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Introduction

A chemical reaction network, under the assumption of matierakinetics, gives rise to a dynamical system
governing the concentrations of the different chemicatsg®e[1, 2, 3, 4, 5, 6, 7]. We are interested in studying

the inverse problem, i.e., the identifiability of the reantnetwork and of its reaction rate constants, given
dynamics of chemical species concentrations.

In modern chemical and biochemical research, it has becanecommon to collect detailed information

on time-dependent chemical concentration data for lar¢@ar&s of chemical reaction®[8]. A great variety
of computational methods have been developed for the ft=iton of chemical reaction networks and th
reaction rate constants from time-dependent measuremiecthigemical species concentrations.

On the other handwo different reaction networks might generate identicat@mical system models, maki
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It Impossible to discriminate between them, even if we avergexperimental data of perfect accuracy and

unlimited temporal resolution(Sometimes this limitation is referred to as the “fundamédbgma of chemical

Kinetics” [8, 9, 10].) We describe necessary and sufficientdtions for two reaction networks to give rise to the

same dynamical system model.

Also, even if we know the reaction network that gives riseh® ¢chemical dynamics under study, there mi
exist multiple sets of reaction rate constants that propeldect fit for the data since they give rise to identi
dynamical system models. We give a necessary and sufficoerdtition for the unique identifiability of th
reaction rate constants of a chemical reaction network.

Acknowledgements.The authors are grateful for support from the United StatsoNal Science Foundation.

References
[1] G. Craciun and C. Pantehlentifiability of chemical reaction network3purnal of Mathematical Chemistry 44:1 (2008) 244

[2] M. Feinberg, in:Chemical Reactor Theory: A Reviggds. N. Amundson and L. Lapidus, (Prentice-Hall, EnglesvGbffs, NJ, 1977).

[3] M. Feinberg,Lectures on Chemical Reaction Netwaqrksgitten version of lectures given at the Mathematical Resle Center, University of Wisconsit
Madison, WI, 1979. Available online from www.chbmeng.olstate.edufeinberg/LecturesOnReactionNetworks.

[4] M. Feinberg,The existence and uniqueness of steady states for a clalssrofaal reaction network#rch. Rational Mech. Anal. 132 (1995).

[5] M. Feinberg,Multiple steady states for chemical reaction networks dictEncy oneArch. Rational Mech. Anal. 132 (1995).

[6] G. Craciun and M. FeinberdJjultiple Equilibria in Complex Chemical Reaction NetwarksThe Injectivity PropertySIAM J. Appl . Math. 65 (2005).
[7] G. Craciun and M. Feinberg/ultiple Equilibria in Complex Chemical Reaction NetwarksThe Species-Reactions GraghlAM J. Appl . Math. 66 (2006),

[8] E.J. Crampin, S. Schnell, and P. E. McShaMathematical and computational techniques to deduce cexniplochemical reaction mechanisni,0g.
Biophys. Mol. Biol. 86 (2004).

[9] P. Erdi and J. TothMathematical Models of Chemical Reactions: Theory and ikppbns of Deterministic and Stochastic ModgIBrinceton University
Press, 1989)

[10] I.R Epstein and J.A. PojmaAn Introduction to Nonlinear Chemical Dynamics: Osciltats, Waves, Patterns, and Cha@@xford University Press, 2002)

cal
2

—

Chemical reaction networks and mass-action kinetics

We use the standard terminology of Chemical Reaction Nd&tWaeory in the spirit of [3, 4, 6].

Notations Mass-action dynamics

It Is aﬁm}e set, define: \ Definition. A mass-action system a chemical re-
. B ‘

‘Ri _ ! formal sumsz wiforalla; € Ry S actlon_network(j,%,%) and £k € R, whe_re
Py ky—, IS thereaction rate constanof the reaction

\ J / : _
e supportof o € Ri supp(a) = {i € I+ oy # 0}, y — 1y € Z.The corresponding ODE system is

_ . / .
oif u="> w;iandv=">) v;iinRR}, denote c= ) kY —y) = (R, k) o),

il il y—y' e
v o_ Us i 0 _
o H (us) ™, setting0” = 1. wherec € R is the positive vector of species c
& | | centrations.
Chemical reaction network
An example

Definition. A CRNis a triple(., ¥, %), where
7 Is the set of chemicapecies L
% C R is the set otomplexes QA1 =———A; + Ay——2A4,
% = {y — y,for somey,y’ € €} is the set ofeactions. T
Moreover, the following are required. For anye %

QD y—-ye¢x 7 = {A;, A}

(2) thereisy’ € € such thaty — ¢’ ory’ — y & = {241, A] + Ao, 245

and

(3) U.cr suppl(y) = .7 R ={24] = A + Ay, A] + Ay = 245,245 = 24}
YEEC — .

ODEs corresponding to our example

A+A,y |1
—l_ kA1—|—A2—>2A16 ! . [_1] _l_ kA1—|—A2—>2AQC

A 24, | —2
1 + koA, —94,C 1[2

1

Ai+As | — 1
&

C1 04, [-1
[' ] — k2A1—>A1—|—AQC : 1

9
+ko A, A+ A,C

24, | 2
] + koA, 04,7 [_2]

2 2 2 2
| koA A4 4,00, KA+ A,24,CACAy — KAy A,24,CA €Ay F Koay— A1+ 4,C, — 2Roa1—24,C, F 2ko4,04,C,
- 2 2 2 2 .
koA —A1+4,C0, — Kay+4y-24,CA CAy + KA+ 4,-24,C4,CAy — K24y A1+4,Ca, T 2Koa,—24,C5 — 2Ka4,-24,CF,
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Problem setup and results

|dentifiability of rate constants given a reaction netwaonkl #s mass-action dynamics

We are given a reaction netwo(k”, ¢, %) and the differential equations that govern its dynamicgdneral,
It IS not possible to identify the rate constahts IR{? . For example the two different set of rates

A1+ Ao A1 + Ao
| |
Ao \3\ Ao \4\
/ /
241 3 2A, 241 4 2A9

produce the same dynamicg = —9c4,, ¢4, = ¢4, = 9cy,.

Definition. We say that a reaction network?,%,%#) has uniquely identifiable rate constants
r(%Z,K') # r(%, k') for any distinct rate constant vectors k" € RZ.

Then the following is true:

Theorem. Under the mass-action kinetics assumption, a reaction oW, ¢, %) has uniquely identifiabl
rate constants if and only if for each source complgxc ¢, the reaction vector$y’ — yy : yo — v € #} are
linearly independent.

|dentifiability of the reaction network given the dynamics

Given the dynamics, i.e. the mass-action system of difteakaquations, it might be impossible to identify t
reaction network uniquely. For instance, the following tmetworks give rise to the same system of OD

[éA07 éA17 éA2? CAg} — [_17 5/97 2/97 11/9]0140 = K o AO

A + A, Aj + As
2/9 T 5/9 T
A, 11/18 A, /3
oAl “Te 24, oy 1o 24,

Definition. Let (., ¢, %) be a chemical reaction network. Define the following familyunctions:
Dyn(%) = {r(%, k) ke R%} |

Definition. Two chemical reaction networksé?,¢’.%’') and (¥, ¢",%") are calledconfoundableif
Dyn(Z") N Dyn(%#") # 0.
Definition. For a reaction network?, ¢, %) andy, € ¢ we denote by

( )

Z O‘yo—x’y’(y/ —Y0) Q> 0forallyy — v €Ay,
\yo—h?/@% y,

Conegp(yo) = |

the open convex cone generated by the set of reaction vdglorsy, : yo — vy’ € #}.

Theorem. Under the mass-action kinetics assumption, two chemicattien networks(.”,¢”,#’) and
(7,¢",2%") are confoundable if and only if they have the same source lex@pandone g (y) N Conegn(y)
IS nonempty for every source compiex

Revisiting our example

Denote K = [0,5/9,2/9,11/9] in the vector space Cone configuration corresponding to the example

generated byAj, A1, A» and As.. Then both net- 2As
works are dynamically equivalent to the formal re-
actionAy) — K :

—11 —21 —01 9/9" —11 —01 —01 5/ i
K—Ay= 1/6 | = 1/9| .

1 0 0 11/8 0 2 0 1/3 Ar+As
0o 0 2|V 1 o0 2 b
. . P AO
K — Ag lies in the positive cones generated by the two 2A2
sets of reaction vectors.
Ai1+A2

2A1

Applications

Modeling unimolecular and bimolecular reaction networks

We are given the dynamics of a chemical reaction net- Reduced networks for the three types of sources
work with speciesA, ..., A,. We don’t know what the 5k,
reactions are but we know that all complexes are of the
form A;, 2A; or A; + A

It is natural to try to construct a corresponding reac-
tion network model that takes into account all the pos-
sible reactions, even if for some reactions the rate con-
stants will turn out very small or zero. Since multiple
reaction networks might produce the same dynamics,
we look for a model that has a minimal number of re-
actions. This reduces the number of parameters (i.e.,
reaction rate constants) involved.

We consider the dynamically equivalent reduced net-
work obtained by keeping only the reactions that gener-
ate each source coriéne 4/(yy). Doing so

we reduce the number of parameters of the model from
O(n*) to O(n?).

Remark For the configuratiofic) the choice of the min-
Imal set of reactions is not uniquandno matter which
minimal set of reactions is chosen, the rate constants are
not uniquely determined. In other words:

No dynamically equivalent subnetwork has uniguely
identifiable rate constants in this case. This fact must
be taken into account whenever we try to design a nu-
merical procedure to estimate the rate constants from
experimental data.

(C} 2A4

Modelling unimolecular and bimolecular reaction networks

If two reaction networks?’, %" have the property thadyn(%') C Dyn(%") then dynamical properties of’
can be inferred from looking at the (possibly simpler) netwé&”. Such properties are therefaransferred
from %" to %’

For the following dynamically equivalent reaction net-
Works

SR graph terminology

of reversible reactions appear in a single node). ddgescon-

243 243

Ay + A3 ]
Ao g Ao sponding species and reaction nodes; m that edgbasedwith

242 the complex in which the species appears.

tion node and have the same label. A cycle is cal@dyclg or
even e-cyclg wihr respect to the number of its c-pairs. In p
ticular, cycles with no c-pairs are e-cycles. Tsteichiometric
coefficientof an edge is the coefficient of the adjacent spe
In the complex label of the edge. Cycles for which alterna
multiplying and dividing the stoichiometric coefficient®ag
its edges gives the result 1 are calkdycles We say that twc
cyclessplit a c-pairif there is a c-pair that lies in the union

the large#’ cannot have multiple equilibria for any _ the ur
the sets of edges of the two cycles, but not in their intersect

value of its rate constants, because the redyéédhas
this property, from the SR graph theorem.

Theorem. Let.Z be a reaction network such that all the cycles of its SR graploacycles or s-cycles, and 1

two e-cycles split a c-pair. Then the mass-action dynansigsiem associated 8 cannot have multiple positiv

equilibria, for any value of the rate constant vector
The SR graph of %’

The SR graph of Z”

Thenodesconsist of species and reactions (each reaction or pair

nect species nodes and reaction nodes as follows: if a specie
appears in a reaction, then there is an edge joining the-gorre

A c-pair (complex pair) is a pair of edges that meet at a reac-
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