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Abstract

Conical shock waves are generated as sharp conical solid projectiles fly super-
sonically in the air. We study such conical shock waves in steady supersonic flow
using isentropic Euler system. The stability of such attached conical shock waves
for non-symmetrical conical projectile and non-uniform incoming supersonic flow are
established. Meanwhile, the existence of the solution to the Euler system with such
attached conical shock as free boundary is also proved for solid projectile close to a
regular solid cone.

1 Introduction

It is well-known that shock waves are produced as projectiles fly supersonically in the
air. If the projectile has a blunt head, the shock front will be detached from the head of
projectile. If the projectile has a sharp head, the shock front will be attached to the head.
In particular, if the projectile has a sharp pointed conical head, a conical shock front will
be generated which is attached to the vertex of the conical projectile, see [12,27].

Conical shock waves have been recently studied in the framework of isentropic irrota-
tional flow [7,8,10,11]. The governing equation for isentropic irrotational flow is a second
order quasi-linear wave equation for the velocity potential. In this paper, we study such
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conical shock wave in the framework of isentropic Euler system. This permits the incoming
flow with non-zero rotations. The isentropic model is justified for weak shock waves, since
across the shock front, the jump of entropy is small of third order with respect to the
strength of the shock, which is measured by the jump, say, of density, see [12,16,28,29].

The Euler system for isentropic non-viscous flow in gas-dynamics is the quasi-linear
hyperbolic system:





∂tρ +
3∑

j=1

∂xj
(ρvj) = 0,

∂t(ρvi) +
3∑

j=1

∂xj
(ρvivj + δijp) = 0, i = 1, 2, 3.

(1.1)

In (1.1), (ρ,v) are the density and the velocity of the gas particles, and the pressure
p = p(ρ,E) is a known function.

Shock waves are piecewise smooth solutions for (1.1) which have a jump discontinuity
along a hyper-surface ψ(t, x) = 0. On this hyper-surface, the solutions for (1.1) must
satisfy the following Rankine-Hugoniot conditions, (see [12,13,28])

ψt




ρ
ρv1

ρv2

ρv3


 + ψx1




ρv1

ρv2
1 + p

ρv1v2

ρv1v3


 + ψx2




ρv2

ρv1v2

ρv2
2 + p

ρv2v3


 + ψx3




ρv3

ρv1v3

ρv2v3

ρv2
3 + p


 = 0. (1.2)

Here [f ] = f+ − f− denotes the jump difference of f across the hyper-surface ψ(t, x) = 0
(shock front discontinuity). In this paper, we use subscript “+” to denote the status on
the upstream side (or, ahead) of the shock front and subscript “−” to denote the status on
the downstream side (or, behind).

It is well-known that the Rankine-Hugoniot condition (1.2) admits many non-physical
solutions to (1.1). Entropy condition or Lax’ shock inequality is needed to guarantee the
solution to be physical, see [12,13,16,28]. In the case of high space dimension, it is shown
that Lax’ shock inequality also implies the linear stability of the shock front under multi-
dimensional perturbation for isentropic gas, and extra conditions are needed for general
non-isentropic flow, see [12,24,28].

For steady shock waves, the time-derivatives in (1.1) and (1.2) all vanish and we obtain





3∑

j=1

∂xj
(ρvj) = 0,

3∑

j=1

∂xj
(ρvivj + δijp) = 0, i = 1, 2, 3.

(1.3)
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ψx1




ρv1

ρv2
1 + p

ρv1v2

ρv1v3


 + ψx2




ρv2

ρv1v2

ρv2
2 + p

ρv2v3


 + ψx3




ρv3

ρv1v3

ρv2v3

ρv2
3 + p


 = 0. (1.4)

In addition to (1.3) and (1.4), we need to add the boundary condition on solid surface
Θ(x1, x2, x3) = 0. The flow should be tangential to the solid surface and the normal velocity
is zero, i.e.,

v1Θx1 + v2Θx2 + v3Θx3 = 0. (1.5)

For the irrotational flow, there exists velocity potential ϕ such that v = ∇ϕ and
(1.3) can be rewritten equivalently as the following second order equation for ϕ (see [12]),
noticing that for sound speed a, we have a2 = p′ρ = H/H ′,

(
v2

1 − a2
)
ϕx1x1 +

(
v2

2 − a2
)
ϕx2x2 +

(
v2

3 − a2
)
ϕx3x3

+2v1v2ϕx1x2 + 2v1v3ϕx1x3 + 2v2v3ϕx2x3 = 0,
(1.6)

where vi = ϕxi
, (i = 1, 2, 3) and the sound speed a is a known function of ∇ϕ.

Under the irrotational and isentropic assumption, the conical shock waves have been
recently studied extensively by using the governing equation (1.6), see [7,8,10,11,23]. In
this paper, we discuss the conical shock wave without the irrotational assumption, using
directly system (1.3). In particular, the result also covers the case when the incoming flow
is irrotational. Since the flow now is described by a differential system with four equations
rather than a second order differential equation, more complicated computations are needed
to prove the stability and existence of shock front. The conical shock wave for general Euler
system has been studied in [9] for the situation when the cone is symmetric and is generated
by a curved generator. The case in [9] can be reduced to a 2-dimensional problem. In this
paper, we will allow genuine 3-dimensional perturbation of the solid conic object, as well
as in the incoming flow.

As multi-dimensional shock waves, all these shock waves should satisfy the Lax’ shock
inequality mentioned above [16,28]. However, in the study of steady oblique or conical
shock waves, the issue is the stability of shock waves with respect to the small perturbation
in the incoming supersonic flow or the solid surface. In the recent interesting work of [4], the
stability and existence of multidimensional transonic shocks are studied using irrotational
and isentropic model. The stability in this paper is in the similar sense as in [4], and is
different from the time-stability studied in [24], and also different from the study of other
unsteady flow, see [2,25].

Based upon the Kreiss’ condition in [15], sufficient (and necessary for uniform flow)
conditions are derived in [22] for the linear stability of oblique shock waves for Euler
system (1.3). It was shown in [22] that for polytropic gas, this stability condition is
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the supersonic flow downstream of the shock front, in addition to the usual Lax’ shock
inequality. Therefore we will always assume that the downstream flow behind the conical
shock front is always uniformly supersonic.

The main result of this paper is the following theorem.

Theorem 1.1 For a three-dimensional steady conical shock wave in supersonic isentropic
flow, assume that

1. The solid conical projectile is sufficiently close (in the sense of (2.5)) to a regular
symmetrical cone with vertex angle smaller than the critical angle given in [12];

2. The usual entropy condition is satisfied across the shock front;

3. The flow is supersonic uniformly in the region behind the shock front;

4. The shock strength (ρ1 − ρ0)/ρ0 satisfies

ρ1 − ρ0

ρ0

< csc2 δ, (1.7)

where δ is the angle between the shock line and the downstream flow direction v
immediately behind the shock front. (1.7) can also be written in the form

(
vn

|v|

)2 (
ρ1

ρ0

− 1

)
< 1, (1.8)

where vn is the normal flow velocity behind the shock front and |v| is the supersonic
flow behind the shock front.

Then

1. The conical shock wave is linearly stable with respect to the three dimensional pertur-
bation in the incoming supersonic flow and in the sharp solid surface.

2. If the incoming supersonic flow is a small perturbation of uniform flow and the sharp
solid surface is a small perturbation of a regular conical surface, a perturbed conical
shock wave exists near the vertex of the solid conical projectile.

Here the linear stability in the Theorem 1.1 means that the solution for corresponding
linearized boundary value problem at the given conical shock wave satisfies an energy
estimate defined in Section 3.

The paper is arranged as follows. Spherical coordinates are introduced and mathemat-
ical problem is formulated in Section 2. Section 3 establishes the energy estimate for the
linearized problem, and hence the linear stability. The existence of conical shock waves is
proved in Section 4, using a modified nonlinear iteration scheme.
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2 Transform and Formulation

We assume the incoming supersonic flow be a small perturbation of the steady uniform
flow in the positive direction of x1-axis. Let b0 be the half-angle of the symmetric solid
cone and

r =
√

x2
2 + x2

3 = x1 tan b0. (2.1)

be the equation for this cone. Then there is a critical value b̃0 > 0 such that for b0 < b̃0 and
the uniform incoming flow, there is a symmetric conical shock wave which has a symmetric
regular conical shock front (see [12])

r =
√

x2
2 + x2

3 = x1 tan s0. (2.2)

Here in (2.2), s0 > b0.
Because of the conical shape of the shock front, it is convenient to introduce spherical

coordinates (see also [3]) (x, φ, θ):

x =
√

x2
1 + x2

2 + x2
3, tan φ =

√
x2

2 + x2
3

x1

, tan θ =
x3

x2

. (2.3)

Remark 2.1 A conical coordinate system has been previously used in the study of conical
shock waves for irrotational flow, see [8,9,10,11]. In these papers, it was assumed that the
flow in x1 direction is supersonic, i.e., v1 > a, which is obviously a stronger condition
than the downstream supersonic flow in Theorem 1.1. From the discussion in [22], the
downstream supersonic flow should be the optimal condition for conical shock waves. The
spherical coordinates (2.3) is introduced to achieve the optimal result.

In the spherical coordinates (2.3), the perturbed non-symmetrical solid surface is given
by

φ = b(x, θ), (2.4)

with b(x, θ) sufficiently smooth in x ≥ 0 and periodic of 2π in θ. (2.4) is a small perturba-
tion of (2.1) in the sense that

b(x, θ)− b0 = O(xN) (2.5)

for sufficiently large N .
Similarly, the perturbed non-symmetrical conical shock front in the conical coordinates

(x, φ, θ) is described by
φ = s(x, θ). (2.6)

The domain between the solid and shock front boundaries becomes

b(x, θ) < φ < s(x, θ). (2.7)
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For the spherical coordinates (2.3), we have




dx = cos φ dx1 + sin φ cos θ dx2 + sin φ sin θ dx3,

dφ =
1

x
(− sin φ dx1 + cos φ cos θ dx2 + cos φ sin θ dx3) ,

dθ =
1

x sin φ
(− sin θ dx2 + cos θ dx3) .

(2.8)

The system (1.3) can be written as a symmetric system for the unknown vector function
U = (ρ, v1, v2, v3)

T :
A1∂x1U + A2∂x2U + A3∂x3U = 0 (2.9)

where

A1 =




a2ρ−1v1 a2 0 0
a2 ρv1 0 0
0 0 ρv1 0
0 0 0 ρv1


 , A2 =




a2ρ−1v2 0 a2 0
0 ρv2 0 0
a2 0 ρv2 0
0 0 0 ρv2




A3 =




a2ρ−1v3 0 0 a2

0 ρv3 0 0
0 0 ρv3 0
a2 0 0 ρv3


 .

(2.10)

From (2.8), we have





∂x1 = cos φ∂x − sin φ

x
∂φ,

∂x2 = sin φ cos θ∂x +
cos φ cos θ

x
∂φ − sin θ

x sin φ
∂θ,

∂x3 = sin φ sin θ∂x +
cos φ sin θ

x
∂φ +

cos θ

x sin φ
∂θ.

(2.11)

Therefore in spherical coordinates (x, φ, θ), (2.9) becomes

xÃ1∂xU + Ã2∂φU + Ã3∂θU = 0 (2.12)

with 



Ã1 = A1 cos φ + A2 sin φ cos θ + A3 sin φ sin θ,

Ã2 = (−A1 sin φ + A2 cos φ cos θ + A3 cos φ sin θ) ,

Ã3 = csc φ (A3 cos θ − A2 sin θ) .

(2.13)
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From the assumption in Theorem 1.1 that the flow is uniformly supersonic, matrix Ã1

is positively definite near a regular symmetrical conical shock wave. This can be checked
readily by noticing that

v1 cos φ + v2 sin φ cos θ + v3 sin φ sin θ = |v|. (2.14)

Hence we have

Ã1 =




a2ρ−1|v| a2 cos φ a2 sin φ cos θ a2 sin φ sin θ
a2 cos φ ρ|v| 0 0

a2 sin φ cos θ 0 ρ|v| 0
a2 sin φ sin θ 0 0 ρ|v|


 (2.15)

which is positively definite if and only if

|v| > a. (2.16)

This explains the optimal condition achieved by the choice of spherical coordinates men-
tioned in Remark 2.1.

For Ã1 > 0, (2.12) is a hyperbolic symmetric system away from x = 0 with x being the
time-like direction. It degenerates at x = 0 because of the geometrical singularity of the
cone.

In spherical coordinates (x, φ, θ), the zero normal velocity condition (1.5) on solid
boundary Θ(x1, x2, x3) = 0 becomes

v1(xb′x cos b + sin b)− v2 (cos b cos θ − xb′x sin b cos θ + b′θcsc b sin θ)

−v3 (cos b sin θ − xb′x sin b sin θ − b′θcsc b cos θ) = 0,
(2.17)

on solid surface φ = b(x, θ).
The Rankine-Hugoniot conditions (1.4) on shock front (2.6) becomes

(xs′x cos s + sin s)




ρv1

ρv2
1 + p

ρv1v2

ρv1v3




− (cos s cos θ − xs′x sin s cos θ + s′θcsc s sin θ)




ρv2

ρv1v2

ρv2
2 + p

ρv2v3




− (cos s sin θ − xs′x sin s sin θ − s′θ csc s cos θ)




ρv3

ρv1v3

ρv2v3

ρv2
3 + p


 = 0.

(2.18)
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Next we perform the transformation to fix the free boundary φ = s(x, θ) and also
formally remove the singularity at x = 0. Let ξ(φ) be a smooth cut-off function in φ such
that

ξ(φ) =

{
1 near φ = b0,
0 near φ = s0.

(2.19)

We introduce a coordinate transform involving the unknown function s(x, θ):





t = ln x,

y = ξ(φ)(φ− b(x, θ) + b0) + (1− ξ)(φ− s(x, θ) + s0),

θ = θ

(2.20)

with 



dt =
1

x
dx,

dy = −[ξb′x + (1− ξ)s′x]dx + [1 + ξ′(b0 − b + s− s0)]dφ

−[ξb′θ + (1− ξ)s′θ]dθ,

dθ = dθ.

(2.21)

For simplicity of notation, we use the same U , s and b to denote the functions in the new
coordinates (t, y, θ) as in the original coordinates (x, φ, θ).

In the coordinates (t, y, θ), the domain (2.7) becomes a domain with fixed boundaries

b0 < y < s0, −∞ < t < ∞, 0 ≤ θ < 2π (2.22)

and the system (2.12) becomes:

L(U, s) ≡ Ā1∂tU + Ā2∂yU + Ā3∂θU = 0 (2.23)

with

Ā2 = Ã2(1 + ξ′(b0 − b + s− s0))− ξ(Ã1b
′
t + Ã3b

′
θ)− (1− ξ)(Ã1s

′
t + Ã3s

′
θ)

and Ā1 = Ã1, Ā3 = Ã3 in (t, y, θ).
The boundary condition (2.17) is now defined on y = b0:

`1(U) ≡ v1(b
′
t cos b + sin b)− v2 (cos b cos θ − b′t sin b cos θ + b′θcsc b sin θ)

−v3 (cos b sin θ − b′t sin b sin θ − b′θcsc b cos θ) = 0.
(2.24)
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The Rankine-Hugoniot boundary condition (2.18) on shock front becomes

`2(U, s) ≡ (s′t cos s + sin s)




ρv1

ρv2
1 + p

ρv1v2

ρv1v3




− (cos s cos θ − s′t sin s cos θ + s′θcsc s sin θ)




ρv2

ρv1v2

ρv2
2 + p

ρv2v3




− (cos s sin θ − s′t sin s sin θ − s′θ csc s cos θ)




ρv3

ρv1v3

ρv2v3

ρv2
3 + p


 = 0.

(2.25)

defined on the fixed boundary y = s0.
In the next two sections, we will study conical shock waves using the formulation (2.23)-

(2.25). Section 3 studies the linearization of (2.23)-(2.25) and derives the energy estimate
for linearized problem. This provides the linear stability of the conical shock wave. Section
4 establishes the existence of conical shock waves near t = −∞ (or x1 = 0 in the original
coordinates) by a simplified nonlinear iteration.

3 Linearized Problem and Energy Estimate

To study the linear stability of conical shock waves, we consider the linearization of (2.23)-
(2.25) at a given status described by solution (U, s). Let (U̇ , ṡ) be a small perturbation of
(U, s). The linearization of (2.23) is the following linear system for (U̇ , ṡ).

Ā1(U)∂tU̇ + Ā2(U)∂yU̇ + Ā3(U)∂θU̇ + a4(U)ṡ = f. (3.1)

In (3.1), the matrix a4(U) is a vector of first order differential operators in (t, θ) which
vanishes near the boundary y = b0. The explicit form of a4 is of no consequence in deriving
energy estimate later in this section.

The boundary condition (2.24) on y = b0 is linear, hence the perturbation (U̇ , ṡ) satisfies
the same equation as (U, s):

v̇1(b
′
t cos b + sin b)− v̇2 (cos b cos θ − b′t sin b cos θ + b′θcsc b sin θ)

−v̇3 (cos b sin θ − b′t sin b sin θ − b′θcsc b cos θ) = 0.
(3.2)
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The linearization of (2.25) on the boundary y = s0 can be written as follows.

a0ṡ
′
t + a1ṡ

′
θ + a2ṡ + B(U, s)U̇ = g. (3.3)

In (3.3), a0 and a1 are vectors defined by

a0 = cos s




ρv1

ρv2
1 + p

ρv1v2

ρv1v3


 + sin s




ρvr

ρv1vr

ρv2vr + p cos θ
ρv3vr + p sin θ




a1 = csc s




ρvθ

ρv1vθ

ρv2vθ − p sin θ
ρv3vθ + p cos θ




(3.4)

with
vr = v2 cos θ + v3 sin θ, vθ = v3 cos θ − v2 sin θ. (3.5)

The explicit form of a2 is of no consequence in the following discussion.
B(U, s) is a 4×4 matrix which results from the linearization of (2.25) at U = (ρ, v1, v2, v3).

Specifically for regular symmetric conical shock waves at θ = 0, we have v3 = 0 , s = s0

and

B(U, s) = sin s0




v1 ρ 0 0
v2

1 + a2 2ρv1 0 0
v1v2 ρv2 ρv1 0
0 0 0 ρv1


− cos s0




v2 0 ρ
v1v2 ρv2 ρv1 0

v2
2 + a2 0 2ρv2 0

0 0 0 ρv2


 (3.6)

For η > 0, let ‖u‖η,T be the standard hyperbolic η-weighted norm (see [14,24]):

‖u‖2
η,T =

∫ T

−∞

∫ s0

b0

∫ 2π

0
e−2ηt|u(t, y, θ)|2dθ dy dt. (3.7)

The boundary y = b0 is characteristic for hyperbolic system (3.1), one can not derive
estimate for the same higher order derivatives in y-direction near y = b0 as in t or θ-
direction. We need a partially degenerate norm at the boundary y = b0. For any integer
k ≥ 0, we introduce in the interior region b0 < y < s0 the hyperbolic η-weighted norm

‖u‖2
2k,η,T =

∑

i0+i1+2i2−j2+i3≤2k, j2≤i2

η2i0‖(y − b0)
j2∂i1

t ∂i2
y ∂i3

θ u‖2
η,T . (3.8)
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Such partially degenerate norms as (3.8) have been used for treating characteristic
boundaries, see [4,5,19,26]. When k = 0, (3.8) is simply the usual hyperbolic η-weighted
norm (3.5).

Denote E2k be the Hilbert space consisting of all u with finite norm (3.8). Then E2k

can be imbedded into classical continuous function space Cr (see [1]):

E2k ⊂ Cr for 2k > 3 + r.

Near the boundary y = s0, we will use the standard hyperbolic η-weighted norm

‖u‖k,η,T =


 ∑

i0+i1+i2≤k

η2i0

∫ T

−∞

∫ 2π

0
e−2ηt|∂i1

t ∂i2
θ u(t, θ)|2dθ dt




1
2

. (3.9)

The main theorem about the linear stability of conical shock waves is the following
energy estimate for the solution (U̇ , ṡ) of (3.1)-(3.3).

Theorem 3.1 For conical shock waves formulated by (2.23)-(2.25), assume that

• the downstream flow behind the conical shock front is uniformly supersonic;

• the strength of the shock satisfies

sin2 δ

(
ρ1

ρ0

− 1

)
< 1 (3.10)

Then for any integer k ≥ 0, there exist η0 > 0 and Ck > 0 such that for all η ≥ η0, the
solutions (U̇ , ṡ) of the linearized problem (3.1)-(3.3) satisfy the following a priori estimate

‖|(U̇ , ṡ)‖|22k,η,T ≡ ‖U̇‖2
2k,η,T + |U̇ |22k,η,T + |ṡ|22k+1,η,T ≤ Ck

(
1

η
‖f‖2

2k,η,T + |g|22k,η,T

)
. (3.11)

Remark 3.1 When k = 0 in (3.11), we obtain

‖U̇‖2
η,T + |U̇ |2η,T + |ṡ|21,η,T ≤ C0

(
1

η
‖f‖2

η,T + |g|2η,T

)
. (3.12)

(3.12) provides the linear stability result for conical shock waves claimed in Theorem 1.1.

Remark 3.2 The condition (3.10) in Theorem 3.1 comes from (3.24) (or equivalently
(3.25) or (3.26)) of [22], and it is automatically satisfied for polytropic gas if the down-
stream flow is supersonic.
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From the energy estimate (3.11) in Theorem 3.1, we can prove the following existence
of solutions for (3.1)-(3.3) by standard dual argument or continuation method.

Theorem 3.2 Under the assumption of Theorem 3.1, if (f, g) satisfies

‖f‖2
2k,η,T + |g|22k,η,T < ∞, (3.13)

Then there exists a unique solution (U̇ , ṡ) for the linearized problem (3.1)-(3.3) with

‖|(U̇ , ṡ)‖|22k,η,T = ‖U̇‖2
2k,η,T + |U̇ |22k,η,T + |ṡ|22k+1,η,T < ∞ (3.14)

and satisfying the (3.11).

The main task in this section is to establish (3.11). By standard localization, the
energy estimate (3.11) can be derived near boundaries y = b0 and y = s0 separately. Also
because the boundary conditions in (3.2) and (3.3) are all local, we need only to consider
the problem at θ = 0 without loss of generality.

3.1 Estimate for linear problem near y = b0

Since ξ = 1 near boundary y = b0, the interior equation (3.1) becomes

Ā1∂tU̇ + Ā2∂yU̇ + Ā3∂θU̇ = f. (3.15)

At θ = 0, the matrix Ā2 becomes

Ā2 = (Ã2−A1b
′
t− Ã3 b′θ) = −A1(sin φ+cos φ b′t)+A2(cos φ− sin φ b′t)− csc φA3 b′θ (3.16)

and the boundary condition (3.2) becomes

v̇1(cos b b′t + sin b)− v̇2(cos b− sin b b′t) + v̇3 csc b b′θ = 0. (3.17)

From (2.21), y = b0 is equivalent to φ = b. Using boundary condition (2.24) at θ = 0, we
find matrix Ā2 in (3.16) degenerate on the boundary y = b0. Indeed, Ā2 can be computed
explicitly:

Ā2 =




0 −a2(sin b + cos b b′t) a2(cos b− sin b b′t) −a2 csc b b′θ
−a2(sin b + cos b b′t) 0 0 0
a2(cos b− sin b b′t) 0 0 0
−a2 csc b b′θ 0 0 0


 (3.18)

For U̇ satisfying (3.16), we always have on the boundary y = b0

U̇T Ā2U̇ = 0. (3.19)
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Therefore, the system (3.14) with boundary condition (3.17) consists a symmetric posi-
tive system with characteristic boundary of constant multiplicity [14,17,26]. The boundary
condition (3.16) is admissible in the sense of [14].

Integrating by parts the following inner product over the domain −∞ < t < ∞, b0 < y

(e−ηtU̇ , Ā1(η + ∂t)e
−ηtU̇ + Ā2∂ye

−ηtU̇ + Ā3∂θe
−ηtU̇ − e−ηtf) = 0, (3.20)

we obtain the zero-order estimate by standard procedure, see [14]

‖U̇‖2
0,η,T ≤

C0

η
‖f‖2

0,η,T . (3.21)

Let Dσ be the complete set of differential operators (∂t, (y−b0)∂y, ∂θ) which are tangent
to the boundary y = b0. We can use the same methods in [26] to obtain the estimate for
tangential derivatives ‖Dk

σU̇‖ near y = b0. The procedure is outlined as follows.
First of all, we perform a linear transform V̇ = EU̇ so that (3.15) becomes

E∗Ā1E∂tV̇ + E∗Ā2E∂yV̇ + E∗Ā3E∂θV̇ + A4V̇ = E∗f. (3.22)

In (3.22), the boundary matrix is block-diagonal at y = b0:

E∗Ā2E =




0 0 0 0
0 0 0 0
0 0 a33 a34

0 0 a34 a44


 (3.23)

with nonsingular sub-matrix:

det

(
a33 a34

a34 a44

)
6= 0. (3.24)

In addition, the boundary condition (3.17) can be expressed as

V̇4 = 0. (3.25)

Secondly, we take tangential operator Dσ of the (3.22) and (3.25). Obviously, DσV̇
satisfies the first order extension system of (3.22) with the same boundary condition as
(3.25):

DσV̇4 = 0. (3.26)

Consequently we obtain the estimate for the first order tangential derivatives DσV̇ .
Repeating the same procedure, we obtain the estimate for k-th order tangential derivatives

∑

i0+i1+i2+i3≤k

η2i0‖(y − b0)
i2∂i1

t ∂i2
y ∂i3

θ U̇‖2
0,η,T ≤

C ′
k

η
‖f‖2

k,η,T . (3.27)
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Indeed, (3.27) is different from the result in [26] only in η-weighted norms.
Finally, to obtain the partial estimate in the normal derivatives to the boundary y = b0,

we use the approach used in [1,6,7,19].
By (3.23), ∂yD

2k−1
σ V̇3 and ∂yD

2k−1
σ V̇4 can be estimated by D2k

σ V̇ . Then applying ∂y to
the first two equations of (3.22) and treating V̇34 as given, we obtain a system for ∂yV̇1 and
∂yV̇2 without boundary condition. Using (3.27) on ∂yV̇1 and ∂yV̇2, we obtain

‖∂yD
2k−2
σ V̇1,2‖0,η,T ≤ C

(
‖f‖2k,η,T + ‖∂yD

2k−1
σ V̇3,4‖0,η,T

)
. (3.28)

From (3.28), we can further obtain the estimate of ∂2
yD

2k−3
σ V̇3,4, and consequently

∂2
yD

2k−4
σ V̇1,2. Repeating the procedure, we obtain

‖U̇‖2
2k,η,T ≤

Ck

η
‖f‖2

2k,η,T . (3.29)

This is the part of energy estimate (3.11) near the boundary y = b0.

3.2 Estimate for linear problem near y = s0

Near boundary y = b0, ξ = 0 and the interior equation (3.1) becomes

Ā1(U)∂tU̇ + Ā2(U)∂yU̇ + Ā3(U)∂θU̇ + a4(U)ṡ = f. (3.30)

with boundary condition on y = s0:

a0ṡ
′
t + a1ṡ

′
θ + a2ṡ + B(U, s)U̇ = g. (3.31)

The energy estimate (3.11) for the problem (3.30)-(3.31) is obtained directly from the
result in [22]. In [22], it is shown that for oblique shock waves, the linearized boundary
value problem is uniformly Kreiss well-posed (see [15]) if (and only if for uniform flow)
the downstream flow is supersonic and (3.10) is satisfied, in addition to the usual Lax’
shock inequality. Since Kreiss condition is micro-local and stable under small perturbation
of coefficients, we need only to examine boundary value problem (3.30)-(3.31) at regular
symmetrical conical shock wave and at an arbitrary point, say, without loss of generality
at θ = 0.

At regular symmetric shock waves, s = s0. We have in (3.31)

Ā1 = A1 cos s0 + A2 sin s0,

Ā2 = Ã2 = −A1 sin s0 + A2 cos s0,
Ā3 = csc s0A3.

(3.32)
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Noticing that v3 = 0 and vθ = 0 for regular symmetric shock waves, we obtain in (3.3),

a0 = cos s0




ρv1

ρv2
1 + p

ρv1v2

0


 + sin s0




ρv2

ρv1v2

ρv2
2 + p

0


 , a1 = csc s0




0
0
0
p


 . (3.33)

Let’s compare (3.30)-(3.31) with the boundary value problem from oblique shock waves
studied in [22]. (3.32) indicates that the (3.30) in coordinate (t, y) is obtained from a
rotation of (x1, x2) by degree s0 and θ obtained from multiplying x3 by csc s0. Similarly
from (3.33) and (3.6), the boundary condition (3.31) is obtained by the same rotation and
multiplication.

Because Kreiss’ condition is invariant under coordinates transform, by Remark 3.2
we conclude that under the assumption of Theorem 3.1, the boundary value problem
(3.30)(3.31) satisfies uniform Kreiss’ condition. Consequently, its solution (U̇ , ṡ) satisfies
the following energy estimate

‖U̇‖2
η,T + |U̇ |2η,T + |ṡ|21,η,T ≤ C0

(
1

η
‖f‖2

η,T + |g|2η,T

)
. (3.34)

(3.34) is the zero-order energy estimate in (3.11). As usual, we can further take tangential
derivatives to derive the tangential estimate and then using the fact of non-characteristic
boundary y = s0 to obtain the estimate of derivatives in normal direction near the boundary
y = s0:

‖U̇‖2
2k,η,T + |U̇ |22k,η,T + |ṡ|22k+1,η,T ≤ Ck

(
1

η
‖f‖2

2k,η,T + |g|22k,η,T

)
. (3.35)

Finally, combining the estimate (3.29) near y = b0 and the estimate (3.35) near the
boundary y = s0, we obtain the energy estimate (3.11) for solutions (U̇ , ṡ) of the linearized
problem (3.1),(3.2) and (3.3).

4 Existence of Conical Shock Waves

In this section we apply the result obtained in section 3 to prove the existence of conical
shock waves for (1.3)(1.4) and (1.5) near the vertex of solid cone, by using a modified
nonlinear iteration scheme. From the discussion in Section 2, it is equivalent to proving
the existence of solution (U, s) for the boundary value problem (2.23)(2.24) and (2.25) in
coordinate (t, y, θ) near t = −∞.

The main theorem is the following

Theorem 4.1 For the conical shock wave problem formulated in (2.23)-(2.25), assume
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(A1) the solid conical surface y = b(t, θ) is a small perturbation of a regular symmetrical
cone with straight line generator y = b0:

|b(t, θ)− b0| = O(eNt) near t = −∞ (4.1)

for sufficiently large N and with b0 < b̃0, where b̃0 is the critical value such that a
regular symmetrical conical shock wave exists [12];

(A2) the incoming upstream flow (ρ+,v+) in front of shock wave is a small perturbation
of a uniform constant flow (ρ0+,v0+) in the sense that in the region y ≥ b(t, θ)

|(ρ+,v+)− (ρ0+,v0+)| = O(eNt) near y = b(t, θ), t = −∞ (4.2)

(A3) the regular symmetrical conical shock wave is compressive, i.e.,

ρ0 < ρ1; (4.3)

(A4) the downstream flow behind the regular conical shock wave is supersonic;

(A5) the shock strength satisfies the relation (3.10) or equivalently (1.8).

Then, there is a T0 À 1 such that in (−∞,−T0), the boundary value problem (2.23)-(2.25)
has a classical solution (U, s) ∈ E2k × H2k+1 (k ≥ 3) near t = −∞ which corresponds to
the non-symmetrical conical shock wave.

Remark 4.1 The condition (A2) allows the incoming flow to be non-constant and having
∇ × v 6= 0. This was not permitted by the previous studies in [10,11] using irrotational
model (1.6).

Remark 4.2 The condition (A3) is the usual Lax’ shock inequality and can be replaced by
any of its equivalent forms. (A4) and (A5) are the linear stability conditions for oblique
shock waves derived in [22]. As was shown in [22], (A4) implies (A5) for polytropic gas
with p = Aργ.

Theorem 4.1 will be proved by a modified nonlinear iteration scheme. Such iteration
scheme has been used before in [18], and later also in [11,20,21]. The iteration scheme
simplifies the convergence proof of iteration sequence. It is generally useful in the proof
of existence of solution for evolutionary equations near an approximate solution if the
linearized problem has an a priori estimate with no loss of regularity. Otherwise, the more
powerful Nash-Moser iteration scheme is needed, as in the study of rarefaction waves, see
[1,19].
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The idea of the modified nonlinear iteration scheme used in this paper can be illustrated
by looking at a simple equation

G(x) = 0 (4.4)

where G is a smooth function. To solve (4.4) near x̃, we first rewrite G(x) into the following
form

G(x̃ + ẋ) = G(x̃) + G1(x̃, ẋ)ẋ, (4.5)

where x = x̃ + ẋ and x̃ is an approximate solution. Indeed, the expression of G1(x̃, ẋ)
can be obtained by Taylor’s expansion. In particular, for the case of x ∈ R1 the function
G1(x̃, ẋ) is simply defined by

G1(x̃, ẋ) ≡ G(x̃ + ẋ)−G(x̃)

ẋ
(4.6)

for ẋ 6= 0 and
G1(x̃, 0) = G′(x̃). (4.7)

To solve x for the equation G(x) = 0 is then equivalent to solving ẋ for the equation

G1(x̃, ẋ)ẋ = −G(x̃). (4.8)

Based upon the equation (4.8), the solution sequence {ẋk} can be obtained by taking
ẋ0 = 0 and solving ẋk+1 from the following linear equation with given ẋk,

G1(x̃, ẋk)ẋk+1 = −G(x̃). (4.9)

In the following, first we construct an approximate solution (Ũ , s̃) for (2.23)-(2.25). At
this approximate solution, we then use the iteration scheme as in (4.9). The energy in-
equality obtained in section 3 for linear problem (3.1)-(3.3) will be applied to the linearized
problem (4.9) to derive the estimate for ẋk. Finally as usual, the existence of the solution
follows readily from the bounded-ness of higher order norm and the convergence of lower
order norm for the iteration sequence.

Proof of Theorem 4.1

Step 1: Construction of approximate solution.
The iteration will be performed near an N -order approximate solution. (Ũ , s̃) is called

an N -order approximate solution for (2.23)-(2.25) near t−∞ if

L(Ũ , s̃) = O(eNt) in b0 < y < s0, (4.10)

`1(Ũ) = 0 on y = b0, (4.11)
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`2(Ũ , s̃) = O(eNt) on y = s0. (4.12)

Here, L, `1, `2 are the operators defined in (2.23),(2.24) and (2.25).
In particular, (4.11) is a linear equation and is satisfied accurately. This is necessary

to obtain the estimate in section 3.1 near uniform characteristic boundary y = b0.
In the study of conical shock waves in irrotational isentropic flow, the regular symmet-

rical conical shock wave solution (U∗, s∗) can be adopted as an approximate solution, see
[11]. However, U∗ does not satisfy (4.11) accurately. Here we will choose (Ũ , s̃) instead as
a modification of (U∗, s∗).

Let Ũ(t, y, θ) be the projection of U∗(t, y, θ) onto the unit normal direction n of the
surface y = b(t, θ):

Ũ(t, y, θ) = (U∗(t, y, θ) · n)n. (4.13)

Obviously the velocity Ũ(t, y, θ) defined by (4.13) is normal to the surface y = b and
hence satisfies accurately (4.11). Since |b(t, θ)− b0| = O(eNt), so

|Ũ(t, y, θ)− U∗(t, y, θ)| = O(eNt) near t = −∞. (4.14)

Let
s̃ = s∗. (4.15)

(Ũ , s̃) defined by (4.13) and (4.15) satisfies (4.10)-(4.12) if (U∗, s∗) satisfies (4.10) and
(4.12). Therefore (Ũ , s̃) is the required N -order approximate solution.

Step 2: Iteration scheme.

We are looking for the solution (U, s) of (2.23)-(2.25) near the approximate solution
(Ũ , s̃). Let

(U, s) = (Ũ + U̇ , s̃ + ṡ) (4.16)

and expand (2.23)-(2.25) in the power of (U̇ , ṡ) as in (4.4). From (2.23) we obtain as in
(4.8)

L(U̇ , ṡ)(U̇ , ṡ)

≡ Ā1(U̇)∂tU̇ + Ā2(U̇ , ṡ)∂yU̇ + Ā3(U̇)∂θU̇+Ā4(U̇)U̇ + α4(U̇ , ṡ)ṡ

= ḟ ,

(4.17)

where
ḟ = −L(Ũ , s̃). (4.18)

In (4.17) Ā4 is a 4× 4 matrix with elements smooth in (U̇ , ṡ), and α4(U̇ , ṡ) is a vector
of first order differential operators in (t, θ) with coefficients smooth in (U̇ , ṡ). The explicit
forms of Ā4 and α4 have no effect on the following discussion. We remark here that the
notations of Ũ , s̃ in the operators L and Āi are suppressed to simplify the expressions.
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The linear relation (2.24) remains unchanged:

`1(U̇) = 0. (4.19)

From (2.25), we obtain for (U̇ , ṡ) as in (4.8):

β2(U̇ , ṡ)(U̇ , ṡ) ≡ a0(U̇ , ṡ)ṡ′t + a1(U̇ , ṡ)ṡ′θ + α2(U̇ , ṡ)ṡ + B(U̇ , ṡ)U̇ = ġ. (4.20)

Here in (4.20),
ġ = −`2(Ũ , s̃) (4.21)

and α2(U̇ , ṡ) is a vector with components smooth in U̇ , ṡ, the explicit form of which has no
effect in the discussion. The matrix B(U̇ , ṡ) in (4.20) is obtained from the same expansion
as in (4.8). In particular, we notice that B(0, 0) = B(Ũ , s̃).

From the choice of approximate solution (Ũ , s̃), we have

ḟ = O(eNt), ġ = O(eNt) near t = −∞. (4.22)

We solve the problem (4.17)(4.19)(4.20) by linear iteration as in (4.8). Choose (U̇0, ṡ0) =
(0, 0) and define (U̇j, ṡj) to be the solution of following linear boundary value problem





L(U̇j−1, ṡj−1)(U̇j, ṡj) = ḟ in b0 < y < s0,

`1(U̇j) = 0 on y = b0,

β2(U̇j−1, ṡj−1)(U̇j, ṡj)ġ on y = s0.

(4.23)

Step 3: Bounded-ness of (U̇j, ṡj) in higher norm.

From Theorem 3.1 and from the stability of Kreiss boundary condition with respect to
small perturbation of the coefficients, we obtain that there is δ0 > 0 such that for

|U̇j−1|+ |ṡj−1|+ |∂t,θṡj−1| < δ0, (4.24)

the solution (U̇j, ṡj) of (4.23) satisfies the energy estimate

‖|(U̇j, ṡj)‖|22k,η,T ≤ Ck

(
1

η
‖ḟ‖2

2k,η,T + |ġ|22k,η,T

)
. (4.25)

Because of the continuous imbedding property of Sobolev space E2k with k > 2, we
conclude that (4.25) is satisfied if

‖|(U̇j−1, ṡj−1)‖|22k,η,T < δ1 (4.26)
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and the constant Ck depends only on δ1.
Making use of the fact that the righthand side of (4.23) is independent of j, and by

(4.22) we can choose −T À 1 such that

Ck

(
1

η
‖ḟ‖2

2k,η,T + |ġ|22k,η,T

)
≤ δ1. (4.27)

Consequently with such choice of T , we have for all j

‖|(U̇j, ṡj)‖|22k,η,T < δ1. (4.28)

Step 4: Convergence of solution sequence {(U̇j, ṡj)} in lower norm.
Let

(V̇j, σ̇j) = (U̇j − U̇j−1, ṡj − ṡj−1) j = 1, 2, · · · . (4.29)

Then (V̇j, σ̇j) satisfies the boundary value problem:




L(U̇j, ṡj)(V̇j, σ̇j) = −[L(U̇j, ṡj)− L(U̇j−1, ṡj−1)](U̇j, ṡj) in b0 < y < s0,

`1(V̇j) = 0 on y = b0,

β2(U̇j, ṡj)(V̇j, σ̇j) = −[β2(U̇j, ṡj)− β2(U̇j−1, ṡj−1)](U̇j, ṡj) on y = s0.

(4.30)

By the Gagliardo-Nirenberg inequality for the norms of product and composition [1],
we have

‖[L(U̇j, ṡj)− L(U̇j−1, ṡj−1)](U̇j, ṡj)‖2k−2,η,T

≤ C
(
‖V̇j−1‖2k−2,η,T + |σ̇j−1|2k−2,η,T

) (
‖U̇j‖2k−1,η,T + |ṡj|2k−1,η,T

)
,

|[β2(U̇j, ṡj)− β2(U̇j−1, ṡj−1)](U̇j, ṡj)|2k−2,η,T

≤ C
(
|V̇j−1|2k−2,η,T + |σ̇j−1|2k−1,η,T

) (
|U̇j|2k−2,η,T + |ṡj|2k−1,η,T

)
.

(4.31)

Apply the (k − 1)-order energy estimate (3.17) to (4.30), we have

‖|(V̇j, σ̇j)‖|22k−2,η,T ≤ Ck−1‖|(V̇j−1, σ̇j−1)‖|22k−2,η,T‖|(U̇j, ṡj)‖|22k,η,T . (4.32)

From (4.28), for sufficiently small δ1 such that

Ck−1δ1 < 1,

the mapping from (V̇j−1, σ̇j−1) to (V̇j, σ̇j) is a contraction in the Sobolev space E2k−2. This
concludes the proof of Theorem 4.1 on the existence of conical shock wave solution.
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