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Introduction
Determining qualitative properties of solutions of dynamical systems arising from nonlinear interactions is gen-
erally a daunting task. A relevant mathematical theory that pertains to biochemical interactions obeying mass-
action kinetics has been developed over the last 40 years, starting with work of Horn, Jackson and Feinberg [4, 5].
Generally termed “Chemical Reaction Network Theory”, this theory establishes qualitative results that describe
the surprisingly stable dynamic behavior of large classes of mass-action systems, independently of the values of
the reaction rate parameters [4]. This fact is especially useful since the exact values of the system parameters
are usually unknown.

Here we focus on the properties of persistence and permanence for mass-action systems, and the more general
power-law systems. A dynamical system on Rn>0 is called persistent if no trajectory that starts inside Rn>0
approaches the boundary of Rn>0 arbitrarily close and is called permanent if all trajectories that start inside Rn>0
eventually enter a compact subset of Rn>0. Persistence and permanence are important in understanding properties
of biochemical networks (e.g., will each chemical species be available indefinitely in the future), and also in
ecology (e.g., will a species become extinct in an ecosystem) and in the dynamics of infectious diseases (e.g.,
will an infection die off, or will it infect the whole population).

The class of weakly reversible [4] biochemical networks is very important in chemical reaction network theory.
One of the most important open questions in this field is the following:
Persistence Conjecture. Any weakly reversible mass-action system is persistent.

We prove the Persistence Conjecture for the case of networks with two-dimensional stoichiometric subspace.
In fact, we show a more general statement: any endotactic two-species κ-variable mass action systems is perma-
nent. All these notions are explained in the subsequent sections of this poster.
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Chemical reaction networks and systems

If I is a finite set we denote by RI≥0 the set of formal sums
∑
i∈I

αii for all αi ∈ R≥0. If u =
∑
i∈I

uii and

v =
∑
i∈I

vii are in RI≥0, we let uv =
∏
s∈S

(us)
vs, setting 00 = 1.

Chemical reaction networks
Definition. A CRN is a triple (S, C,R), where
S is the set of chemical species
C ⊆ RS≥0 is the set of complexes
R = {P → P ′, for P, P ′ ∈ C} is the set of reactions.

The complexes of a reaction networks can be viewed as
vectors in a basis given by the set of species.
Definition. The stoichiometric subspace ofR is

S = span{P ′ − P | P → P ′ ∈ R}.
As illustrated in the next example, a reaction network
can be viewed as a directed graph with vertices given
by C and edges given byR.
Definition. A reaction network is called weakly re-
versible if its reaction graph has strongly connected
components.

A weakly reversible example

S = {A,B}
C = {2A,A + B, 2B}
R = {A+B 
 2A, 2A→ 2B,

2B → A + B}

κ-variable mass-action systems

Definition.
A κ-variable mass-action system is a quadruple
(S, C,R, κ) where (S, C,R) is a reaction network and
κ : R≥0 → (η, 1/η)R for some η < 1 is a piece-
wise differentiable function called the rate constants
function. Given the initial condition c0 ∈ Rd≥0, the
concentration vector is the solution of the of the κ-
variable mass-action ODE system

ċ(t) =
∑
P→P ′

κP→P ′(t)c(t)
P (P ′ − P ) (1)

where c(0) = c0.

The κ-variable mass-action kinetics is a natural gen-
eralization of mass-action kinetics, where the rate
constant functions κ(·) are simply positive constants.

Note that the solution of (1) with initial condition c0

is confined to the affine space c0 + S, where S is the
stoichiometric sunspace ofR.
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Endotactic networks
Our results are applicable to endotactic networks, which is a large class of reaction networks characterized by
a simple geometric property. The class of endotactic networks is larger than the class of weakly reversible
networks.

We illustrate the notion of endotactic networks for the case of two species A and B. Let

SC(R) = {(m,n) ∈ Z2
≥0 such that mX + nY ∈ C is a source complex}

be the set of source complexes of a reaction networkR, rep-
resented as a set of lattice points. We depict lattice points
corresponding to source complexes using blue dots. For
example, the reaction network

R = {A→ B, B → 2A, B 
 A + B}

is illustrated in Figure 1. Figure 1. Lattice points corresponding toR.

The “parallel sweep” test

Definition. A network is endotactic if and only if it passes the “parallel sweep test” for any nonzero vector v:
sweep the lattice plane with a line L orthogonal to v, going in the direction of v, and stop when L encounters a
source complex corresponding to a reaction which is not parallel to L. Now check that no reactions with source
on L points towards the swept region.

For example, the reaction network in Figure 1 is endotactic. More examples are presented in Figure 2.

Figure 2. Examples of endotactic networks – (a) and (c), and non-endotactic networks – (b) and (d).

Two theorems
Theorem 1. [Craciun, Nazarov, Pantea]. Any endotactic κ-variable mass-action system with two species is
permanent.
Theorem 2. [Craciun, Pantea]. Any endotactic κ-variable mass-action system with two-dimensional stoichio-
metric subspace and bounded trajectories is persistent.

In particular, the Persistence Conjecture is true for two-species systems and for systems with two-dimensional
stoichiometric subspace and with bounded trajectories.

We prove the theorems above
by constructing polygons P that
are forward-invariant for the κ-
variable mass-action dynamics.
This construction relies on pair-
wise comparisons of monomi-
als c(t)P appearing in the ex-
pression of ċ(t) in the κ-variable
mass-action kinetics (1), which
give rise to curves of the form
y = Cxσ. Starting from the ge-
ometric configuration of these
curves, we construct the poly-
gon P .

This construction is illustrated
in Figure 3 for the case of a
small reversible network. In
this case (and for any reversible
network) we may construct an
invariant polygon for each re-
versible reaction ((a),(b) and (c)
in Figure 3) and combine these
polygons to obtain an invariant
polygon for the whole network
((d) in Figure 3).

Figure 3. Construction of an invariant polygon for the system
2X
 Y, X 
 Y, X 
 2Y + Y.

Examples
The Thomas mechanism

The Thomas mechanism ([6, ch. 6]) is a substrate inhibition model for a specific reaction involving oxygen and
uric acid in the presence of the enzyme uricase. After nondimensionalization the ODEs for oxygen (v) and uric
acid (u) become

du

dt
= a− u− ρuv

1 + u + Ku2
(2)

dv

dt
= α(b− v)− ρuv

1 + u + Ku2
.

This dynamical system can be written as a κ-variable mass-action sys-
tem with reactions given in Figure 4, where the reaction rates are spec-
ified on the reaction arrows and T (t) = ρ(1 + u + Ku2)−1. This net-
work is endotactic and Theorem 1 implies that (2) is permanent. Figure 4. Reaction network for

the Thomas model
Power-law systems

Theorems 1 and 2 may be applied to more general power-law dynamical systems which are not necessarily
polynomial.

An important example of power-law system is the class of S-systems
([7]), where each component of the flow consists of a difference of
two “generalized monomials” (i.e., monomials with real exponents).
S-systems are common in the modeling of metabolic and genetic net-
works. For example, consider the following S-system:

dx

dt
= 2x−1y1.5 − y0.8 (3)

dy

dt
= y−2 −

√
5x−1y1.5 Figure 5. Network for the

power-law example
Note that it is not obvious that trajectories of (3) cannot reach the boundary of R2

>0 in finite time. However, using
Theorem 2 we can easily see that (3) is in fact permanent. Indeed, the generalized monomials in (3), i.e. the
points (−1, 1.5), (0, 0.8) and (0,−2), as well as the corresponding “reaction vectors” (2,−

√
5), (−1, 0) and (0, 1)

are illustrated in Figure 5. This configuration is endotactic.

Lotka-Volterra systems

The classical two-species predator-prey model A → 2A A + B → 2B B → 0 is not endotactic, as one can
see in Figure 7.
Since, for fixed parameters, the trajectories of
the corresponding dynamical system are either
constant or closed orbits, the system is not per-
manent. On the other hand, for fixed parame-
ters, the system has bounded trajectories and is
persistent. However, in general, the κ-variable
Lotka-Volterra system is not persistent. This
fact is illustrated in Figure 6, where a trajec-
tory of a fixed-parameter Lotka-Volterra system
is depicted in black, and the trajectory of a κ-
variable Lotka-Volterra system with the same
initial condition is depicted using color.

Figure 6. Trajectories of
Lotka-Volterra systems for

fixed and variables
parameters

Figure 7. The Lotka-Volterra
network is not endotactic

The Global Attractor Conjecture
The Global Attractor Conjecture is the central open problem in Chemical Reaction Network Theory. It is con-
cerned with the global asymptotic stability of positive equilibria for the class of “complex-balanced” [5, 4]
mass-action systems. It is known that such systems admit a unique positive equilibrium cΣ within each affine
invariant subset Σ. Moreover, each such equilibrium admits a strict Lyapunov function and therefore cΣ is lo-
cally asymptotically stable with respect to Σ [4, 5]. However, the existence of this Lyapunov function does not
guarantee that cΣ is a global attractor, which is the object of the
Global Attractor Conjecture. Given a complex-balanced mass-action system and
any of its stoichiometric compatibility classes Σ, the positive equilibrium point cΣ
is a global attractor on int(Σ).

It has been shown in [1] that the Global Attractor Conjecture is true for systems with
two-dimensional stoichiometric subspace. Using Theorem 2 we have extended this
result to dimension three:
Theorem 3. The Global Attractor Conjecture holds for systems with three-
dimensional stoichiometric subspace.
For the proof we use Theorem 2 to construct a hypersurface that separates a given
trajectory from the boundary of Rn, as illustrated in Figure 8.

Figure 8. Idea of proof
for Theorem 3.


