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Abstract

Oblique and conical shock waves are generated as solid projectile
flies supersonically, or as a planar shock wave is reflected along a ramp.
We study the stability of oblique shock waves for full Euler system of
equations in gas-dynamics. The stability criterion is applied to the
discussion of regular shock reflection phenomena and the transition of
a regular shock reflection to Mach reflection.

1 Introduction

Oblique shock waves are produced as airplane flies supersonically, or as shock
waves are reflected at a planar solid surface. With other conditions fixed,
the shape of such shock waves at the wings of airplane is determined by
the shape of the front edge of the wing. At very small angle θ of a sharp
wing edge, the shock front is attached to the wing. The shock front becomes
detached as the angle θ increases past a critical angle. Figure 1 shows the
profile of an attached shock wave and the flow at a sharp wedge, see [1, 13,
29]. It is of great interest to know the exact angle θ at which an attached
shock front transforms into a detached one, since a detached shock front
drastically increases resistance to the flight. Mathematically, it requires the
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determination of the maximal angle θc which would guarantee a stable oblique
shock front and for an angle larger than θc, the shock front might become
detached.
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Figure 1: An attached oblique shock wave in supersonic flight

~q0: incoming upstream velocity;

~q: inflected downstream velocity;

S: attached shock front;

θ: angle between incoming velocity and solid surface;

δ: shock inflection angle.

Oblique shock waves has been studied by many researchers, using theo-
retical, numerical and experimental tools. Theoretical analysis has been done
for various approximate mathematical models. For an irrotational potential
flow model, it was studied in [7, 9, 25, 27] for very small incident angle θ.
Conical shock waves had been studied in [8]. For an unsteady transonic small
disturbance equation in [2]. For the complete Euler system of equations, the
non-stationary stability has been studied in [6, 32].

Using an isentropic Euler system model, the stability of oblique shock
waves is studied in [19]. A necessary and sufficient condition is established
for the linear stability of Kreiss’ type [16] under genuine 3-dimensional per-
turbation. The stability and existence of conical shock waves was established
in [11].

However, we know that in gas-dynamics entropy must increase across
shock front, the isentropic mathematical model is a good proximation only
for very weak shock waves. The optimal condition obtained in [19] for the
stability of oblique shock wave is expressed in terms of shock strength which
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already lies beyond the range of very weak shock. Therefore, for the applica-
tion in gas-dynamics, it is necessary to derive the stability condition for the
full non-isentropic Euler system.

The shock reflection phenomena is closely related to the oblique shock
waves. In shock reflection, an incoming planar shock front is reflected along
a planar wall. If the incident angle α is very small, then the incident and
reflected shock fronts will intersect at a point P on the plane surface. This is
called the regular shock reflection. Figure 2 shows the incident and reflected
shock waves near their intersection point P on an infinite planar wall.
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Figure 2: Regular shock reflection at a planar infinite ramp

I: incident shock front;

R: reflected shock front;

α: angle between incident shock front and planar ramp;

δ: angle between reflected shock front and planar ramp.

As incident angle α increases past a critical value, the configuration in
Figure 2 will change into a more complicated Mach reflection [13, 15, 29],
with a third shock (Mach stem) connecting the intersection point and the
plane surface, as well as other features such as vortex sheet. Again, it is
of great interest to determine the exact angle αc at which such transition
happens. There are many works on this subject, using various models, see
[1, 2, 3, 13, 15, 32, 33], also see [29] for a recent survey on the topic.

The mathematical relations derived from Rankine-Hugoniot conditions on
shock fronts prescribe a maximal angle αm beyond which a regular reflection
is simply impossible. However it is observed in experiment that the transition
from regular reflection to Mach reflection happens at an angle αc smaller than
αm, see also [1, 12, 15].

In [29] , concerning this phenomenon it is remarked that “this anticipated
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transition must be due to some instability, but has not been explained rigor-
ously so far, see [29](§3.1). One of the purpose of this paper is to address this
issue and perform a rigorous stability analysis which provides an explanation
to this “earlier” transition.

We first derive a sufficient and necessary condition similar to [19] for the
oblique shock wave using full non-isentropic Euler system. Then we will
apply the result to the study of regular shock reflection and obtain Theorem
3.1. Theorem 3.1 shows that the reflection shock wave fails to satisfy the
stability condition at an angle θc which is smaller than the angle θm predicted
from Rankine-Hugoniot condition. This conclusion confirms the observation
in physical experiment that, for fixed shock strength, the transition from
regular reflection to Mach reflection happens at an angle smaller than θm

[1, 12, 15, 29]. The result shows that the prediction in [29] is indeed correct.
The paper is arranged as follows. In Section 2, we give the mathematical

formulation of the problem and state the main theorem (Theorem 2.1) for
oblique shock waves. A comparison discussion is also given in Remark 2.3
about the result in [32]. In Section 3, the main theorem in Section 2 is applied
in the analysis of regular shock reflection and obtain Theorem 3.1 regarding
its stability and its physical implications. The detailed proof of Theorem 2.1
on the linear stability of oblique shock front is given in section 4.

2 Mathematical formulation and theorems for oblique

shock waves

The full Euler system for non-viscous flow in gas-dynamics is the quasi-linear
Euler system of equations:





∂tρ +
3∑

j=1

∂xj
(ρvj) = 0,

∂t(ρvi) +
3∑

j=1

∂xj
(ρvivj + δijp) = 0, i = 1, 2, 3

∂t(ρE) +
3∑

j=1

∂xj
(ρEvj + pvj) = 0.

(2.1)

In (2.1), (ρ,v) are the density and the velocity of the gas particles, E =
e+ 1

2
|v|2 is the total energy, and the pressure p = p(ρ,E) is a known function.
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In the region where the solution is smooth, the conservation of total
energy in (2.1) can be replaced by the conservation of entropy S [13, 28], and
system (2.1) can be replaced by the following system





∂tρ +
3∑

j=1

∂xj
(ρvj) = 0,

∂t(ρvi) +
3∑

j=1

∂xj
(ρvivj + δijp) = 0, i = 1, 2, 3

∂t(ρS) +
3∑

j=1

∂xj
(ρvjS) = 0

(2.2)

with pressure p = p(ρ, S) satisfying

pρ > 0, pρρ > 0. (2.3)

Shock waves are piece-wise smooth solutions for (2.1) which have a jump
discontinuity along a hyper-surface φ(t, x) = 0. On this hyper-surface, the
solutions for (2.1) must satisfy the following Rankine-Hugoniot conditions,
see [13, 28, 30],

φt




ρ
ρv1

ρv2

ρv3

ρE




+φx1




ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(ρE + p)v1




+φx2




ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(ρE + p)v2




+φx3




ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρE + p)v3




= 0.

(2.4)
Here [f ] = f1 − f0 denotes the jump difference of f across the shock front
φ(t, x) = 0. In this paper, we will use subscript “0” to denote the status on
the upstream side (or, ahead) of the shock front and subscript “1” to denote
the status on the downstream side (or, behind).

Rankine-Hugoniot condition (2.4) admits many non-physical solutions to
(2.1). To single out physical solution, we could impose the stability condi-
tion, which argues that for observable physical phenomena, the solution to
mathematical model should be stable under small perturbation. In the case
of one space dimension, this condition is provided by Lax’ shock inequality
which demands that a shock wave is linearly stable if and only if the flow
is supersonic (relative to the shock front) in front of the shock front and is
subsonic (relative to the shock front) behind the shock front, see [13, 30].
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In the case of high space dimension, it is shown that Lax’ shock inequality
also implies the linear stability of the shock front under multi-dimensional
perturbation for isentropic polytropic gas[21, 22]. An extra condition on
shock strength is needed for general non-isentropic flow, see [21, 22].

Obviously, all multi-dimensional shock waves should satisfy the Lax’
shock inequality mentioned above [13, 30]. However, in the study of steady
oblique or conical shock waves, the issue is the stability of shock waves with
respect to the small perturbation in the incoming supersonic flow or the solid
surface. This is the stability independent of time as in [5, ?], in contrast to
the stability studied in [21, 32], and is also different from the study of other
unsteady flow, see [2, 4, 20, 25].

Recently, the stability of oblique shock wave under multi-dimensional
perturbation in incoming flow was studied in [19] for isentropic Euler system
and an optimal condition was derived. In addition to the usual Lax’ shock
inequality, it was shown in [19] that the downstream supersonic flow and a
restriction of shock strength guarantee the stability of oblique shock wave.
In particular for polytropic gas, the downstream supersonic flow alone guar-
antees the stability. Based upon the result, the stability and existence of
conical shock waves are established for isentropic Euler system in [10].

In this paper, we study the full Euler system to remove the isentropic
restrictions in [19] and [10], and obtain similar optimal conditions for stability
of oblique shock waves. The main result on the stability of oblique shock wave
is the following theorem.

Theorem 2.1 For three-dimensional Euler system of gas-dynamics (2.1), a
steady oblique shock wave is linearly stable with respect to the three dimen-
sional perturbation in the incoming supersonic flow and in the sharp solid
surface if

1. The usual entropy condition or its equivalent is satisfied across the
shock front. For example, if shock is compressive, i.e., the density
increases across the shock front:

ρ1 > ρ0. (2.5)

Or equivalently, Lax’ shock inequality is satisfied.

2. The flow is supersonic behind the shock front

|v| > a. (2.6)
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3. The shock strength ρ1/ρ0 − 1 satisfies

(
vn

|v|
)2 (

ρ1

ρ0

− 1

)
< 1. (2.7)

In (2.7), vn denotes the normal component of the downstream flow
velocity v.

The conditions (2.5),(2.6) and (2.7) are also necessary for the linear sta-
bility of a plane oblique shock front formed by uniform supersonic incoming
flow.

Remark 2.1 The necessity part of the theorem follows from the fact that
Kreiss’ condition [16] is the necessary and sufficient condition for the well-
posedness of the initial-boundary value problem for hyperbolic systems under
consideration.

Remark 2.2 It is interesting to compare condition (1.5) with the following
conditions in [21] (see (1.17) in [21]):

M2(ρ1/ρ0 − 1) < 1, M < 1. (2.8)

We notice that (2.7) and (2.8) have very similar forms. The only difference
is that the Mach number M in the first relation of (2.8) is replaced here by
vn/|v| in (2.8). Since Mach number M < 1 in (2.8) and |v| > a in (2.6), we
have

vn

|v| < M.

Hence condition (2.7) is weaker than conditions (2.8) in [21].
Despite the apparent similarity, we emphasize that (2.7) in this paper

and (2.8) (or (1.17) in [21]) deal with two different types of stability. (2.7)
is about the time-independent stability with respect to the perturbation of
incoming flow and solid surface, while (2.8) is about the transitional stability
with respect to the perturbation of initial data.

In particular, Theorem 2.1 predicts a drastic change in the behavior of
oblique shock waves as shock strength increases and the downstream flow
becomes subsonic. A similar result was obtained in [19] for isentropic Euler
system. Theorem 2.1 confirms that this remains a physically sound criteria
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for full non-isentropic Euler system where the shock strength may not be
small.

To better understand the physical implication of the conditions in The-
orem 2.1, let’s examine the shock polar in Figure 3, which determine the
dependency of downstream velocity ~q upon the angle θ, assuming other pa-
rameters unchanged.
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Figure 3: Shock polar determines the downstream velocity ~q.

~q0: incoming upstream velocity;

~q: inflected downstream velocity;

θ: shock inflection angle.

θm: the maximal shock inflection angle.

~qc: the velocity with magnitude of sound speed a.

θc: the critical angle for shock stability.

S : shock front;.

In Figure 3, every incident angle θ corresponds two theoretically possible
oblique shock waves, with the strong ones being well-known unstable. In
this paper, we consider only the “weak” ones, even though they may have
large incident angle θ, and with relatively big shock strength. The critical
velocity ~qc has magnitude of sound speed and corresponds to a critical angle
θc. For all θ < θc, the downstream flow is supersonic (|~q| > a) and the
oblique shock wave is linearly stable, and for all θ > θc, the downstream flow
is subsonic (|~q| < a) and the linear stability conditions fail. In particular,
at the theoretically maximal angle θm > θc (even though their difference is
small[1, 15]), the downstream flow is subsonic. Therefore, for all θ ∈ (θc, θm),
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Theorem 2.1 predicts an unstable “weak” oblique shock wave. The angle
θc < θm provides a prediction of the exact transition angle from an attached
shock front to a detached shock front.

Remark 2.3 A special remark is made here to compare the results obtained
in [32] and Theorem 2.1. In [32], the linear stability is studied for oblique
shock wave and shock reflection. Under the usual gas state assumptions, e.g.,
polytropic gas, it is shown in [32] that all weak (relative to strong, but with
large incident angle) oblique shock waves (or in the case of shock reflection,
weak reflection) are linearly stable, which is obviously different from the
conditions in (2.6), (2.7) of Theorem 2.1. This difference comes from the
different type of stability.

The stability in [32] is studied with respect to an initial perturbation and
hence yields in an initial-boundary problem for a non-stationary linearized
system, as in the discussion of [6] and [21]. The condition in Theorem 2.1 is
the stability with respect to a perturbation in the incoming flow and reflection
surface for a stationary flow. The effect of perturbation is for all time and
yields a boundary value problem independent of time. This “global in time”
(independent of time) condition actually assumes the local condition (in time)
as prerequisite, but imposes extra requirement, which are stronger than the
ones in [32] or [21].

This is why the results in [32] did not confirm the experimental phenom-
ena that the actual transition from attached shock wave (or regular reflection)
to detached shock wave (or Mach reflection) happens before the theoretically
possible maximum angle θm, mentioned in [29]. The stronger conditions in
(2.6) and (2.7) provide an explanation and point to a transition angle smaller
than the one theoretically possible.

3 Analysis of regular shock reflection and its transition

to Mach reflection

In this section, we apply Theorem 2.1 to the analysis of regular shock re-
flection. We consider the planar regular shock reflection along an infinite
plane wall, as in Figure 2. Because the stability result in Theorem 2.1 is
with respect to three dimensional perturbation, our discussion also applies
to the case of a curved shock front along an uneven solid surface. In addition
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it also applies to the local discussion near the intersection point of a regular
reflection along a ramp or wedge.

As in Figure 2, a planar incident shock wave with shock front velocity
v0 is reflected along an infinite wall X and the angle between incident shock
front and wall is α, the angle between reflected shock front and wall is δ.

Because the full Euler system of equations is Galilean invariant, if (ρ,v, e)
is a solution, and U is a constant velocity vector, then (ρ(x + Ut, t),v(x +
Ut, t), e(x + Ut, t)) is also a solution. Therefore, in the study of regular
planar shock reflection, we can always choose the coordinates moving with
the intersection point P in Figure 2, which is moving with constant velocity
U = |v0|/ sin θ along X axis. In this coordinates system, the regular planar
reflection at an infinite plane wall becomes stationary. We have the flow
velocity in front of incident shock front, the velocity behind the incident
shock front but in front of the reflected shock front, and the flow velocity
behind the reflected shock, as marked in Figure 4.
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Figure 4: Steady regular shock reflection at an infinite wall

I: incident shock front;

R: reflected shock front;

~q0: upstream velocity in front of incident shock;

~q1: inflected flow velocity between incident and reflected shocks;

~q2: downstream velocity from reflected shock;

α: angle between incident shock front and planar ramp;

δ: angle between reflected shock front and planar ramp.

θ: inflection angle between ~q1 and planar ramp.

From the coordinates frame choice, it is obvious that velocity vector |~q0| =
|v0|/ sin α. In the study of shock reflection, the status of the flow on either
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side of the incident shock front I are given, i.e., the status of the flow region of
~q0 and ~q1 are given. The reflected shock front R, as well as the flow status in
its downstream region need to be determined. It has been known [13, 29, 32]
the downstream status is uniquely determined by a relation derived from
Rankine-Hugoniot conditions on the incident and reflected shock fronts. For
a given shock strength of I, the downstream status is uniquely determined
by in incident angle α. Indeed, the incident angle α determines the slope of
the vector ~q1 and hence θ.

From the point view of the reflected shock front R, θ in Figure 4 is nothing
but the inflection angle θ in case of oblique shock wave, in Figure 1 and Figure
3. Therefore, the study of reflected shock front R is the same as the study
of an oblique shock wave generated by an incoming flow ~q1 by an inflection
angle θ. Consequently, we can apply the results derived in Theorem 2.1 to
the shock reflection study and obtain the following theorem.

Theorem 3.1 For three-dimensional Euler system of gas-dynamics (2.1), a
steady regular planar shock reflection is linearly stable with respect to the
three dimensional perturbation in the incident shock front I and in the solid
surface if

1. The usual entropy condition or its equivalent is satisfied across the
shock front. For example, if shock is compressive, or equivalently, Lax’
shock inequality is satisfied.

2. The flow is supersonic downstream from the reflected shock front R

|~q2| > a. (3.1)

3. The shock strength ρ2/ρ1 − 1 satisfies

(
qn

|~q2|
)2 (

ρ2

ρ1

− 1

)
< 1. (3.2)

Here qn denotes the component of the flow velocity ~q2 normal to the
reflected shock front R.

The above conditions are also necessary for the linear stability of a planar
regular shock reflection formed by a uniform incident along an infinite planar
wall.
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We now turn to the shock polar in Figure 3 to see the physical implications
of Theorem 3.1, especially in relation to the transition of a regular shock
reflection in Figure 2 to a Mach reflection. It is well observed in physical
experiment that with fixed strength of the incident shock front I, if the
incident angle α is small, then a regular reflection pattern as shown in Figure
2 can be observed. As α increases, the angle θ also increases, and a similar
pattern will persist until α reaches a critical value αc (hence θ reaches a
critical value θc) beyond which the pattern of shock fronts in Figure 2 is no
more valid and the configuration changes into the Mach reflection, with the
intersection point P is lifted from the wall and is connected to the wall by
an addition shock front called Mach stem, as well as with the appearance of
a slip line or even more complicated features, see [13, 15, 29].

It is of great interest to understand the critical angle θc (and hence αc)
at which the transition from a regular reflection to Mach reflection happens,
and this has been the topic of many research papers. As in the case of oblique
shock waves, the shock relations derived from Rankine-Hugoniot conditions
prescribe a mathematically maximal angle θm. From purely mathematical
point of view, the regular reflection could happen up to the angle θm, but
experiment shows that regular reflection transits to Mach reflection at a
critical angle θc exactly smaller than θm shown in the shock polar in Figure
3.

In [15], it has been argued from an information criteria that Mach re-
flection is not possible for supersonic downstream flow, i.e., Mach reflection
requires that θ > θa with θa denoting the angle corresponding to sonic down-
stream flow.

On the other hand, in all previous studies it has been shown with mathe-
matical rigor only that the regular reflection is stable for small incident angel
α (hence small θ1).

Theorem 3.1 concludes with mathematical rigor, that if the downstream
flow is supersonic (i.e., (3.1) is satisfied), then the regular reflection pat-
tern is stable with respect to 3-dimensional perturbation for moderate shock
strength (i.e., (3.2) is automatically satisfied). This confirms the conclusion
in [15] based upon the physical information criteria.

In addition, since the condition in Theorem 3.1 is a necessary and suffi-
cient condition for uniform planar shock and wall, hence the subsonic down-
stream flow implies the onset of instability, consequently provides the hint
that the regular reflection pattern in Figure 2 could not be preserved and
observed, unless some extra conditions are imposed in the far fields of down-
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stream flow, such as the ones in [5] where transonic shock waves are studied.
In conclusion, we believe that Theorem 3.1 predicts the transition angle

θc from regular reflection to Mach reflection. It should happen exactly at the
critical angle θc = θa which corresponding to sonic downstream flow.

4 Proof of Theorem 2.1

Because of the micro-local nature of Kreiss’ conditions for hyperbolic bound-
ary value problems, we need only to consider the linear stability of a uniform
oblique shock wave produced by a wedge with plane surface. For simplicity,
we choose the coordinate system (x1, x2, x3) such that (see Figure 5)

• The solid wing surface is the plane x3 = 0;

• The downstream flow behind the oblique shock front is in the positive
x1 direction;

• The angle between the solid wing surface and oblique shock front is δ;

• The angle between the incoming supersonic flow and the solid wing
surface is θ.

- x1

6

x3

O

XXXXXXXXXXXXXXX!!
!!

!!
!!

!!

S
~q0

XXXXXXXXXXz
θ

~q -
δ

Figure 5: An attached oblique shock wave in supersonic flight

~q0: incoming upstream velocity;

~q: inflected downstream velocity;

S: attached shock front;

θ: angle between incoming velocity and solid surface;

δ: shock inflection angle.
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Consider a small perturbation in the solid surface x3 = 0, as well as
in the uniform incoming supersonic steady flow. The perturbed solid sur-
face is x3 = b(x1, x2) with b(0, 0) = bx1(0, 0) = bx2(0, 0) = 0, the down-
stream flow after shock front should be close to the direction of positive
x1-axis. The perturbed oblique shock front is described by x3 = s(x1, x2)
such that s(0, 0) = sx2(0, 0) = 0 and sx1 ∼ λ = tan δ > 0. Obviously we have
b(x1, x2) < s(x1, x2) for all (x1, x2).

In the region b(x1, x2) < x3 < s(x1, x2), the steady flow is smooth. Hence
Euler system (2.1) can be replaced by (2.2) and we have





3∑
j=1

∂xj
(ρvj) = 0,

3∑
j=1

∂xj
(ρvivj + δijp) = 0, i = 1, 2, 3;

3∑
j=1

∂xj
(ρvjS) = 0.

(4.1)

On the shock front x3 = s(x1, x2), Rankine-Hugoniot condition (2.4) be-
comes

sx1




ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(ρE + p)v1




+ sx2




ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(ρE + p)v2



−




ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρE + p)v3




= 0. (4.2)

On the solid surface x3 = b(x1, x2) of the wing, the flow should be tan-
gential to the surface and we have the boundary condition

v1
∂b

∂x1

+ v2
∂b

∂x2

− v3 = 0. (4.3)

The study of oblique shock wave consists of investigating the system (4.1)
with the boundary conditions (4.2) and (4.3).

System (4.1) can be written as a symmetric system for the unknown
vector function U = (p, v1, v2, v3, S)T in b(x1, x2) < x3 < s(x1, x2):

A1∂x1U + A2∂x2U + A3∂x3U = 0 (4.4)
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where

A1 =




v1

a2ρ
1 0 0 0

1 ρv1 0 0 0
0 0 ρv1 0 0
0 0 0 ρv1 0
0 0 0 0 ρv1




, A2 =




v2

a2ρ
0 1 0 0

0 ρv2 0 0 0
1 0 ρv2 0 0
0 0 0 ρv2 0
0 0 0 0 ρv2




A3 =




v3

a2ρ
0 0 1 0

0 ρv3 0 0 0
0 0 ρv3 0 0
1 0 0 ρv3 0
0 0 0 0 ρv3




.

(4.5)
Under the downstream supersonic flow assumption, we have v2

1 > a2 and
it is readily checked that matrix A1 is positively definite. Therefore (4.4) is
a hyperbolic symmetric system [14] with x1 being the time-like direction.

On the fixed boundary x3 = b(x1, x2), the boundary matrix

A3 − A1bx1 − A2bx2 =




0 −bx1 −bx2 1 0
−bx1 0 0 0 0
−bx2 0 0 0 0

1 0 0 0 0
0 0 0 0 0




. (4.6)

It is readily checked that the boundary condition (4.3) is admissible with
respect to system (4.4) in the sense of Friedrichs [14, 17, 18, 26] and there
is a corresponding energy estimate for the linearized problem. Therefore, we
need only to study the linearized problem for (4.1) (or (4.4)) and (4.2) near
the shock front.

We perform the following coordinates transform to fix the shock front
x3 = s(x1, x2):

x′1 = x1, x′2 = x2, x′3 = x3 − s(x1, x2). (4.7)

In the coordinates (x′1, x
′
2, x

′
3), the shock front is x′3 = 0 and the shock front

position x3 = s(x1, x2) becomes an unknown function, coupled with U . To
simplify the notation, we will denote the new coordinates in the following
again as (x1, x2, x3). The system (4.4) in the new coordinates becomes

A1∂x1U + A2∂x2U + Ã3∂x3U = 0 (4.8)
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where Ã3 = A3− sx1A1− sx2A2. The Rankine-Hugoniot boundary condition
(4.2) is now defined on x3 = 0 and takes the same form:

sx1




ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(ρE + p)v1




+ sx2




ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(ρE + p)v2



−




ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρE + p)v3




= 0. (4.9)

System (4.8) with boundary condition (4.9) is a coupled boundary value
problem for unknown variables (U, s) with U defined in x3 < 0 and s being a
function of (x1, x2). To examine Kreiss’ condition, we need to study the linear
stability of (4.8)(4.9) near the uniform oblique shock front with downstream
flow:

U1 = (p, v1, 0, 0, S), s = λx1. (4.10)

where λ = tan δ with δ being the angle between solid surface and oblique
shock front. Under the assumptions in Theorem 2.1, behind the shock front
we have

v1 > a, vn ≡ v1 sin δ < a (4.11)

where vn is the flow velocity component normal to the shock front.
Let (V, σ) be the small perturbation of (U, s) with V = (ṗ, v̇1, v̇2, v̇3, Ṡ).

The linearization of (4.8) is the following linear system

A10∂x1V + A20∂x2V + A30∂x3V + C1σx1 + C2σx2 + C3V = f. (4.12)

Here A10 = A1 in (4.5) and

A20 =




0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, (4.13)

A30 =




−a−2ρ−1λv1 −λ 0 1 0
−λ −λρv1 0 0 0
0 0 −λρv1 0 0
1 0 0 −λρv1 0
0 0 0 0 −λρv1




. (4.14)
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The explicit forms of C1, C2 and C3 are of no consequence in the following
discussion.

Direct computation shows that A30 has one negative triple eigenvalue
−λρv1 and other two eigenvalues satisfying the quadratic equation

y2 + λv1

(
ρ +

1

a2ρ

)
y − 1

a2

(
a2 + a2λ2 − λ2v2

1

)
= 0. (4.15)

Lax’ shock inequality implies that the normal velocity behind the shock front
is subsonic, hence a2− v2

n > 0. The quantity (a2 + a2λ2−λ2v2
1) in (4.15) will

be used often later and will be denoted as

ν2 = (a2 + a2λ2 − λ2v2
1) = (1 + λ2)(a2 − v2

n) > 0. (4.16)

Therefore (4.15) has one positive root and one negative root and matrix A30

has four negative eigenvalues and one positive eigenvalue.
Denote U0, U1 the upstream and downstream state of shock front respec-

tively. To simplify the notation, we drop the subscription “1” when there is
no confusion:

U0 = (p0, v10, 0, v30, S0), U1 = (p1, v11, 0, 0, S1) ≡ (p, v1, 0, 0, S).

The linearization of boundary condition (4.9) has the form

a1∂x1σ + a2∂x2σ + BV = g. (4.17)

Here a1 and a2 are vectors in R5:

a1 =




a11

a12

0
a14

a15



≡




ρv1 − ρ0v10

ρv2
1 + p− ρ0v

2
10 − p0

0
−ρ0v10v30

(ρE + p)v1 − (ρ0E0 + p0)v10




, a2 =




0
0

p− p0

0
0




,

(4.18)
and B is a 5 × 5 matrix defined by the following differential evaluated at
uniform oblique shock front:

BdU ≡ λd




ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(ρE + p)v1



− d




ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρE + p)v3




. (4.19)
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Denote

‖u‖η =

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−2ηx1|u(x)|2dx3 dx2 dx1

) 1
2

,

|u|η =

(∫ ∞

−∞

∫ ∞

−∞
e−2ηx1|u(x1, x2, 0)|2dx2 dx1

) 1
2

,

|u|1,η =

( ∑
t0+t1+t2≤1

∫ ∞

−∞

∫ ∞

−∞
η2t0e−2ηx1|∂t1

x1
∂t2

x2
u(x1, x2, 0)|2dx2 dx1

) 1
2

.

The boundary value problem (4.12)(4.17) is said to be well-posed and
the steady oblique shock front is linearly stable if there is an η0 > 0 and a
constant C0 such that

η‖V ‖2
η + |V |2η + |σ|21,η ≤ C0

(
1

η
‖f‖2

η + |g|2η
)

(4.20)

for all solutions (V, σ) ∈ C∞
0 (R1 × R2) × C∞

1 (R2) of (4.1)(4.2) and for all
η ≥ η0.

Denote
ã(s, iω) = sa1 + iωa2, (4.21)

then we have from (4.18),

ã(s, iω) 6= 0 on |s|2 + |ω|2 = 1. (4.22)

Let Π be the projector in C5 in the direction of vector ã(s, iω), then

p(s, iω) = (I − Π)B (4.23)

is a 5× 5 matrix of rank 4, with elements being symbols in S0, i.e., functions
of zero-degree homogeneous in (s, iω), see [21]. The study of linear stability
of oblique shock front under perturbation is reduced to the investigation of
Kreiss’ condition for the following boundary value problem

{
A1∂x1V + A20∂x2V + A30∂x3V = f1 in x3 < 0,

PV = g1 on x3 = 0.
(4.24)

Here P is the zero-order pseudo-differential operator [31] with symbol p(s, iω)
in (4.23).

The stability result of this section is the following theorem about the
well-posedness of (4.24).
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Theorem 4.1 The linear boundary value problem (4.24), describing the lin-
ear stability of steady oblique plane shock front, is well-posed in the sense of
Kreiss [16, 23, 24] if

1. ρ > ρ0, i.e., the shock is compressive. This is the usual entropy condi-
tion.

2. The downstream flow is supersonic, i.e., v1 > a−. This guarantees the
hyperbolicity of system in (4.24).

3. The following condition on the strength of shock front ρ/ρ0 − 1 is sat-
isfied (

vn

|v|
)2 (

ρ

ρ0

− 1

)
< 1. (4.25)

The above conditions are also necessary for the problem (4.24) with constant
coefficients.

To prove Theorem 4.1 (and hence Theorem 2.1), we construct the matrix
M(s, iω) as in [16, 23, 24]

M(s, iω) = −A−1
30 (sA1 + iωA20). (4.26)

We have

sA1 + iωA20 =




sv1

a2ρ
s iω 0 0

s sρv1 0 0 0
iω 0 sρv1 0 0
0 0 0 sρv1 0
0 0 0 0 sρv1




and

A−1
30 =

(λρv1)
2

|D|




(λρv1)
2 −λ2ρv1 0 λρv1 0

−λ2ρv1
λ2v2

1

a2 − 1 0 −λ 0
0 0 −ν2/a2 0 0

λρv1 −λ 0 λ2(
v2
1

a2 − 1) 0
0 0 0 0 −ν2/a2




,

where |D| = (λρv1)
3ν2/a2 > 0 is the determinant of A30 and

ν2 = (a2 + a2λ2 − λ2v2
1) = (1 + λ2)(a2 − v2

n) > 0.
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Consider the eigenvalue and eigenvectors of matrix N(s, iω):

N(s, iω) ≡ |D|
(ρλv1)2

M(s, iω) (4.27)

which has the following expression by straightforward computation:

N(s, iω) =




sλ2ρv1(1− v2
1

a2 ) 0 −iω(λρv1)
2 −sλ(ρv1)

2 0
s sρv1ν

2/a2 iωλ2ρv1 sλρv1 0
iων2/a2 0 sρv1ν

2/a2 0 0

sλ(1− v2
1

a2 ) 0 −iωλρv1 sλ2ρv1(1− v2
1

a2 ) 0
0 0 0 0 sρv1ν

2/a2




.

Beside the obvious double eigenvalue ξ1 = sρv1ν
2/a2, other eigenvalues

are roots of

det

∣∣∣∣∣∣∣∣

sλ2ρv1(1− v2
1

a2 )− ξ −iω(λρv1)
2 −sλ(ρv1)

2

iων2/a2 sρv1ν
2/a2 − ξ 0

sλ(1− v2
1

a2 ) −iωλρv1 sλ2ρv1(1− v2
1

a2 )− ξ

∣∣∣∣∣∣∣∣
= 0.

Hence the five eigenvalues for N(s, iω) are
{

ξ1 = ξ2 = ξ3 = sρv1ν
2/a2,

ξ4,5 = sλ2ρv1(1− v2
1

a2 )± λρv1a
−1

√
s2(v2

1 − a2) + ω2ν2.
(4.28)

By ν2 = a2 + λ2a2 − λ2v2
1 > 0, we have

(λρv1a
−1)2(v2

1 − a2) > (λ2ρv1)
2

(
v2

1

a2
− 1

)2

.

For η = Res > 0, one of ξ4,5 has positive real part and one has negative real
part in (4.28). Consequently N(s, iω) has four eigenvalues with positive real
parts and one with negative real part when η > 0.

For the eigenvalues ξ1, ξ2, ξ3, ξ4 which have positive real parts when η > 0,
we compute the corresponding eigenvectors or generalized eigenvectors for
N(s, iω).

For the triple eigenvalue ξ1 = ξ2 = ξ3, there are three linearly independent
eigenvectors: 




α1 = (0, 1, 0, 0, 0)T ,

α2 = (0, 0, s,−iωλ, 0)T ,

α3 = (0, 0, 0, 0, 1)T

(4.29)
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Since

sλ2ρv1

(
1− v2

1

a2

)
− ξ4 = −λρv1a

−1µ, sρv1ν
2/a2 − ξ4 = ρv1(s− λa−1µ),

the eigenvector α4 corresponding to the eigenvalue ξ4 is parallel to

α4 = (−ρv1(s−λa−1µ), s−λa−1µ, iων2/a2, a−1µ−sλ(v2
1/a

2−1), 0)T . (4.30)

where

µ ≡
√

s2(v2
1 − a2) + ω2ν2. (4.31)

The four eigenvectors α1, α2, α3 and α4 are linearly independent at s 6=
λa−1µ.

At s = λa−1µ, we have s2 = λ2ω2 and ξ1 = ξ2 = ξ3 = ξ4. α4 is parallel
to (0, 0, iω,−a−1µ, 0)T which is parallel to α2 at s = λa−1µ. A generalized
eigenvector needs to be computed.

4.1 Simplify (4.17)

The Kreiss’ condition for (4.24) requires that five vectors (Bα1, Bα2, Bα3, Bα4)
and sa1 + iωa2 are linearly independent on |s|2 + |ω|2 = 1, η ≥ 0.

We first simplify (4.17) by elementary row operation. Consider



sa11

sa12

iωa23

sa14

sa15




+ λ




d(ρv1)
d(ρv2

1 + p)
d(ρv1v2)
d(ρv1v3)

d(ρv1E + pv1)



−




d(ρv3)
d(ρv1v3)
d(ρv2v3)

d(ρv2
3 + p)

d(ρv3E + pv3)




. (4.32)

Noticing that the linearization is at the uniform oblique shock front, we have


sa11

sa12

iωa23

sa14

s(a15 − Ea11)




+ λ




d(ρv1)
d(ρv2

1 + p)
ρv1dv2

ρv1dv3

ρv1dE + d(pv1)



−




ρdv3

ρv1dv3

0
dp

pdv3




.

and 


sa11

s(a12 − v1a11)
iωa23

sa14

s(a15 − Ea11)




+ λ




d(ρv1)
ρv1dv1 + dp

ρv1dv2

ρv1dv3

ρv1dE + d(pv1)



−




ρdv3

0
0
dp

pdv3




.
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Since dE = de + v1dv1, we have


sa11

s(a12 − v1a11)
iωa23

sa14

s(a15 − (E − v2
1)a11 − v1a12)




+ λ




d(ρv1)
ρv1dv1 + dp

ρv1dv2

ρv1dv3

ρv1de + pdv1



−




ρdv3

0
0
dp

pdv3




.

Multiply first row by −p/ρ and add to the fifth row, we obtain



sa11

s(a12 − v1a11)
iωa23

sa14

s(a15 − (E − v2
1 + p/ρ)a11 − v1a12)




+λ




d(ρv1)
ρv1dv1 + dp

ρv1dv2

ρv1dv3

ρv1(de− p/ρ2dρ)



−




ρdv3

0
0
dp
0




.

Using de = TdS − pdτ , (τ = 1/ρ), we have



sa11

s(a12 − v1a11)
iωa23

sa14

s(a15 − (E − v2
1 + p/ρ)a11 − v1a12)




+λ




d(ρv1)
ρv1dv1 + dp

ρv1dv2

ρv1dv3

ρv1TdS



−




ρdv3

0
0
dp
0




.

Therefore, (4.17) is equivalent to

b1∂x1σ + b2∂x2σ + B1V = g (4.33)

with

b1 =




b11

b12

0
b14

b15



≡




ρv1 − ρ0v10

a12 − v1a11

0
−ρ0v10v30

a15 − (E − v2
1 + p/ρ)a11 − v1a12




, b2 =




0
0

p− p0

0
0




,

and 5× 5 matrix B1 is:

B1 ≡




λv1/a
2 λρ 0 −ρ 0

λ λρv1 0 0 0
0 0 λρv1 0 0
−1 0 0 λρv1 0
0 0 0 0 λρv1T




. (4.34)

Here in computing B1, we have made use of the fact that the flow satisfies
system (1.2) behind the shock front.
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4.2 Case I: s 6= λa−1µ

Consider the five vectors (B1α1, B1α2, B1α3, B1α4) and sb1 + iωb2, where B1

and bj are defined as above.

• Vector B1α1 = (λρ, λρv1, 0, 0, 0)T is parallel to, and hence can be re-
placed by

ζ1 = (1, v1, 0, 0, 0)T

• Vector B1α2 = (iωλρ, 0, sλρv1,−iωλ2ρv1, 0)T is parallel to

ζ2 = (iω, 0, sv1,−iωλv1, 0)T .

• Vector B1α3 = (0, 0, 0, 0, λρv1T )T is parallel to

ζ3 = (0, 0, 0, 0, 1)T ,

• Vector B1α4 = (−ρµν2/a3, 0, iωλρv1ν
2/a2, sρv1ν

2/a2, 0)T is parallel to

ζ4 =
(−a−1µ, 0, iωλv1, sv1, 0

)T
.

• Vector sb1 + iωb2 ≡ ζ5 can be simplified by using Rankine-Hugoniot
relations satisfied by the states U0 and U1:





λ(ρv1 − ρ0v10) + ρ0v30 = 0,
λ(ρv2

1 + p− ρ0v
2
10 − p0) + ρ0v10v30 = 0,

λρ0v10v30 + (p− ρ0v
2
30 − p0) = 0

λ((ρE + p)v1 − (ρ0E0 + p0)v10) + (ρ0E0 + p0)v30 = 0.

(4.35)

Solving p− p0 from the third equation in (4.35)

p− p0 = −λρ0v10v30 + ρ0v
2
30 = ρ0v30(v30 − λv10)

and substituting it into the second equation in (4.35), we obtain

λ(ρv2
1 − ρ0v

2
10 + ρ0v30(v30 − λv10)) + ρ0v10v30 = 0,

which simplifies to

λρv2
1 = ρ0(v10 + λv30)(λv10 − v30).
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From the first equation in (4.32), we obtain

λρv1 = ρ0(λv10 − v30).

Combining the two relations above, we obtain

v1 = v10 + λv30.

Therefore, we have

ρ0v10 =
ρ0 + λ2ρ

1 + λ2
v1, ρ0v30 =

λ(ρ0 − ρ)

1 + λ2
v1.

Consequently we obtain




ρv1 − ρ0v10 =
ρ− ρ0

1 + λ2
v1

ρv2
1 − ρ0v

2
10 + p− p0 =

(ρ− ρ0)(ρ0 + λ2ρ)

ρ0(1 + λ2)2
v2

1

p− p0 =
λ2v2

1

1 + λ2

ρ(ρ− ρ0)

ρ0

=
ρ(ρ− ρ0)

ρ0

v2
n

−ρ0v10v30 =
λ(ρ− ρ0)(ρ0 + λ2ρ)

ρ0(1 + λ2)2
v2

1.

(4.36)

Therefore we obtain ζ5

ζ5 =




s
ρ− ρ0

1 + λ2
v1

s
(ρ− ρ0)

2v2
1λ

2

ρ0(1 + λ2)2

iω
λ2v2

1

1 + λ2

ρ(ρ− ρ0)

ρ0

=
ρ(ρ− ρ0)

ρ0

v2
n

s
λ(ρ− ρ0)(ρ0 + λ2ρ)

ρ0(1 + λ2)2
v2

1

sb15




(4.37)

where b15 can be computed from Rankine-Hugoniot condition:

b15 = −(ρ− ρ0)
2v3

1λ
2

ρ0(1 + λ2)2
.
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It will be obvious in the following that the explicit form of b15 is of no
importance. Hence ζ5 = is parallel to

(
s(1 + λ2)ρ0, s(ρ− ρ0)λ

2v1, iω(1 + λ2)λ2ρv1, sλ(ρ0 + λ2ρ)v1,−s(ρ− ρ0)λ
2v2

1

)T
.

Kreiss’ condition states that the oblique steady shock front is linearly
stable if five vectors ζ1, ζ2, ζ3, ζ4, ζ5 are linearly independent, or the following
matrix with these five vectors as column vectors is uniformly non-degenerate
on |s|2 + |ω|2 = 1, η > 0:




1 iω 0 −a−1µ s(1 + λ2)ρ0

v1 0 0 0 s(ρ− ρ0)λ
2v1

0 sv1 0 iωλv1 iω(1 + λ2)λ2ρv1

0 −iωλv1 0 sv1 sλ(ρ0 + λ2ρ)v1

0 0 1 0 −s(ρ− ρ0)λ
2v2

1




(4.38)

Obviously, it is non-degenerate if and only if the following 4 × 4 matrix
J is non-degenerate:

J =




1 iω −µ s(1 + λ2)ρ0

1 0 0 s(ρ− ρ0)λ
2

0 s iωλa iω(1 + λ2)λ2ρ
0 −iωλ sa sλ(ρ0 + λ2ρ)


 (4.39)

Compute the determinant of J

det J = s3a(λ2ρ− ρ0 − 2λ2ρ0)− saω2λ2(1 + λ2)(ρ− 2ρ0)

−λµ[s2(ρ0 + λ2ρ)− ω2(1 + λ2)λ2ρ].
(4.40)

We have the following lemma:

Lemma 4.1 Under the condition (4.25), there exists an ε > 0 such that for
all (s, ω) with s 6= λa−1µ

| det J | ≥ ε, ∀|s|2 + |ω|2 = 1, η = Res > 0 (4.41)

Proof: Noticing that (4.40) is exactly (4.20) in [19], we can copy the proof
following (4.20) in [19]. We omit the details here and refer the reader to [19].
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4.3 Case II: s = λa−1µ

In the case s = λa−1µ, we have s = λω > 0 and µ = ωa > 0. Since

sλ2ρv1

(
1− v2

1

a2

)
− ξ1 = −sρv1,

N(s, iω)− ξ1I =




−sρv1 0 −iω(λρv1)
2 −sλ(ρv1)

2 0
s 0 iωλ2ρv1 sλρv1 0

iων2/a2 0 0 0 0

sλ(1− v2
1

a2 ) 0 −iωλρv1 −sρv1 0
0 0 0 0 0




. (4.42)

At the point s = λa−1µ, the vectors α2 in (4.29) and α4 in (4.30) are paral-
lel, and there are only three linearly independent eigenvectors corresponding
the eigenvalue ξ1: 




α1 = (0, 1, 0, 0, 0)T ,

α2 = (0, 0, 1,−i, 0)T ,

α3 = (0, 0, 0, 0, 1)T .

(4.43)

A generalized eigenvector α′4 corresponding to ξ1 can be found by solving
the equation (N(s, iω)− ξ1I)α′4 = α2, i.e.,





a2η1 + λρv1(iη3 + η4) = 0,
a2η1 + λρv1(iη3 + η4) = 0,
iν2η1 = 1,
λ2(a2 − v2

1)η1 − λρv1(iη3 + η4) = −i.

(4.44)

System (4.44) is solvable and has a solution of generalized eigenvector

α′4 = (−ia2ω−1ν−2, 0, a2(λωρv1)
−1ν−2, 0, 0)T ,

which is parallel to
(λρv1, 0, i, 0, 0)T .

Computing B1α1, B1α2, B1α3, B1α
′
4 and sb1 + iωb2 at s = λa−1µ, we obtain

the matrix corresponding to (4.38) as follows



1 iω 0 λ2ρv2
1a
−2 s(1 + λ2)ρ0

v1 0 0 λ2ρv1 s(ρ− ρ0)λ
2v1

0 sv1 0 iλρv1 iω(1 + λ2)λ2ρv1

0 −iωλv1 0 −λρv1 sλ(ρ0 + λ2ρ)v1

0 0 1 0 −s(ρ− ρ0)λ
2v2

1




(4.45)
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which is non-degenerate if and only if

det




1 iω λ2ρv2
1a
−2 s(1 + λ2)ρ0

v1 0 λ2ρv1 s(ρ− ρ0)λ
2v1

0 sv1 iλρv1 iω(1 + λ2)λ2ρv1

0 −iωλv1 −λρv1 sλ(ρ0 + λ2ρ)v1


 6= 0,

i.e.,

det J ′ ≡ det




1 −1 λ2v2
1a
−2 (1 + λ2)ρ0

1 0 λ2 (ρ− ρ0)λ
2

0 1 1 (1 + λ2)ρ
0 1 −1 (ρ0 + λ2ρ)


 6= 0. (4.46)

It is readily checked that

det J ′ = (ρ− ρ0)ν
2/a2 + 2(ρ + ρ0) + λ2(3ρ + ρ0) > 0.

This completes the proof for the case s = λa−1µ. The proof of Theorem 4.1
and hence Theorem 2.1 is complete.
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