‖f(t)‖2 + ‖g(t)‖2),
∀t ∈ [0, T ] (2.5)
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sup0≤t≤T (‖u(t)‖2
2 + ‖v(t)‖2

1) +
∫ T

0
(‖u(s)‖2

4 + ‖v(s)‖2
2)ds

≤ C(‖u0‖2
2 + ‖v0‖2

1 +
∫ T

0
(‖f(s)‖2 + ‖g(s)‖2)ds).

(2.6)

(2.6) is the k = 0 case for (2.2). For the case k > 0, the estimate (2.2)
can be obtained by applying ∇k

x,y to (2.1) and then apply the result for k = 0
to the expanded system.

The existence of the solution can be obtained by continuation argument.
Consider a family (0 ≤ λ ≤ 1) of problems:





ut + λ [wux + ∆ux + αuxx + γ∆2u− ε1vx] + (1− λ)∆2u = f,

vt + λ [a1vx − Γ∆v − ε2ux]− (1− λ)∆v = g,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(2.7)

Problem (2.1) is the case λ = 1 in (2.7), while the case λ = 0 in (2.7) is the
well-known parabolic problem. It remains to show that the set B ⊂ [0, 1]
of all λ for which (2.7) has solution is both open and closed. This can be
achieved by the fact that the solution of (2.7) satisfies (2.2) uniformly for
0 ≤ λ ≤ 1.

• B is closed in [0, 1].

Let λj ∈ B and λj → λ0. Let (uj, vj) be the solution of the following
initial value problem





ujt + λjL1(uj, vj) + (1− λj)∆
2uj = f,

vjt + λjL2(uj, vj)− (1− λj)∆vj = g,

uj(x, y, 0) = u0(x, y), vj(x, y, 0) = v0(x, y).

(2.8)

By (2.2), (uj, vj) is uniformly bounded in Πk
T . Let (ūj, v̄j) = (uj −

uj−1, vj − vj−1) (j = 2, 3, · · · ). Apply (2.2) to (ūj, v̄j), we have

sup0≤t≤T (‖ūj(t)‖2
k+2 + ‖v̄j(t)‖2

k+1)

+
∫ T

0
(‖ūj(s)‖2

k+4 + ‖v̄j(s)‖2
k+2)ds

≤ Ck|(λj − λj−1)|2
∫ T

0
(‖uj−1(s)‖2

k+4 + ‖vj−1(s)‖2
k+2)ds

≤ Ck|(λj − λj−1)|2K.

(2.9)

Since λj → λ0, it follows that (uj, vj) is a Cauchy sequence in Πk
T and

its limit (u, v) is the solution of (3.3) for λ0. Hence B is closed in [0,1].
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• B is open in [0, 1].

Let λ0 ∈ B, and λ ∈ [0, 1] with |λ− λ0| ≤ ε.

Let (u1, v1) be the solution of the following problem:




u1t + λ0L1(u1, v1) + (1− λ0)∆
2u1 = f,

v1t + λ0L2(u1, v1)− (1− λ0)∆v1 = g,

u1(x, y, 0) = u0(x, y), v1(x, y, 0) = v0(x, y).

(2.10)

Let (uj, vj) (j = 2, 3, · · · ) be the solution of the following problem




ujt + λ0L1(uj, vj) + (1− λ0)∆
2uj

= f + (λ0 − λ)(L1(uj−1, vj−1)−∆2uj−1),

vjt + λL2(uj, vj)− (1− λ0)∆vj

= g + (λ0 − λ)(L2(uj−1, vj−1)−∆vj−1),

uj(x, y, 0) = u0(x, y), vj(x, y, 0) = v0(x, y).

(2.11)

It is easy to show that for ε ¿ 1, (uj, vj) is a Cauchy sequence with
limit (u, v) being the solution of (2.7) for λ. Hence B is open.

For the local solution of the nonlinear system (1.1)(1.2), we have the
following

Theorem 2.2 ∀ integer k ≥ 0 and (u0, v0) ∈ Hk+2(R2)×Hk+1(R2): there is
a T > 0 such that (1.1)(1.2) has a unique solution (u, v) ∈ C([0, T ]; Hk+2(R2)×
Hk+1(R2)) satisfying

sup
0≤t≤T

(‖u(t)‖2
k+2 + ‖v(t)‖2

k+1)

+
∫ T

0
(‖u(s)‖2

k+4 + ‖v(s)‖2
k+2)ds

≤ Ck(‖u0‖2
k+2 + ‖v0‖2

k+1).

(2.12)

In addition, the existence time span [0, T ] depends upon (u0, v0) only in its
norm (‖u0‖2

k+2 + ‖v0‖2
k+1).

Proof: The theorem is proved by linear iteration. First we construct an
approximate solution (ua, va) by solving





ut + ∆ux + αuxx + γ∆2u− ε1vx = 0,

vt + a1vx − Γ∆v − ε2ux = 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(2.13)
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We look for the solution of (1.1)(1.2) in the form of (u, v) = (ua + u̇, va + v̇).
The solution (u̇, v̇) is obtained by the following linear iteration (j = 1, 2, . . . ):



u̇jt + (ua + u̇j−1)u̇jx + uaxu̇j + ∆u̇jx + αu̇jxx + γ∆2u̇j − ε1v̇jx = −uauax,

v̇jt + a1v̇jx − Γ∆v̇j − ε2u̇jx = 0,

u̇j(x, y, 0) = 0, v̇j(x, y, 0) = 0.
(2.14)

By Theorem 2.1, the approximate solution (ua, va) ∈ Πk
T and satisfies

(2.2) with (f, g) = 0. Since (ua, va) is thus fixed, and uauax ∈ L2([0, T ], Hk(R2)),
it follows from (2.2) that the (u̇j, v̇j) is uniformly bounded in the space Πk

T .
(u̇j, v̇j) is a Cauchy sequence from the choice of sufficiently small T0. Such
choice of T0 depends only upon the Πk

T norms of (ua, va) which in turn de-
pends only on the corresponding norm of (u0, v0). This concludes the proof
of Theorem 2.2.

To prepare for the study of global weak solution in PT (see (1.4)), we
need to study the linear problem under a weaker assumption on the term f .

Consider the following linear initial value problem:



ut + ∆ux + αuxx + γ∆2u− ε1vx = f1,
vt + a1vx − Γ∆v − ε2ux = 0,
u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(2.15)

Theorem 2.3 If (u0, v0) ∈ L2(R2) × L2(R2) and f1 ∈ L1([0, T ]; L2(R2)),
then (2.15) has a unique solution (u, v) ∈ PT .

Proof: Taking L2(R2) inner product of the two equations in (2.15) with
(u, v), we have

(u, ut) = 1
2
∂t(‖u(t)‖2

0), (v, vt) = 1
2
∂t(‖v(t)‖2

0);

(u, γ∆2u) = γ‖∆u‖2
0; (v,−Γ∆v) = γ‖∇v‖2

0;

(u, ∆ux + αuxx) ≤ ‖u‖1‖u‖2 ≤ δ‖u‖2
2 + Cδ‖u‖2

1;

(u, ε1vx) ≤ δ‖v‖2
1 + Cδ‖u‖2

0;

(v, a1vx) ≤ δ‖v‖2
1 + Cδ‖v‖2

0;

(v, ε2ux) ≤ ‖v‖2
0 + C‖u‖2

1.

Noticing ‖u‖2 ∼ ‖u‖0 + ‖∆u‖0, ‖v‖1 ∼ ‖v‖0 + ‖∇v‖0, and ‖u‖2
1 ≤ δ‖u‖2

2 +
Cδ‖u‖2

0, we obtain by taking δ ¿ 1,

∂t(‖u(t)‖2
0 + ‖v(t)‖2

0) + ‖u‖2
2 + ‖v‖2

1

≤ C (‖u(t)‖2
0 + ‖v(t)‖2

0 + ‖f1‖0‖u(t)‖0)
(2.16)
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As in Gronwall’s inequality, multiply (2.16) by e−Ct:

∂t[e
−Ct(‖u(t)‖2

0 + ‖v(t)‖2
0)] + e−Ct(‖u‖2

2 + ‖v‖2
1) ≤ Ce−Ct (‖f1‖0‖u(t)‖0) ,

Integrating the above in t yields

(‖u(t)‖2
0 + ‖v(t)‖2

0)] +
∫ t

0
(‖u‖2

2 + ‖v‖2
1) ds

≤ C
(
‖u0‖2

0 + ‖v0‖2
0 +

∫ t

0
‖f1‖0‖u(s)‖0ds

)
.

(2.17)

Since ‖f1(t)‖0 is only in L1(0, T ), we have
∫ t

0
‖f1‖0‖u(s)‖0ds ≤ (

sup0≤s≤t ‖u(s)‖0

) ∫ t

0
‖f1‖0ds

≤ δ
(
sup0≤s≤t ‖u(s)‖0

)2
+ Cδ

(∫ t

0
‖f1‖0ds

)2

,

for δ ¿ 1, we obtain from (2.17)

|||(u, v)|||2T ≤ CT0

(
‖u0‖2

0 + ‖v0‖2
0 + (

∫ T

0
‖f1‖0ds)2

)
. (2.18)

(2.18) is the a priori estimate for solution (u, v) of (2.15). The constant CT0

in (2.18) depends on T0, but is uniform for all T ≤ T0.
The existence of the solutions can be obtained from Theorem 2.1 and

(2.18) as follows. First construct a sequence of (u0k, v0k) ∈ Hk+2(R2) ×
Hk+1(R2) and f1k ∈ L2([0, T ], Hk(R2)) such that (u0k, v0k) → (u0, v0) in
Hk+2(R2)×Hk+1(R2) and f1k → f1 in L1([0, T ]; L2(R2)). With data (u0k, v0k)
and f1k, (2.15) has a unique solution (uk, vk) ∈ Πk

T by Theorem 2.1. (2.18)
implies that (uk, vk) is a Cauchy sequence in Πk

T , and its limit (u, v) is the
required solution. This finishes the proof of Theorem 2.3.

3 Solution in PT

First we derive a global estimate for the solutions of (1.1)(1.2) in an η-
weighted norm which plays a crucial role in the proof of the global solution.

Theorem 3.1 There is an η0 > 0 such that for any T > 0, the solution
(u, v) ∈ C1([0, T ], S(R2)) of (1.1)(1.2) satisfies the estimate

sup
0≤t≤T

(‖e−ηtu(t)‖2
0 + ‖e−ηtv(t)‖2

0)

+
∫ T

0
(‖e−ηsu(s)‖2

2 + ‖e−ηsv(s)‖2
1)ds

≤ Cη(‖u0‖2
0 + ‖v0‖2

0),

(3.1)
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∀η ≥ η0. the constant Cη in (3.1) depends only on η0 and is independent of
T .

Proof: Let (ũ, ṽ) = (e−ηtu, e−ηtv), then (ũ, ṽ) satisfies the following




ũt + eηtũũx + ∆ũx + ηũ = −αũxx − γ∆2ũ + ε1ṽx,
ṽt + a1ṽx + ηṽ = Γ∆ṽ + ε2ũx,
ũ(x, y, 0) = u0(x, y), ṽ(x, y, 0) = v0(x, y).

(3.2)

Take inner product of the two equations in (3.2) with (ũ, ṽ). Since the only
nonlinear term

(eηtũũx, ũ) = 0, (3.3)

and we have on the left-hand-side of the estimate the terms η‖ũ‖2 + η‖ṽ‖2,
hence we can estimate all the remaining terms as in the case of linear problem
by choosing η0 À 1.

Remark 3.1 For functions (u, v) ∈ PT , since the dual of uux with u is
well-defined, we conclude that the estimate (3.1) is also valid for solution
(u, v) ∈ PT .

The following theorem establishes the uniqueness of solution (u, v) ∈ PT

for (1.1)(1.2).

Theorem 3.2 The solution (u, v) ∈ PT of (1.1)(1.2) is unique.

Proof: Let (u1, v1) and (u2, v2) be two solutions in PT for (1.1)(1.2). Since

u1u1x − u2u2x = u1xû + u2ûx, (3.4)

hence (û, v̂) ≡ (u1 − u2, v1 − v2) satisfies the following linear problem




ût + u1xû + u2ûx + ∆ûx = −αûxx − γ∆2û + ε1v̂x,
v̂t + a1v̂x = Γ∆v̂ + ε2ûx,
û(x, y, 0) = 0, v̂(x, y, 0) = 0.

(3.5)

Because H2(R2) is a Banach algebra,

(u1xû, û) ≤ ‖u1x‖‖û2‖0 ≤ C‖u1‖1‖û‖2
0. (3.6)

Also by Sobolev imbedding theorem, we have

(u2ûx, û) ≤ sup
x,y
|u2|‖û‖2

1 ≤ C‖u2‖2‖û‖2
1 ≤ ε‖û‖2

2 + C(ε)‖û‖2
0. (3.7)
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Since u1, u2 are fixed functions in PT , we can choose ε ¿ 1 such that the
solution for linear problem (3.5) satisfies the estimate (2.10) in Theorem 2.3.
Since f1 = 0 and (û(0), v̂(0)) = 0, we have (û, v̂) = 0. This concludes the
proof of Theorem 3.2.

The following local existence theorem is similar to Theorem 2.2, except
that the regularity condition on the initial data (u0, v0) is weaker and the
solution (u, v) is also weaker in regularity.

Theorem 3.3 Let (u0, v0) ∈ L2(R2)× L2(R2). Then there is a T0 > 0 such
that (1.1)(1.2) has a unique solution (u, v) ∈ PT0 satisfying

sup
0≤t≤T

(‖u(t)‖2
0 + ‖v(t)‖2

0) +

∫ T

0

(‖u(s)‖2
2 + ‖v(s)‖2

1)ds

≤ CT (‖u0‖2
0 + ‖v0‖2

0).

(3.8)

In particular, the existence time span [0, T0] depends upon (u0, v0) only in
its norm (‖u0‖2

0 + ‖v0‖2
0).

Proof: As in the proof of Theorem 2.2, we first construct an approxi-
mate solution (ua, va) by solving (2.5). And (ua, va) satisfies the estimate

sup
0≤t≤T

(‖ua(t)‖2
0 + ‖va(t)‖2

0) +

∫ T

0

(‖ua(s)‖2
2 + ‖va(s)‖2

1)ds

≤ CT (‖u0‖2
0 + ‖v0‖2

0).

(3.9)

In particular, we notice that uauax ∈ L1((0, T ); L2(R2)) with

∫ T

0

‖uauax‖0ds ≤
∫ T

0

‖ua(s)‖2
2ds ≤ CT (‖u0‖2

0 + ‖v0‖2
0)

2. (3.10)

We again look for the solution of (1.1)(1.2) in the form of (u, v) = (u̇, v̇).
Obviously, (u, v) is a solution of (1.1)(1.2) if and only if (ua + u̇, va + v̇)
satisfies




u̇t + (ua + u̇)u̇x + uaxu̇ + ∆u̇x + αu̇xx + γ∆2u̇− ε1v̇x = −uauax,

v̇t + a1v̇x − Γ∆v̇ − ε2u̇x = 0,

u̇(x, y, 0) = 0, v̇(x, y, 0) = 0,

(3.11)
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The solution (u̇, v̇) of (3.11) is obtained by the linear iteration (j = 1, 2, . . . ):





u̇jt + (ua + u̇j−1)u̇jx + uaxu̇j + ∆u̇jx + αu̇jxx + γ∆2u̇j − ε1v̇jx

= −uauax,

v̇jt + a1v̇jx − Γ∆v̇j − ε2u̇jx = 0,

u̇j(x, y, 0) = 0, v̇j(x, y, 0) = 0,

(3.12)

with (u̇0, v̇0) = (0, 0).
We are going to show that

1. For any κ > 0, we can choose T0 ¿ 1 such that for all j:

‖|(u̇j, v̇j)‖|2T0
≤ κ. (3.13)

2. There is a T1 ≤ T0 such that for all j ≥ 1:

‖|(u̇j, v̇j)‖|T1 ≤
1

2
‖|(u̇j−1, v̇j−1)‖|T1 . (3.14)

Obviously, (3.13) and (3.14) implies the existence of a local solution (u, v) ∈
PT1 , as claimed in Theorem 3.3.

• Prove (3.13):

Assume ‖|(u̇j−1, v̇j−1)‖|T ≤ κ and consider the energy estimate for
(u̇j, v̇j). We have





(uau̇jx, u̇j) ≤ ‖u̇j‖0‖ua‖2‖u̇j‖2 ≤ Cδ‖u̇j(t)‖2
0 + δ‖u̇j‖2

2;

(uaxu̇j, u̇j) ≤ ‖u̇j‖0‖ua‖2‖u̇j‖2 ≤ Cδ‖u̇j(t)‖2
0 + δ‖u̇j‖2

2;

(u̇j−1u̇jx, u̇j) ≤ ‖u̇j‖0‖u̇j−1‖2‖u̇j‖2 ≤ Cδ‖u̇j(t)‖2
0 + δ‖u̇j‖2

2.

(3.15)

In particular, the constant Cδ in (3.15) depends only on κ and |‖(ua, va)‖|T ,
and is independent of specific u̇j−1.

Choosing δ in (3.14) sufficiently small, we can obtain energy estimate
for (u̇j, v̇j) similar to (2.10):

‖|(u̇j, v̇j)‖|2T ≤ CT

(∫ T

0
‖uauax‖0ds

)2

. (3.16)
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Since the constant CT in (3.16) is uniform for T < 1, we can choose
T0 ¿ 1 so that

CT

(∫ T0

0

‖uauax‖0ds

)2

≤ κ. (3.17)

Here, T0 depends only upon L1(0, T ) norm of ‖uauax‖0 which in turn
depends on ‖u0‖0 +‖v0‖0 by (3.10). This concludes the proof of (3.13).

• Prove (3.14)

For T0 chosen above and ∀T ≤ T0, let (ũj, ṽj) = (u̇j − u̇j−1, v̇j − v̇j−1).
Then from (3.12), (ũj, ṽj) satisfies





ũjt + ∆ũjx + αũjxx + γ∆2ũj − ε1ṽjx

+uaũjx + uaxũj = u̇j−2u̇(j−1)x − u̇j−1u̇jx,
ṽjt + a1ṽjx − Γ∆ṽj − ε2ũjx = 0,
ũj(x, y, 0) = 0, ṽj(x, y, 0) = 0.

(3.18)

Because

u̇j−2u̇(j−1)x − u̇j−1u̇jx = −u̇j−1ũjx − u̇(j−1)xũj−1,

similar to (3.15), we have

{
(u̇j−1ũjx, ũj) ≤ κ‖ũj‖2

2;

(u̇(j−1)xũj−1, ũj) ≤ κ(‖ũj−1‖2
0 + ‖ũj‖2

2).
(3.19)

Then as in (3.16), we obtain

‖|(ũj, ṽj)‖|2T ≤ CT

(∫ T

0
‖u̇j−1ũjx‖0ds +

∫ T

0
‖u̇(j−1)xũj−1‖0ds

)2

≤ CT

(
κ

∫ T

0
‖ũj‖2

2ds + κ
∫ T

0
‖ũj−1‖2

2ds
)

.

(3.20)

Notice CT is uniform for T ≤ T0, we can choose T0 ¿ 1 (by (3.13))
so that κ ¿ 1 such that CT κ ≤ 1

4
. For such chosen T1, (3.14) follows

readily from (3.20).

This concludes the proof of Theorem 3.3.

12



Theorem 3.4 [Global existence of PT solution] Let (u0, v0) ∈ L2(R2) ×
L2(R2). Then ∀T > 0, (1.1)(1.2) has a unique solution (u, v) ∈ PT satisfying

sup
0≤t≤T

(‖u(t)‖2
0 + ‖v(t)‖2

0) +

∫ T

0

(‖u(s)‖2
2 + ‖v(s)‖2

1)ds

≤ CT (‖u0‖2
0 + ‖v0‖2

0).

(3.21)

Proof: Let Λ be the subset of all T ≥ 0 such that in [0, T ] (1.1)(1.2) has a
unique solution in Pτ . Theorem 3.3 guarantees that Λ 6= ∅. Since ∀T ∈ Λ,
(u(T ), v(T )) ∈ L2(R2), Theorem 3.3 also implies that the set Λ must be
open. Let {Tk} be a monotone increasing sequence in Λ such that Tk → Tτ .
By Theorem 3.1, (u(Tτ ), v(Tτ )) ∈ L2(R2), then there must be a solution in
[0, Tτ + ε] by Theorem 3.3. Hence Λ must be open. Consequently Λ = [0,∞)
and this concludes the proof of Theorem 3.4.

4 Global Smooth Solutions

Let (u, v) ∈ PT be the global solution obtained in Theorem 3.4. Define
f1 = −uux then f1 ∈ L1([0, T ]; H1(R2)) and

∫ T

0

‖f1‖1dt ≤
∫ T

0

‖u‖2
2dt ≤ CT (‖u0‖2

0 + ‖v0‖2
0). (4.1)

Consider the following linear initial value problem:





ut + ∆ux + αuxx + γ∆2u− ε1vx = f1,
vt + a1vx − Γ∆v − ε2ux = 0,
u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y).

(4.2)

Then we have the following improved version of Theorem 2.3.

Theorem 4.1 If (u0, v0) ∈ H2(R2) × H1(R2) and f1 ∈ L1([0, T ]; H1(R2)),
then (4.2) has a unique solution (u, v) ∈ Π0

T .

Proof: Taking L2 inner product over R2 of the equations in (4.2) with
(∆u, ∆v) and noticing (∆ux, ∆u) = 0, we obtain readily the following

∂t(‖∇u‖2 + ‖∇v‖2) + γ‖∇∆u‖2 + Γ‖∇v‖2

≤ C(‖u‖2
2 + ‖v‖2

1 + |(∇f1,∇u)|). (4.3)
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Integrating (4.3) from 0 to T and noticing (u, v) ∈ PT and satisfies (3.21),
we have

sup0≤t≤T (‖u(t)‖2
1 + ‖v(t)‖2

1) +
∫ T

0
(‖u(s)‖2

3 + ‖v(s)‖2
2)ds

≤ C(‖u0‖2
1 + ‖v0‖2

1 +
∫ T

0
|(∇f1,∇u)|ds).

(4.4)

Since ∫ T

0
|(∇f1,∇u)|ds ≤ ∫ T

0
‖∇f1‖0‖∇u(s)‖0ds

≤ sup0≤t≤T ‖u(s)‖1

∫ T

0
‖f1‖1ds

≤ δ sup0≤t≤T ‖u(s)‖2
1 + Cδ(

∫ T

0
‖f1‖1ds)2.

(4.5)

By (4.1), (
∫ T

0
‖f1‖1ds) is bounded by ‖u0‖2

0 + ‖v0‖2
0. Combining (4.4) and

(4.5), we obtain

sup0≤t≤T (‖u(t)‖2
1 + ‖v(t)‖2

1) +
∫ T

0
(‖u(s)‖2

3 + ‖v(s)‖2
2)ds

≤ CT (‖u0‖2
1 + ‖v0‖2

1 + (
∫ T

0
‖f1‖1ds)2).

(4.6)

(4.6) implies that for (u0, v0) ∈ H1(R2), the solution (u, v) in Theorem 3.4 is
actually in the space

u ∈ C([0, T ]; H1)
⋂

L2([0, T ]; H3),

v ∈ C([0, T ]; H1)
⋂

L2([0, T ]; H2).
(4.7)

A further consequence of (4.7) is that f1 = uux ∈ L2((0, T )×R2).
Taking L2 inner product over R2 of the first equation in (4.2) with ∆2u,

we further obtain

∂t‖∆u‖2 + γ‖∆2u‖2 ≤ C(‖u‖2
3 + ‖v‖2

1 +
∫ T

0
‖f1‖2

0dt). (4.8)

Combining (4.6) and (4.8), we obtain that the solution (u, v) in Theorem 3.4
is in Π0

T . This completes the proof of Theorem 4.1.
For any integer k > 0, we have the following

Theorem 4.2 Assume that in (1.1)(1.2), (u0, v0) ∈ Hk+2(R2) × Hk+1(R2),
then global solution (u, v) in Theorem 3.4 is actually ∈ Πk

T .

Proof: Theorem 4.2 can be proved by induction. If the solution (u, v) ∈
Πk−1

T , then u ∈ C((0, T ); Hk+1)∩L2((0, T ); Hk+3) and ∇k(uux) ∈ L2((0, T )×
R2). Therefore we can apply ∇k to (1.1)(1.2) and use the result obtained in
Theorem 4.1 to (∇ku,∇kv). And Theorem 4.2 follows readily.
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Remark 4.1 Since integer k in Theorem 4.2 is arbitrary, Theorem 4.2 also
implies that for smooth initial data (u0, v0), the unique global solution (u, v)
is also smooth.

The global smooth solution in Theorem 4.2 is obtained under the as-
sumption that the initial data (u0, v0) is sufficiently smooth. Actually we
can drop such conditions on (u0, v0) and still obtain the smoothness of the
solution (u, v) in t > 0.

Theorem 4.3 In the problem (1.1)(1.2), assume (u0, v0) ∈ L2(R2)×L2(R2),
then the unique solution (u, v) ∈ PT obtained in Theorem 3.4 is actually in
C∞((0, T )×R2).

Proof: Let φε(t) ∈ C∞[0,∞) such that

φε(t) =





0, 0 ≤ t ≤ ε;
monnotone increasing, ε ≤ t ≤ 2ε;
1, 2ε ≤ t.

(4.9)

Let
(uε, vε) = (uφε(t), vφε(t)). (4.10)

Since (u, v) and (uε, vε) are identical in t ≥ 2ε, and ε is arbitrary, we need
only to show that (uε, vε) ∈ C∞((0, T )×R2).

(uε, vε) satisfies the following linear initial value problem:




uεt + ∆uεx + αuεxx + γ∆2uε − ε1vεx = f,
vεt + a1vεx − Γ∆vε − ε2uεx = g,
uε(x, y, 0) = 0, vε(x, y, 0) = 0.

(4.11)

Here in (4.11),

f = −φεtu− φεuux ∈ L1((0, T ), H1(R2))

g = −φεtv ∈ L2((0, T ), H1(R2)).
(4.12)

Similar to the proof of Theorem 2.1 and Theorem 4.1, we can derive the
estimate for the solution of (4.11) (uε, vε) ∈ Π0

T . This would imply that
(f, g) ∈ L2((0, T ), H1(R2)). Applying the result of Theorem 2.1 again, we
have (uε, vε) ∈ Π1

T and hence (f, g) ∈ L2((0, T ), H2(R2)) and so on. Con-
sequently we obtain that ∀k, (uε, vε) ∈ Πk

T . This implies that (uε, vε) ∈
L2((0, T ); C∞(R2)). From the fact that (uε, vε) satisfies the differential equa-
tion (4.11), we obtain the smoothness of (uε, vε) in the t-direction, hence
(uε, vε) ∈ C∞((0, T )×R2). This concludes the proof of Theorem 4.3.
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