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Abstract. Denote k(G) the number of conjugacy classes of a group G. Some
inequalities are deduced by arithmetic means for k(G), where G is a p-group.
As an application, k(G) is calculated for special cases of p-groups. A method of
estimating k(G) for some finite groups, others then p-groups is also presented.

1. Introduction

Brauer was the first to estimate k(G) for a group G of order n. He has proved
the inequality k(G) > log log n. The result was later improved by L. Pyber [8] who
emphasized an ε > 0 such that k(G) > ε log n

(log log n)8 . For smaller classes of finite
groups stronger inequalities had been shown; P. Hall has proved, for instance, that
k(G) > log n for any nilpotent group G of order n; M. Cartwright has shown the
existence of two positive constants a and b such that the inequality k(G) > a(log n)b

holds for any solvable group G of order n. L. Héthely and B. Külshammer [3] have
shown that k(G) > 2

√
(p− 1), for any solvable group G and any prime p dividing

the order of G. Moreover, they have conjectured that this estimation holds for any
finite group G. They have also shown that there are no positive integers a, b such
that k(G) > ap+ b, for any group G and prime p, with p2||G|.

In the case of p-groups, using mainly elementary notions and results we will
deduce two main inequalities on k(G). The first one is studied together with its
equality case, and some remarks are made concerning the strength of the second
one. Two classes of p-groups are studied in detail, namely the p-groups having an
abelian subgroup of index p and the groups G with |Z(G)| = |G′| = p. In the end,
we develop a method of estimating k(G) for other classes of finite groups, other
than p-groups.

2. Preliminaries

If no other specifications are made, G will always denote a nonabelian group of
order pn, where p is a prime, n > 2, and the notations are the usual ones: G′ for
the derived subgroup of G, Z(G) for the center of G, CG(x) for the centralizer of x
in G, xG for the conjugacy class of x in G.

Lemma 2.1. With the above assumptions

|xG| 6 pn−2.

Proof. It is enough to prove that

p2 6 |G : G′| 6 |CG(x)|.
The second inequality is well known and easy to prove by putting it in the form
|G′| > |G : CG(x)| = |xG| and observing that if y is a conjugate of x, then yx−1 ∈
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G′, so y � yx−1 is an injection from xG in G′. For the first inequality, if we
assume that |G : G′| = p, then G/G′ would be cyclic and by the next more general
result([2, Problem 6.31]) its lower central series would be stationary, impossible as
G is nilpotent as a p-group. �

Proposition 2.2. Let G = G(0) 6 G(1) 6 . . . the lower central series of a group
(not necessarily p-group) G. If G/G(1) is cyclic, then G(i) = G(1), for all i > 1.

Proof. Consider the group G/G(2). Observe next that G(1)/G(2) 6 Z(G/G2). We
have (G/G(2))/(G(1)/G(2)) ' G/G(1), thus cyclic. But then it follows that G/G(2)

is abelian, and moreover, G(2) > G(1), thus G(2) = G(1). We can proceed now by
induction. �

3. The first inequality

We shall denote by αi, i = 1, . . . , n− 2 the number of conjugacy classes of G of
size pi. The class equation becomes

(1) pn =
n−2∑
i=0

αip
i.

The number of conjugacy classes is then
∑n−2

i=0 αi a̧nd α0 = |Z(G)|, so p|α0.
The main result of this section is obtained regarding the relation (1) as an equa-

tion in αi and determining those αi that minimize
∑n−2

i=0 αi. The next lemma solves
the problem of determining this minimum.

Lemma 3.1. Let α0, α1, . . . , αn−2 be positive integers that satisfy the equality (1)
and p|α0. Then the minimum of the sum

∑n−2
i=0 αi is obtained for α0 = p, α1 =

α2 = . . . = αn−3 = p− 1 and αn−2 = p2 − 1.

Proof. Consider the set S of vectors (α0, α1, . . . , αn−2) ∈ Nn−1 which are solutions
for (1), with α0 6= 0 multiple of p, and let (β0, β1, . . . , βn−2) ∈ S which minimize the
sum

∑n−2
i=0 αi. First we prove that β0 = p. Indeed, suppose that β0 6= p. As p|β0

we get β0 = β′0 + p, where p|β′0 and β′0 6= 0. But then (β′0, β1 + 1, β2, . . . βn−2) ∈ S,
and

β′0 + (β1 + 1) + β2 + . . .+ βn−2 =
n−2∑
i=0

βi + 1− p <

n−2∑
i=0

βi,

which contradicts the choice of (β0, β1, . . . , βn−2).
We similarly prove that βi 6 p − 1, for i = 1, . . . , n − 3. Suppose there is k

in {1, . . . , n − 3} such that βk > p. Then βk = β′k + p, where β′k ∈ N. We get
(β0, . . . , βk−1, β

′
k, βk+1 + 1, βk+2, . . . , βn−2) ∈ S and

β0 + . . .+ βk−1 + β′k + (βk+1 + 1) + . . .+ βn−2 =
n−2∑
i=0

βi + 1− p <

n−2∑
i=0

βi,

again contradiction. Further on, from (1) and α0 > 0 we get αn−2 6 p2 − 1.
Taking into account that (p, p− 1, p− 1, . . . , p− 1, p2 − 1) ∈ S and what proved

above we conclude that the minimum of the sum
∑n−2

i=1 αi is indeed reached for αi

chosen like in the lemma. �

This lemma immediately implies the next result.
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Proposition 3.2. Let G be a group of order pn. Then

(2) k(G) > p2 + (n− 2)(p− 1).

4. Another proof for the inequality (2). The equality case

A new proof of Proposition 3.2 allows us to treat the equality case. The method
of the first proof will be used again in this paper since it provides some information
on the structure of groups satisfying the equality in (2). The second proof uses the
following lemma, which is true for any finite group.

Lemma 4.1. Let G be a finite group, H C G and j the number of conjugacy classes
of G which are not included in H. Then

(3) k(G) > k(G/H) + j − 1.

Proof. Define the mapping φ : {xG | x /∈ H} → {(xH)(G/H) | x /∈ H}, φ(xG) =
(xH)G/H taking the set of the conjugacy classes of G not included in H into the
set of nontrivial conjugacy classes of G/H. We show that φ is well defined. Let
y ∈ xG; there is g ∈ G such that y = g−1xg, thus φ(yG) = (g−1xgH)G/H . We
need to prove that xH and g−1xgH are conjugate in G/H. But that is clearly true,
since g−1xgH = (gH)−1xHgH.

Now, φ is obviously onto. Then |{xG | x /∈ H}| > |{(xH)G/H | x /∈ H}|, so
k(G)− j > k(G/H)− 1, and the conclusion follows. �

In what the equality in (3) is concerned, the next proposition emphasizes the
subgroups H of G for which it is true.

Proposition 4.2. Maintaining the hypothesis of Lemma 4.1, the equality holds in
(3) if and only if the subgroup H satisfies the condition

(4) for all x, y ∈ G \H, xy−1 ∈ H, implies xG = yG.

Proof. The equality in (3) is equivalent to the injectivity of φ, or, further, with the
implication

(xH)G/H = (yH)G/H =⇒ xG = yG,

for any x, y ∈ G \H, which is equivalent to the implication

(there is g ∈ G : yH = (g−1xg)H) =⇒ xG = yG,

for x, y ∈ G \H, or

(5) (there is g ∈ G : g−1xgy−1 ∈ H) =⇒ xG = yG.

To finish, we prove that the implications (4) and (5) are equivalent. Let x, y ∈
G \H with xy−1 ∈ H. Then there is 1 ∈ G : 1−1x1y−1 ∈ H, so xG = yG according
to (5). We conclude that (5) implies (4).

Conversely, let x, y ∈ G \H and g ∈ H : g−1xgy−1 ∈ H. According to (4), we
have (g−1xg)G = yG. But (g−1xg)G = xG, and this proves that (4) implies (5). �

Remark 4.3. A subgroup H of G satisfies condition (4) if and only if the cosets
xH, x /∈ H represent exactly the conjugacy classes of G not included in H.

A subgroup H of G is called special (see [2, page 6]) if, for any x, y ∈ G with
x /∈ H, there is a unique u ∈ G such that y−1xy = u−1xu. Note that any special
subgroup H of G provides equality in (3).

Indeed, first we prove that H C G. Let v ∈ H, y ∈ G and x = yvy−1. We
need to show that x ∈ H. Suppose x /∈ H. Then there exists u ∈ H such that
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v = y−1xy = u−1xu. It follows that uvu−1 = x ∈ H, contradiction. Further on, in
order to prove that (4) is fulfilled, let x ∈ G−H. Because H is special, the elements
u−1xux−1 are pairwise distinct and form a set of cardinal |H|. But u−1(xux−1) ∈ H,
so H = {u−1xux−1|u ∈ H}. Thus Hx = {u−1xu|u ∈ H} = {y−1xy|y ∈ G}.

Now we can give a proof of Proposition 3.2 using (3). Taking in 4.1 H = Z(G),
we obtain k(G) > k(G/Z(G)) + |Z(G)| − 1. We use induction on n. For n = 2
we have equality. Suppose that k(P ) > p2 + (α − 2)(p − 1), for any group P with
|P | = pα, α < n. Let |Z(G)| = pn−k. The inequality above and the hypothesis of
induction applied to G/Z(G) give k(G) > p2 + (k − 2)(p− 1) + pn−k − 1, and the
obvious inequality pn−k > (n− k)(p− 1) + 1 leads to the desired conclusion.

Observe the fact that the equality in (2) imposes equalities in each of the in-
equalities used above. By 4.3 it follows that the nontrivial conjugacy classes of G
are exactly the cosets xZ(G), where x /∈ Z(G), and they all have the same cardinal.
On the other hand, we have saw that n > 4 implies the existence of p2−1 conjugacy
classes of size pn−2 and of p − 1 classes of size pn−3. Consequently, n can only be
3, and in this case it is well known that k(G) = p2 + p − 1, so the equality in (2)
holds.

The next proposition summarizes the above observations.

Proposition 4.4. The following statements are equivalent:
(i) k(G) = p2 + (n− 2)(p− 1);
(ii) G has exactly p2 − 1 conjugacy classes of size pn−2, exactly p− 1 conjugacy

classes of size pi, i = 1, . . . , n− 3 and |Z(G)| = p;
(iii) n = 3.

5. The second inequality

Let p be a prime and |G| = pn, where n = 2m+ e, m > 0 and e = 0, 1. A result
of P. Hall states that

k(G) = pe + (p2 − 1)(m+ (p− 1)k)

for some positive integer k. The original proof is rather complicated; simpler proofs
use characters and can be found in [7] and [4, Theorem 26.5]. As an immediate
consequence, one obtains

Theorem 5.1. With the above notations we have

k(G) > pe + (p2 − 1)m.

Separating into two cases, we can write

(6) k(G) > m(p2 − 1) + 1, if |G| = 2m,

(7) k(G) > m(p2 − 1) + p, if |G| = 2m+ 1.

The equality
χ1(1)2 + χ2(1)2 + . . .+ χk(1)2 = |G|,

where χ1, . . . , χk are the complex irreducible characters of G can be further written

(8) p2m =
m−1∑
i=0

αip
2i,
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if n = 2m is even and

(9) p2m+1 =
m∑

i=0

αip
2i

if n = 2m + 1 is odd, where αi denotes the number of irreducible characters of G
of degree pi.

A direct proof of inequalities (6) and (7) can be given by a simple mimic of the
proof of Proposition 3.2 taking as starting relations (8) and (9) respectively. This
idea of proving the two inequalities is not new; it turns out that G. Pazderski used
it to prove the next result concerning their equality case, actually the correspondent
of Proposition 4.4:

Theorem 5.2. With the above notations, suppose k(G) = pe + (p2 − 1)m. Then

α0 = p2,

αi = p2 − 1, for i = 1, n− 1,

αn = pe − 1.

Remark 5.3. a) For a group G of order pp, (7) gives k(G) > 1
2 (p3 − p2 + p + 1).

L.G. Kovács and C.R. Leedham-Green ([6]) have constructed, for every odd prime
p a group of order pp having exactly 1

2 (p3 − p2 + p + 1) conjugacy classes. The
estimation (7) is, therefore, smooth in this case.

b) Obviously, for nonabelian groups of order p3 we have equality in (7). For
groups of order p4 the inequality (6) gives k(G) > 2p2 − 1. Let G a group of order
p4 with |G′| = p2. From (8) it follows that G has only characters of degree 1 and p.
(8) can be then written α0 + α1p

2 = p4, with α0 = p2, thus α1 = p2 − 1. It follows
that k(G) = 2p2 − 1, so the estimation (6) is smooth in this case.

c) Let K(r) be the minimum of the degrees of conjugacy classes for groups of
order r and k(r) the estimation from Theorem 5.1. Using the computer program
GAP we can compare K(r) and k(r) for some powers of primes:

r 25 26 27 35 36 55

K(r) 11 13 14 19 41 53
k(r) 8 11 11 19 25 53

d) From the table above we see that, for the groups of order 35 and 55 the
inequality (7) is smooth, reaching the equality. It’s likely for this inequality to be
exact for groups of order p5, p odd prime.

e) Further descriptions of the equality case are due to G. Pazderski and can be
found in [4, Theorem 26.5]; he has also proved that the bound is sharp for only
finitely many exponents n.

6. Finite p-groups with an abelian subgroup of index p

A well known result [5, Theorem 26.9] gives the characters of finite p-groups
having an abelian subgroup of index p. We present this result in a slightly differ-
ent way, in order to emphasize the number of conjugacy classes. Using then the
inequalities (6) and (7) we will obtain very strong inequalities for such groups.

The following lemma turns out to be very useful:

Lemma 6.1. G be a nonabelian p-group having an abelian subgroup H of index p.
Then there exists K C G such that K ⊆ H ∩G′ ∩ Z(G) and |K| = p.
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Proof. We have 1 6= G′ C G thus G′ ∩ Z(G) 6= 1. Let K be a subgroup of order p
of G′ ∩ Z(G). But then KH is an abelian subgroup of G; since H is maximal, it
follows that KH = H, so K 6 H. �

Theorem 6.2. Let G be a group of order pn having an abelian subgroup H of index
p. Let K be as in the lemma. Then

(10) k(G) = k(G/H) + pn−2 − pn−3.

Proof. The irreducible characters of G/K lift to give exactly the characters of G
that contain K in their kernel. The sum of the squares of their degrees is therefore
|G/K| = pn−1. We will construct another pn−2 − pn−3 irreducible characters of G,
each of degree p; we will have then constructed all the irreducible characters of G
since

(11) pn−1 + (pn−2 − pn−3)p2 = pn = |G|.

Let χ be a character of degree p of G. If χ is a sum of linear characters, then G′ 6
Kerχ, thus K 6 Kerχ. Therefore if χ(1) = p and K 
 Kerχ, then χ is irreducible.
Now let Φ be the set of linear characters of H which do not have K in their kernel
(that is, the lifts of the linear characters of G/K). Then |Φ| = pn−1 − pn−2. Let
ψ ∈ Φ. Since K 6 Z(G) we have

(ψ ↑G)(k) = pψ(k), for all k ∈ K.

We can conclude that ψ ↑G has degree p and can not contain K in its kernel,
therefore is irreducible.

Suppose now that ψ1 is a linear character of H such that ψ ↑G= ψ1 ↑G. The
Frobenius Reciprocity Theorem gives

1 = 〈ψ ↑G, ψ1 ↑G〉G = 〈(ψ ↑G) ↓H , ψ1〉H .

Since (ψ ↑G) ↓H has degree p, there are at most p elements ψ1 of Φ such that
ψ1 ↑G= ψ ↑G. It follows that the set {ψ ↑G | ψ ∈ Φ} gives at least |Φ|/p =
pn−2−pn−3 irreducible characters of G with degree p which do not have K in their
kernel. But relation (11) assures us that this number is also the maximum, and the
conclusion follows. �

Since in the above hypothesis G/K is a p-group, using the inequalities (6) and
(7) we obtain the following estimations.

Proposition 6.3. Let G be a group of order pn having an abelian subgroup of index
p. Then

a) k(G) > pn−2 − pn−3 + (m− 1)(p2 − 1) + p, if n = 2m;
b) k(G) > pn−2 − pn−3 +m(p2 − 1) + 1, if n = 2m+ 1.

The equality (10) provides an upper bound for k(G).

Proposition 6.4. Let G be a grop of order pn having an abelian subgroup of index
p. Then k(G) 6 pn−1 + pn−2 − pn−3, with equality if and only if |G′| = p.

Proof. In view of (10), the maximum of k(G) is reached when G/K is abelian, or,
equivalently, G′ ⊆ K. But K ⊆ G′ ∩ Z(G) and |K| = p, thus G′ ⊆ Z(G) and
|G′| = p. But the last equality implies the first one, and the conclusion follows. �
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Remark 6.5. a) The above inequalities are smooth (there is a group G for which
the equality holds) if and only if the inequalities (6) and (7) used on G/K are
smooth. We conclude, based on the remarks in the previous section, that the
following estimations for groups G having abelian subgroups of index p are smooth:

k(G) > pp−1 − pp−2 + 1
2 (p3 − p2 + p+ 1), for |G| = pp+1;

k(G) > 34 − 33 + 19 = 73 for |G| = 36;
k(G) > 54 − 53 + 53 = 553 for |G| = 56.
b) The values of k(G) for groups of order p3 and p4 are known. We can also

calculate them using the above inequalities. Clearly, a group of order p3 contains
an abelian subgroup of order p2. Let G be a group of order p4 and |Z(G)| = p2.
We can find a subgroup H of G of order p3 such that Z(G) 6 H. But then, if H
is not abelian, H/Z(H) is cyclic of order p, a contradiction. If |Z(G)| = p, taking
into account the class equation (1), there is an element x of G with |xG| = p.
Then H = CG(x) is of index p. Moreover, Z(G) and 〈x〉 are distinct subgroups
of H, thus |Z(H)| > p2. As above, we conclude that H is abelian. Consequently,
using Propositions 6.3 and 6.4 we obtain k(G) = p2 + p − 1 for |G| = p3 and
2p2 − 1 6 k(G) 6 p3 + p2 − p for |G| = p4; in view of relation (10), these are the
only values that k(G) can take in this case.

7. Groups G with |Z(G)| = |G′| = p

This class of groups is a generalization of extraspecial groups (see [1, page 108]).
A group G is called extraspecial if Φ(G) = Z(G) = G′ and they all are of order
p. We go back to Lemma 4.1, and we will prove that under our hypothesis, the
equality is reached in (3) by putting H = Z(G). Moreover, we will be able to
calculate the exact number of conjugacy classes for such groups.

Firstly, observe that |G′| = |Z(G)| = p implies G′ = Z(G); using (3) we get
k(G) > k(G/G′) + |Z(G)| − 1 = pn−1 + p− 1, since G/G′ is abelian. On the other
hand, G has p conjugacy classes of size 1 and another pn − p elements arranged in
conjugacy classes of size greater or equal to p, thus at most another (pn − p)/p =
pn−1 − 1 conjugacy classes. Therefore, k(G) 6 pn−1 + p − 1, thus G satisfies the
equality in (3) with H = Z(G).

In conclusion, we have the following result.

Proposition 7.1. Let G be a group of order pn with the property |Z(G)| = |G′| = p.
The following statements are true:

a) k(G) = pn−1 + p− 1;
b) the nontrivial conjugacy classes of G are exactly the cosets xZ(G), x ∈ G \

Z(G).

Remark 7.2. We have proved that the special subgroups of a group G satisfy the
equality in (3). Clearly, Z(G) is not a special subgroup of G. It follows that the
special subgroups of G do not cover, in general, the set of subgroups of G that give
equality in (3).

We use now the results obtained in the previous section. If G contains an abelian
subgroup of index p, then it follows from Propositions 6.4 and 7.1 that k(G) =
pn−1 + p− 1 = pn−1 + pn−2 − pn−3, which implies n = 3. Therefore we obtain:

Proposition 7.3. Let G be a group of order pn with the property |G′| = |Z(G)| = p.
Then the following statements are equivalent:
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(i) G contains an abelian subgroup of index p;
(ii) n = 3.

8. An application: the number of commuting pairs

One of our early motivations for this paper was a problem concerning the number
of commuting pairs of elements of a group G.

We define the following two numbers associated to the finite group G.
N(G) = |{(a, b) ∈ G×G | ab = ba}|,
N ′(G) = |{{a, b} | a, b ∈ G \ {1}, a 6= b, ab = ba}|.

The connection between these numbers and k(G) is given in the next proposition.

Proposition 8.1. For any finite group G we have:
a) N ′(G) = N(G)−3|G|

2 + 1;
b) N(G) = k(G)|G|.

Proof. a) We have

{(a, b) ∈ G×G | ab = ba} = {(a, b) ∈ G×G | ab = ba, a 6= b} ∪ {(a, a) | a ∈ G},
hence

|{{a, b} ∈ G×G | ab = ba, a 6= b}| = N(G)− |G|
2

.

Further on,

{{a, b} ∈ G×G | ab = ba, a 6= b} = {{1, a} | a ∈ G\{1}}∪{{a, b} | a 6= b 6= 1 6= a},

thus N ′(G) = |{{a, b} | a 6= b 6= 1 6= a}| = N(G)−|G|
2 − (|G| − 1) = N(G)−3|G|

2 + 1.
b) We have {(a, b) ∈ G×G | ab = ba} =

⋃
a∈G{(a, b) | ab = ba}, thus

N(G) =
∑
a∈G

|{b | ab = ba}| =
∑
a∈G

|CG(a)|.

We group the elements of G in conjugacy classes to obtain

N(G) =
∑
a∈R

|aG||CG(a)| = k(G)|G|,

where R is a complete set of representatives for the conjugacy classes of G. �

9. Other classes of groups

Any attempt to obtain estimations for k(G), where G is a finite group not nec-
essarily p-group, based on the results obtained so far, implies the use of Sylow
subgroups of G. In general though, going from a subgroup to the whole group does
not imply the growth of the number of conjugacy classes. For instance, the group
PSL(2, 7) has order 168 = 24 · 7, 6 conjugacy classes and it obviously contains an
abelian subgroup of order 7.

However, the previous section allows such a passing, based not on k(G), but
on k(G)|G|, which, in concordance with its meaning, (the number of pairs which
commute) grows from subgroup to group. By and large, the method is as follows.
If Pp is a Sylow p-subgroup of G, then

k(G)|G| >
∑
p||G|

k(Pp)|Pp|,



ON THE NUMBER OF CONJUGACY CLASSES OF FINITE p-GROUPS 9

and an inequality for k(G) follows. Observe that, in order for this inequality to be
efficient, we need conditions on |G|, like, for instance, to have few prime factors in
its decomposition or one of them to be greater then the product of the others. In
what follows we illustrate the method for groups of order pnq.

Proposition 9.1. Let G be a group of order pnq, p, q primes, p > q. Then

k(G) >
[n
2

]
(p+ 1) + q − 2.

Proof. As we saw in the previous section, k(G)|G| =
∑

x∈G |CG(x)|. Let P be a
Sylow p-subgroup (actually, the only one) of G and Q a Sylow q-subgroup of G.
Then

k(G)|G| =
∑
x∈P

|CG(x)|+
∑
x∈Q

|CG(x)|+
∑

x∈G−(P∪Q)

|CG(x)| − pnq

>
∑
x∈P

|CP (x)|+
∑
x∈Q

|CQ(x)|+
∑

x∈G−(P∪Q)

|CG(x)| − pnq.

Since |CG(x)| > q, we get

k(G)pnq > k(P )|P |+ k(Q)|Q|+ (pnq − pn − q)q − pnq

and further, k(G) > k(P )
q + q−q2

pn + q − 2. Using the inequality (7) for P we obtain

k(P ) >
[n
2

]
(p2 − 1) +

1
q

+
q − q2

pn
+ q − 2 >

[n
2

]
(p+ 1) + q − 2.

�
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