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1 Introduction

Biochemical networks are complex objects, almost always containing nonlinear interactions among a usually
large number of chemical species. The smallest activation or inhibition interactions involve two components
(a gene and its protein, or an inhibitor and an enzyme), are well understood biologically and have simple
stable long-term behavior that can be inferred straight from the interaction diagram ([1]; Figure 1a). But if
the interaction involves a larger number of components, or if feedback loops are present, then the dynamics
may become far more complicated, and understanding it requires strategies more subtle than chasing paths
in the interaction diagram. Instabilities of different kinds are possible even for small biological structures
and are associated with signaling events [2, 3, 4, 5]. One key class of instabilities are those leading to
multiple positive steady states (Figure 1b), also known as multistationarity, and seen experimentally as irre-
versible switch-like behavior. There is significant theoretical evidence, backed by experiment, that important
pathways may exhibit multistationarity as response to chemical signaling. This phenomenon is particularly
relevant in crucial cell behaviors, including generating sustained oscillatory responses, remembering transi-
tory stimuli, differentiation, or apoptosis [2, 4, 6, 7, 8, 9]. Multistationarity occurs in chemistry and chemical
engineering as well, but is much less common. There is, in fact, a great deal of stable behavior in networks of
chemical reactions, and (to a lesser degree) in biological networks. This can be explained in part by the fact
that the possibility of exotic behavior places rather delicate constraints on the structure of an interaction
network [10, 11, 12, 13, 14, 15, 16, 17, 18]. A seminal remark is due to Thomas [19] who conjectured that
positive feedbacks in the logical structure of an interaction network are necessary for multistationarity. Much
theoretical and simulation work followed, and proposed a series of increasingly refined design principles for
pathways allowing multistationarity [1, 13, 20, 21, 22, 23]. Building on this effort, multistationarity has been
demonstrated experimentally in bacterial synthetic genetic networks [24].

Figure 1: Even simple interactions may authorize complicated behaviors. a. In reactions of synthesis and
degradation the steady state response X is unique for any value of signal Y [1]. b. In the presence of positive
feedback, as is the case of autocatalysis, certain values of signal Y may generate multiple positive steady
states for X [13].
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The structure of reaction networks can be encoded by their reaction graph, Jacobian matrix sign pattern,
various stoichiometric matrices, and so on. Recent notable work has established subtle connections between
properties of these objects and multistationarity [11, 12, 14, 15, 16, 17, 25, 26, 27, 28, 29]. In particular,
various features of the stoichiometric matrix may allow strong conclusions about the existence of multiple
equilibria; this chapter is a review of results along this line. We note that a survey such as this will necessarily
be not exhaustive, and we have omitted a number of multistationarity methods, including powerful algebraic
tools well-suited for enzymatic networks [30, 31], as well as a series of results based on degree theory [32, 33].
We also refer the reader to the recent review [34].

The chapter is structured as follows. Section 2 is dedicated to terminology and notation; we follow a
matrix-theoretical framework, much like in [27, 28]. The next two sections focus on necessary conditions for
multistationarity of reaction networks. There is a wealth of results in this direction; we present theorems
based on injectivity [26, 27, 35, 36, 37, 38, 39] (Section 3) and the DSR graph [37, 40] (Section 4). We
then continue with two sections on sufficient conditions for multistationarity: recent work on inheritance
of multistationarity [28, 29] from subnetworks is presented in Section 5, and the determinant optimization
method [26] is reviewed in Section 6. Finally, methods for ruling out multistationarity based on deficiency
theory [41, 42, 58] are collected in Section 7. Exercises are proposed at the end of each section. Some of
them are important theoretical facts not included in the main text, while others are applications of the
results contained in that section.

We restrict the presentation to mass action, where, informally, the rate of a chemical reaction is pro-
portional to the number of molecular collisions, and therefore proportional to the concentration of each of
the reactants. We note, however, that many of the results apply to more general kinds of kinetics. Our
focus is on readability and a unifying presentation of the various results from the literature, rather than
on giving the strongest statements possible. For these, the reader is encouraged to consult the references
accompanying the theorems shown here.

2 Reaction network terminology and background

We proceed rather informally at first, using examples to introduce some basic terminology, which is later
revisited in a general context. For ease of presentation, some of these examples are chosen somewhat
artificially. Others are important systems from biochemistry; for example, throughout this chapter we will
often consider versions of the futile cycle

E + S 
 ES → E + P, F + P 
 FP → F + S, (1)

a well-studied structure that serves as building blocks in cellular signaling pathways [20, 22, 59, 60]. The
name comes from the fact that, in may cases, the two opposite pathways (from S to P and from P to S) run
simultaneously and have no overall effect other than to dissipate energy. An important instance of a futile
cycle is the phosphorylation-dephosphorylation network, where the substrate (often a protein) S is converted
into the product P by adding a phosphoryl group. The process is triggered by an enzyme E, which binds to
the substrate, forming an intermediate enzyme-substrate complex ES; this, in turn, dissociates to release E
and P , the phosphorylated form of S. The reverse process of dephosphorylation proceeds similarly, catalyzed
by the enzyme F . Dynamical properties, and in particular multistationarity of systems of coupled futile
cycles, have been studied extensively [2, 4, 50, 56, 61, 73, 74, 75]. The methods overviewed here can conclude
whether or not many such enzymatic systems are multistationary.

2.1 Chemical Reaction Networks and their dynamics.

A chemical reaction network (CRN), also called biochemical reaction network, or simply reaction network
throughout the text, is a list of reactions involving a finite list of species. The futile cycle above involves
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six reactions among six species E, S, ES, P, F, FP . Likewise, the example in Figure 2 involves seven
reactions among five species A,B,C,D,E, taking place in a defined reaction environment, such as a cell
or a chemostat. Each arrow in the diagram represents a reaction and is interpreted in a natural way: for
example, in A + B → 2C, one molecule of species A combines with one molecule of species B to produce
two molecules of C.

A reaction arrow connects formal linear combinations of species called complexes: it starts at a source
complex and it ends at a product complex. Degradation, or discharge of species E from the system is encoded
as an outflow reaction E → 0. The exterior of the reaction environment is represented in the CRN by the
zero complex 0. Likewise, the inflow reaction 0 → E encodes a constant supply of E into the system. A
CRN containing inflow and outflow reactions for all of its species is called fully open. Adding to a CRN the
missing inflow and outflow reactions (A
 0, B 
 0, C 
 0, D 
 0 for the example in Figure 2) yields its
fully open extension.

A pair of reactions that switch their source and product complexes (for example, B +C 
 2A) is called
a reversible reaction. One can always view a reversible reaction as two separate, irreversible reactions, and
most of our treatment follows this convention. We will clearly state when that is not the case. Species
involved in the source complex of a certain reaction are called reactants. As Figure 2 illustrates, the CRN
can be viewed as a directed graph with complexes as vertices; this is called the reaction graph of the CRN.

A+B 2C

D

B + C 2A E 0

Figure 2: A reaction network with seven reactions involving five species A,B,C,D,E and the complexes
A+D, 2C,D,B + C, 2A,E, 0.

The molar concentrations xA, xB, xC , xD, xE of species A,B,C,D,E are non-negative quantities varying
with time according to a system of ordinary differential equations, as follows. The net gain of molecules for
each species in a single occurrence of a reaction is encoded in a column vector called its reaction vector: setting
species A,B,C,D,E in this order, the reaction vector of A + B → 2C is [−1,−1, 2, 0, 0]t. Each reaction
“pushes” the vector field in the direction of its reaction vector, at a rate proportional to the product of its
reactant concentrations (this way of constructing rates is called mass action): the rate of A + B → 2C is
equal to k1xAxB, where k1 > 0 is a reaction-dependent quantity called its rate constant. Sometimes the rate

constant sits on top of the reaction arrow, for example A + B
k1→ 2C. Inflow reactions (like 0 → E) have

constant rates, equal to their rate constants. Aggregating the contributions of all reactions results in the
following system of differential equations,
ẋA
ẋB
ẋC
ẋD
ẋE

 = k1xAxB


−1
−1
2
0
0

+ k2x
2
C


0
0
−2
1
0

+ k3xD


1
1
0
−1
0

+ k4xBxC


2
−1
−1
0
0

+ k5x
2
A


−2
1
1
0
0

+ k6xE


0
0
0
0
−1

+ k7


0
0
0
0
1

 ,
conveniently rewritten as the product of the stoichiometric matrix of the network and its rate vector
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ẋA
ẋB
ẋC
ẋD
ẋE

 =


−1 0 1 2 −2 0 0
−1 0 1 −1 1 0 0
2 −2 0 −1 1 0 0
0 1 −1 0 0 0 0
0 0 0 0 0 −1 1





k1xAxB
k2x

2
C

k3xD
k4xBxC
k5x

2
A

k6xE
k7


. (2)

The stoichiometric matrix is made out of reaction vectors arranged as columns, and it is therefore depen-
dent on the ordering of reactions (corresponding to its columns) and the ordering of species (corresponding
to its rows). Clearly, this does not change the expression of the vector field (2), nor does it have any impact
on the results presented here, which are independent of these orderings.

It is easy to see (Exercise 2) that the non-negative orthant R5
≥0 is forward invariant with respect to (2),

i.e. solutions of (2) with non-negative initial conditions will stay non-negative. This important remark holds
for any reaction network driven by mass action.

2.2 Some useful notation

Throughout this chapter we denote the stoichiometric matrix by Γ and the rate vector by v. We note that
every complex can be viewed as a (column) vector, for example A+ B corresponds to [1, 1, 0, 0, 0]t. Source
complexes can be arranged as columns in the reactant matrix, denoted by Γl. For example, the reactant
matrix corresponding to Figure 2 is

Γl =


1 0 0 0 2 0 0
1 0 0 1 0 0 0
0 2 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 .
A useful notation in the context of mass action is vector exponentiation: for u, v ∈ Rn≥0, u

v is defined as
the product of componentwise powers: uv =

∏n
i=1 u

vi
i . Mass action rates have convenient expressions using

this notation; for example if x = [xA, xB, xC , xD, xE ]t denotes the concentration vector for our network in
Figure 2, then the reaction rate k1xAxB of A + B → 2C is simply k1x

[1,1,0,0,0]t ; note that the exponent is
the reactant vector of the reaction, and therefore it figures as a column in Γl. We introduce yet another
abbreviation, that of exponentiation by a matrix, to write the vector of monomials

w(x)t = [xAxB, x
2
C , xD, xBxC , x

2
A, xE , 1] =


xA
xB
xC
xD
xE





1 0 0 0 2 0 0
1 0 0 1 0 0 0
0 2 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0


= xΓl

so that the rate vector becomes
v(x) = Dk(x

Γl)t,

where Dk denotes the diagonal matrix with rate constants ki on the diagonal.
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2.3 The Jacobian matrix

Much of the theory to be presented here relies on Jacobian properties of the CRN vector field. The notation
introduced so far allows for a useful expression of the Jacobian matrix, as follows: if f = Γv denotes the
mass action vector field, then Df = ΓDv, and Dv has a useful factorization, illustrated here for the CRN
in Figure 2:

(∂v/∂x) =



k1xB k1xA 0 0 0
0 0 2k1xC 0 0
0 0 0 k3 0
0 k4xC k4xB 0 0

2k5xA 0 0 0 0
0 0 0 0 k6
0 0 0 0 0


=



k1xAxB k1xAxB 0 0 0
0 0 2k1x2C 0 0
0 0 0 k3xD 0
0 k4xBxC k4xBxC 0 0

2k5x2A 0 0 0 0
0 0 0 0 k6xE
0 0 0 0 0




1/xA 0 0 0 0

0 1/xB 0 0 0
0 0 1/xC 0 0
0 0 0 1/xD 0
0 0 0 0 1/xE



=



k1xAxB 0 0 0 0 0 0
0 k1x2C 0 0 0 0 0
0 0 k3xD 0 0 0 0
0 0 0 k4xBxC 0 0 0
0 0 0 0 k5x2A 0 0
0 0 0 0 0 k6xE 0
0 0 0 0 0 0 k7





1 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 1 1 0 0
2 0 0 0 0
0 0 0 0 1
0 0 0 0 0




1/xA 0 0 0 0

0 1/xB 0 0 0
0 0 1/xC 0 0
0 0 0 1/xD 0
0 0 0 0 1/xE


= DkDwΓt

lD1/x.

Here Dk, Dw and D1/x denote diagonal matrices with diagonal entries coming from the vector of rate
constans k, monomials w(x), and the vector [1/xA, 1/xB, 1/xC , 1/xD]t respectively. This factorization holds
for any mass action CRN. Note that, although Df is defined everywhere on R5

≥0, D1/x is not defined on

the boundary of the R5
≥0. However, that is not important for the purposes of this chapter, as our Jacobian

calculations are restricted to the positive orthant.

2.4 Stoichiometry classes

A simple derivation from (2) shows that ẋA + ẋB + ẋC + 2ẋD = 0, which means that xA + xB + xC + 2xD
stays constant along trajectories. This linear combinaton of concentrations is called a conservation law. A
systematic way to find the conservation laws of a CRN is to look for vectors c ∈ ker Γt since then c · ẋ = 0
(here “·” denotes the usual dot product). In our example, [1, 1, 1, 2, 0]t forms a basis of ker Γt, and therefore,
while the phase space is R5

≥0, the trajectories are constrained to four dimensional affine spaces orthogonal

to [1, 1, 1, 2, 0]t, called stoichiometry classes. Note that since (ker Γt)⊥ = im Γ, the stoichiometry classes are
affine spaces parallel to the stoichimoetric subspace im Γ. (Throughout the chapter we let kerA and imA
denote the nullspace and the column space of a matrix A respectively).

The stoichiometry classes foliate the phase space; the simpler example

A
 2B (3)

allows for a helpful picture – see Figure 3. Here the stoichiometric subspace is the span of [−1, 2]t, and

translating it by p ∈ R2
≥0 into R2

≥0 yields the stoichiometry classes {p + s

[
−1
2

]
| s ∈ R} ∩ R2

≥0. Each

stoichiometry class corresponds to a choice of “total mass” T and can also be defined as {[xA, xB]t ∈ R2
≥0 |

2xA+xB = T}. For this example, there is only one independent conservation law [2, 1]t, and it spans ker Γt.
As trajectories are confined to stoichiometry classes, these, rather than the whole phase space, are the

relevant spaces where dynamical behaviors of CRNs (like existence or uniqueness of equilibria) are studied.
We will come back to this in the next subsection.
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T = 2
T = 4

T = 8

xA

xB

Figure 3: Stoichiometry classes for the network A 
 2B. Although the phase space is two-dimensional,
every trajectory is either stuck at the origin, or constrained to one of the one-dimensional stoichiometry
classes.

2.5 Equilibria

An equilibrium (or steady state) of a reaction network is a point in the phase space where its vector field
vanishes, i.e. a single-point trajectory of the CRN dynamics. In this chapter, we focus on the study of
equilibria with positive coordinates (from now on called positive equilibria), and in particular, on their
uniqueness. As described in the introduction, the existence of two or more positive equilibria is of central
importance in the study of many important cellular processes.

Equilibrium points sit at the intersection of nullclines, which are manifolds defined by the vanishing of
the derivative of one of the variables. In the case of mass action, these are algebraic varieties cut out by a
single multivariate polynomial. For example, the network

2A
1→ B, B

1→ A, A
1→ A+B (4)

with all rate constants chosen to be equal to 1, gives rise to the mass action system

[
ẋA
ẋB

]
=

[
−2 1 0
1 −1 1

]x2
A

xB
xA


and therefore the equilibria sit at the intersection of

ẋA = −2x2
A + xB = 0 and ẋB = x2

A − xB + xA = 0

(see Figure 4a.). A quick calculation shows that there is only one positive equilibrium at (1, 2). Note that
the stoichiometric matrix here has rank 2, and so there are no conservation laws. When these are present,
the discussion on equilibria becomes a little more subtle; for example, let’s revisit network (3)

A
1


1

2B (5)

with both rate constants set to 1. The steady state equations read

ẋA = −xA + x2
B = 0, ẋB = 2xA − 2x2

B = 0,

the two polynomials are multiple of each other, and therefore we really only have one equation in two
variables. This produces a continuum of equilibria xA = x2

B called the steady state manifold – see Figure
4b. However, now we have a conservation law 2xA + xB = const. When speaking about uniqueness of
positive equilibria in networks with conservation laws, the relevant question is whether steady states are
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a.

E

xA

xB

b.

E1

E2

E3

xA

xB

c.

E1

E2

E3 xA

xB

Figure 4: a. Nullclines for (4). The unique positive equilibrium is (1, 2). b. The two nullclines for (5)
coincide. There is a unique equilibrium in each positive stoichiometry class, and it is nondegenerate. c. The
two nullclines for (6) coincide. Some stoichiometry classes contain two nondegenerate equilibria, some of
them contain no equilibria, while the stoichiometry class xA + xB = 2 has a single degenerate equilibrium.

unique within some (same) stoichiometry class. It is easy to check that for any T > 0, the stoichiometry

class 2xA + xB = T contains precisely one equilibrium at (1+4T−
√

1+8T
8 , −1+

√
1+4T

4 ) (see also Figure 4b.
On the other hand, the network

2A+B
1→ 3A, A

1→ B (6)

has two positive equilibria within some stoichiometry classes. Indeed, the mass action equations read[
ẋA
ẋB

]
=

[
1 −1
−1 1

] [
x2
AxB
xA

]
and the steady state equations are

ẋA = x2
AxB − xA = 0, ẋB = −x2

AxB + xA = 0.

Note that the two equations are equivalent (linearly dependent), and in the positive quadrant they both
reduce to xAxB = 1. The intersection of this curve with the stoichiometry class xA + xB = T, T > 0 yields

two positive equilibria (T+
√
T 2−4
2 , T−

√
T 2−4
2 ) and (T−

√
T 2−4
2 , T+

√
T 2−4
2 ) if T > 2, a single equilibrium if T = 2,

and no equilibria if T < 2 (see Figure 4c).
Since there exists at least one stoichiometry class that contains more than one steady state, we say that

network (6) has multiple positive equilibria. Here we happened to fix the rate constants, but throughout
this chapter that won’t be the case. We say that a network has multiple positive equilibria if for some choice
of rate constants there exists a stoichiometry class with two or more steady states.

Network (6) is a favorite example in the multistationarity literature [58, 28, 29, 43]: it is simple enough for
calculations to be done by hand, but it is complex enough to have interesting features, like multistationarity
and degenerate equilibria. We will often use versions of this network to illustrate various points throughout
this chapter.

2.6 Nondegenerate equilibria

An equilibrium is called nondegenerate if the various manifolds at whose intersection it lies (linearly inde-
pendent nullclines and conservation laws, when the latter exist) intersect transversally. This technicality is
important in various places during our presentation: for example, we will be interested to see how equilibria
survive under small perturbations of the vector field (and therefore of the nullclines), which leads naturally
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to considering the notion of nondegeneracy. Figure 4 suggests that all equilibria of (4) and (5) are nonde-
generate, whereas the steady state E1 of (6) is degenerate. To make this precise, note that nondegeneracy
is equivalent to saying that the normal vectors to the (linearly independent) hypersurfaces that cut out an
equilibrium point are linearly independent. When there are no conservation laws, these normal vectors are
the rows of the Jacobian matrix, and therefore nondegeneracy is equivalent to non-vanishing of the Jacobian
at the equilibrium point. The Jacobian matrix of network (4) is

Df =

[
−4xA 1

2xA + 1 −1

]
and the Jacobian is det(Df) = 2xA − 1. At equilibrium (1,2) this is positive, and nondegeneracy follows.

When conservation laws are present, linearly dependent nullclines are replaced by linearly independent
conservation laws, and the Jacobian of the new algebraic system is then computed. For network (5),
nondegeneracy is checked by computing the Jacobian of the algebraic system

−xA + x2
B = 0, 2xA + xB − T = 0,

i.e.

det

[
−1 2xB
2 1

]
= −1− 4xB.

This is negative everywhere in the positive orthant, and therefore equilibria are nondegenerate. As for
network (6), one computes the Jacobian of the system

x2
AxB − xA = 0, xA + xB − T = 0

to get

det

[
2xAxB − 1 x2

A

1 1

]
= 2xAxB − 1− x2

A. (7)

At a positive equilibrium point (pA, pB) we have pApB = 1, so the Jacobian is equal to 1− p2
A, which shows

that all equilibria are nondegenerate except for when pA = 1, i.e. when the steady state is E1 = (1, 1).

2.7 The reduced Jacobian

Here we illustrate another way to think about nondegeneracy. Let’s revisit network (6) and the nonde-
generacy condition (7) for an equilibrium p ∈ R2. This condition means that any non-zero vector v ∈ R2

satisfying [2pApB−1, p2
A]tv = 0 cannot be orthogonal to [1, 1]t, i.e. it cannot lie in the stoichiometric subspace

span([−1, 1]t). In other words, the Jacobian map of the network at p, Df(p) : R2
≥0 → span([−1, 1]t) does

not vanish on non-zero vectors of the stoichiometric subspace im Γ, i.e. its restriction to im Γ is invertible.
To compute this restriction, we use local coordinates on the stoichometric subspace as follows. For y ∈ im Γ,

let z ∈ R denote the coordinate of y in our basis, y =

[
1
−1

]
z. Then, recalling that v(x) = [x2

AxB, xA]t, we

have

Df(p)y = ΓDv(p)

([
1
−1

]
z

)
=

[
−1 1
1 −1

] [
2pApB p2

A

1 0

] [
1
−1

]
z

=

[
1
−1

]
[1 − 1]

[
2pApB p2

A

1 0

] [
1
−1

]
z =

[
1
−1

]
(2pApB − 1− p2

A)z (8)

and therefore z 7→ (2pApB − 1− p2
A)z is the action of the Jacobian matrix Df(p) using the basis {[1,−1]t}

of the stoichiometric subspace. This is generally a linear map (it happens to be a scalar multiplication in
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this example since rank Γ = 1). Its determinant is called the reduced Jacobian of the system. Non-vanishing
of the reduced Jacobian at p is equivalent to p being nondegenerate. Not coincidently, the reduced Jacobian
computed here is the same as the determinant computed in (7). This is revisited in the next section, where
the construction of the reduced determinant is presented in full generality.

2.8 General setup and preliminaries

Here we put the various terminology discussed so far into a general framework. Each notion introduced
below is referred to a previous section where examples were discussed informally. We adopt a presentation
of matrix-theoretical flavor along the lines of [27]. Throughout this section, we consider a CRN of m reactions
on n species, and we fix an order of species and an order of reactions. We can then refer to “species i”
or “reaction j”. Reactions may be reversible, but we will view these as two separate irreversible reactions.
For convenience, a reaction arrow proceeds from left to right: reactants sit on the left, and products on the
right.

In what follows, Rn≥0 denotes be the nonnegative orthant in Rn with interior Rn>0. The image (column
space) of a matrix A ∈ Rn×m, a linear subspace of Rn, is denoted imA, and the nullspace of A is denoted
by kerA. The transpose of A is denoted by At. If x ∈ Rn, we denote by Dx ∈ Rn×n the diagonal matrix
with elements of x on the diagonal, i.e. (Dx)ii = xi. We will use the following notation for submatrices and
minors: for a matrix A ∈ Rn×m and sets α, β ⊆ {1, . . . , n}, A(α|β) denotes the submatrix of A with rows

from α and columns from β. If |α| = |β|, then A[α|β]
def
= det(A(α|β)) denotes the corresponding minor of A.

When α = β, these are simply denoted by A(α) and A[α].

Definition 1 (Reactant matrix, product matrix, stoichiometric matrix – Sections 2.1, 2.2). The reactant
matrix Γl ∈ Zn×m and the product matrix Γr ∈ Zn×m are defined as follows: (Γl)ij is the number of
molecules of species i occurring on the reactant side (left-hand side) of reaction j; (Γr)ij is the number
of molecules of species i occurring on the product side (right-hand side) of reaction j. The stoichiometric
matrix of the network is defined as Γ = Γr − Γl.

Note that Γl and Γr have non-negative entries. The (i, j) entry of the stoichiometric matrix is the net
gain of molecules of species i in reaction j. The stoichiometric matrix is not uniquely defined, as it depends
on the orderings on the species and reactions. However, these orderings do not impact any of the results we
discuss here.

Definition 2 (Complexes, inflow/outflow reactions, reaction graph – Section 2.1). If species are denoted
X1, . . . , Xn, we define formally the vector X = (X1, . . . , Xn)t. The formal dot products of columns of Γl
and Γr with X are termed complexes of the network [57]. Each reaction converts its source complex into
its product complex. The zero vector (as a column in Γl or Γr) is called the zero complex, and simply
denoted by 0. Reactions of the form 0 → C and C → 0 (where C is a non-zero complex) are called inflow
and outflow reactions, respectively. Any reaction can be viewed as an edge in a directed graph whose vertices
are the network complexes. This graph fully characterizes the CRN, and is termed the reaction graph of the
network.

The time evolution of the vector of species concentrations x = x(t) ∈ Rn≥0 is governed by the ODE
system

ẋ = Γv(x) =: f(x) (9)

where ẋ denotes dx
dt , Γ ∈ Rn×m denotes the stoichiometric matrix and v ∈ Rm×1 denotes the vector of

reaction rates or kinetics of the system. While there are many types of kinetics that arise in practice, we
restrict our attention to mass action, perhaps the most important one.
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It is convenient to introduce the vector power notation: given x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn≥0,

we let xy =
∏n
i=1 x

yi
i . If M ∈ Rm×n has columns M1, . . . ,Mm we use xM as a convenient abbreviation for

the 1×m vector (xM1 , . . . , xMm).

Definition 3 (Mass action kinetics, rate constants – Sections 2.1, 2.2). Let Γl and Γ ∈ Zn×m denote the
reactant and stoichiometric matrices, respectively. For k ∈ Rn>0, we say that (9) with v(x) = Dk(x

Γl)t is a
CRN with mass action kinetics and rate constants k. In mass action, the rate vj of reaction j is proportional
to the product of reactant concentrations, and the proportionality factor is kj . A CRN with mass action is
therefore governed by the ODE system

ẋ = ΓDk(x
Γl)t =: f(x). (10)

Note that the rate of an inflow reaction 0
k→ A is constant, and equal to k.

It is easy to show that the nonnegative orthant is forward invariant under the dynamics of a CRN
with mass action. The proof of this fact is left to the reader (Exercise 2). For x ∈ Rn>0, we let 1/x =
(1/x1, . . . , 1/xn). The Jacobian matrix of (9) factors as

Df(x) = ΓDv(x)Γ
t
lD1/x (11)

(this is an easy calculation; see Section 2.3 for an example).

Definition 4 (Stoichiometric subspace, stoichiometry classes – Section 2.4). Given a CRN with stoichio-
metric matrix Γ ∈ Rn×m, im Γ ⊆ Rn is called the stoichiometric subspace of the network. For p ∈ Rn≥0, the
coset of im Γ containing p and intersected with Rn≥0

Sp = (p+ im Γ) ∩ Rn≥0 = {y ∈ Rn≥0 | y − p ∈ im Γ}

is called the stoichiometry class of p. A stoichiometry class which intersects Rn>0 is called nontrivial. The
intersection of a stoichiometry class with Rn>0 (if non-empty) is a positive stoichiometry class.

Integrating (9) yields

x(t) = x(0) + Γ

∫ t

0
v(x(s))ds

which shows that the solution {x(t) | t ≥ 0} of (9) is constrained to the stoichiometry class of x(0). Put
another way, trajectories of CRN dynamics satisfy certain linear constraints, called conservation laws.

Definition 5 (Conservation laws – Section 2.4). A non-zero element of ker Γt is called a conservation law
of the CRN. A basis of ker Γt is called a complete set of independent conservation laws.

If v is a conservation law, then (9) yields v · x(t) = constant. Since ker Γt = (im Γ)⊥, a set of constants
for a complete set of conservation laws uniquely defines a coset of im Γ, i.e. a stoichiometry class.

Definition 6 (Fully open systems, fully open extensions – Section 2.1). A CRN that contains inflow reactions
A → 0 and outflow reactions 0 → A for all species A is called a fully open network. A fully open network
has stoichiometric subspace equal to Rn, and no conservation laws. Adding all inflow and outflow reactions
to a network defines its fully open extension.

Definition 7 (Equilibria, multiple positive equilibria – Section 2.5). A point p ∈ Rn≥0 is called an equilibrium
of a CRN if Γv(p) = 0. It is called a positive equilibrium if p ∈ Rn>0. A CRN has the capacity for multiple
positive equilibria (MPE) [26] if there exist rate constants k ∈ Rn>0 for which (10) admits two distinct
equilibria within the same stoichiometry class, i.e. there exist distinct p1, p2 ∈ Rn>0 such that p1 − p2 ∈ im Γ
and

ΓDk(p
Γl
1 )t = ΓDk(p

Γl
2 )t = 0.
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Let r > 0 be the rank of the stoichiometric matrix Γ. Choose any basis for im Γ and arrange its vectors as
columns of a matrix Γ0 ∈ Rn×r. We can write Γ = Γ0Q for some matrix Q. Letting Γ′ be a left inverse of Γ0

we get Γ′Γ = Q, and therefore Γ = Γ0Γ′Γ. We write x ∈ im Γ in coordinates corresponding to the basis Γ0, i.e.
x = Γ0y. The action of the Jacobian map ΓDv on x ∈ im Γ is as follows: ΓDvΓ0y = Γ0Γ′ΓDvΓ0y = Γ0z with
z = Γ′ΓDvΓ0y. Therefore the Jacobian matrix acts on local coordinates on im Γ according to y 7→ Γ′ΓDvΓ0y.

Definition 8 (Reduced Jacobian [27] – Section 2.7). With the notations introduced above, a reduced Jaco-
bian matrix of a CRN is defined as Γ′ΓDvΓ0; its determinant is called the reduced Jacobian and denoted
by detΓ(ΓDv).

Note that different choices of Γ0 and Γ′ may result in different reduced Jacobian matrices, however, they
are all similar matrices (see [27, Appendix A]). Therefore the reduced Jacobian does not depend on these
choices and the notation detΓ(ΓDv) is unambiguous. In fact, one can show that the reduced Jacobian of a
CRN is equal to the sum of r × r principal minors of the Jacobian:

Proposition 1. [27] detΓ(ΓDv) =
∑

α⊆{1,...,n}
|α|=r

(ΓDv)[α].

In particular, if rank Γ = n (for example if the network is fully open), then the reduced Jacobian and
the Jacobian are equal.

Definition 9 (Nondegenerate equilibria – Sections 2.6, 2.7). An equilibrium p ∈ Rn≥0 of a mass action CRN
is called nondegenerate if detΓ(ΓDv(p)) 6= 0. We say that a CRN has the capacity for multiple positive
nondegenerate equilibria (MPNE) if there exist rate constants k ∈ Rn>0 for which (10) admits two distinct
nondegenerate equilibria within the same positive stoichiometry class, i.e. there exist distinct p1, p2 ∈ Rn>0

such that p1 − p2 ∈ im Γ,
ΓDk(p

Γl
1 )t = ΓDk(p

Γl
2 )t = 0,

and detΓ(ΓDv(pi)) 6= 0 for i = 1, 2.

Alternatively, an equilibrium is nondegenerate if it sits at a transversal intersection of nullclines and
hyperplanes defined by conservation laws. To see that this is equivalent to the previous definition, we use the
following setup (see for example [35, 36]). First we reorder the species (i.e. the rows of Γ) so that a complete

set of conservation laws can be arranged as the columns of the block matrix

[
W
I

]
with I ∈ R(n−r)×(n−r)

denoting the identity matrix, and W ∈ Rr×(n−r). In other words, the last n−r concentrations can be linearly
eliminated using conservation laws; also, their derivatives are linear combinations of the derivatives of the
first r concentrations. We form a new algebraic system characterizing the equilibria in some stoichiometric
class by removing the equations corresponding to the last n− r concentrations from the steady state system
Γv(x) = 0, and replacing them with the n − r conservation laws which define the stoichiometric class
[W t|I]x = T (here T ∈ Rn−r is the vector of conserved values). Nondegeneracy according to the new
geometric interpretation amounts to the non-vanishing of the new algebraic system’s Jacobian. It turns out
that this is equivalent to the nondegeneracy in Definition 9. Indeed, if

Γ =

[
Γ1

Γ2

]
(12)

where Γ1 ∈ Rr×m, then the new algebraic system reads

Γ1v(x) = 0, [W t|I]x− T = 0 (13)

and we have the following result generalizing the calculations (7) and (8) in Sections 2.6 and 2.7.
11



Proposition 2. The Jacobian of (13) is equal to the reduced Jacobian detΓ(ΓDv).

Proof. Note that from (12) and the definition of W we get Γ2 = −W tΓ1. We rearrange reactions (columns
of Γ) to get a nonzero principal minor Γ({1, . . . , r}), and we write Γ and Dv in corresponding block form

Γ =

[
Γ11 Γ12

−W tΓ11 −W tΓ12

]
, Dv =

[
V11 V12

V21 V22

]
where Γ11 ∈ Rr×r is nonsingular and V11 ∈ Rr×r. The Jacobian matrix of (13) is[

Γ11V11 + Γ12V21 Γ11V12 + Γ12V22

W t I

]
. (14)

To compute the reduced determinant, note that the columns of Γ0 =

[
Γ11

−W tΓ11

]
form a basis of im Γ

and that Γ′ = [Γ−1
11 |0] is a left inverse of Γ0. Then

detΓ(ΓDv) = det(Γ′ΓDvΓ0)

= det

(
[Γ−1

11 |0]

[
Γ11 Γ12

−W tΓ11 −W tΓ12

] [
V11 V12

V21 V22

] [
Γ11

−W tΓ11

])
= det Γ−1

11 det

(
[I|0]

[
Γ11 Γ12

−W tΓ11 −W tΓ12

] [
V11 V12

V21 V22

] [
I
−W t

])
det Γ11

= det(Γ11V11 − Γ11V12W
t + Γ12V21 − Γ12V22W

t),

which equals the determinant of (14) by the Schur determinant formula.

Some of the results to follow regard not only the existence of multiple positive equilibria of a CRN, but
also their linear stability in the following sense.

Definition 10 (Linear stability, multiple positive linearly stable equilbria: MPSE). An equilibrium p of (9)
will be termed linearly stable if it is linearly stable w.r.t. its stoichiometry class, namely all eigenvalues of
the reduced Jacobian matrix have negative real parts. A mass action CRN displays multiple positive linearly
stable equilibria (MPSE) if, for some choice of its rate constants, it has two distinct positive equilibria in
some same stoichiometry class, both linearly stable.

Note that if a CRN has MPSE, then it also has MPNE. The network (6) shows that the converse is not
true in general (Exercise 5).

Exercises

1. (Hungarian Lemma [44]). Let fi(x) : Rn → R, i ∈ {1, . . . , n} be polynomial functions and f(x) =
(f1(x), . . . , fn(x)). Show that there exists a CRN whose mass action equations are ẋ = f(x) if and
only if any monomial with negative coefficient in fi contains xi. (For example, this is not satisfied for
ẋ1 = −2x1x

2
2 + 1, ẋ2 = −x2

1 + 3x2, since the negative monomial −x2
1 in the expression of ẋ2 does not

contain x2.)

Remark. This shows that a large class of polynomial dynamical systems can be realized as mass action,
and therefore results for mass action may have implications beyond reaction networks.

2. (Forward invariance under mass action). Show that if x(t), t ≥ 0 is a solution of (10) with x(0) ∈ Rn≥0,
then x(t) ∈ Rn≥0 for all t ≥ 0.
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3. (The futile cycle). Find a complete set of conservation laws for the following CRN (the futile cycle
(1), sometimes also called the one-step phosphorylation-dephosphorylation network), and compute its
reduced Jacobian:

E + S 
 ES → E + P

F + P 
 FP → F + S.

4. (Examples of small networks) Analyze the capacity for MPE/MPNE/MPSE for the following mass
action networks (see [27] for related examples, and [29] for results on two-species networks):

a. 2A+B → 3A, A→ B, A→ 0, 0→ B.

b. 2A+B → 3A, A→ B, A
 0, B 
 0.

c. 2A+B → 3A, A→ B, A+B 
 0.

d. A→ B, 2B → 2A, 2A+ 2B → 3A+B.

e. A+B → 2B, 2A+B → 2B, 3B → A+ 2B.

5. (MPNE does not imply MPSE). Show that the CRN (6) does not have MPSE.

3 Necessary conditions for multistationarity I: injective CRNs

Much of the literature on multistationarity for CRNs has focused on studying necessary conditions for the
existence of two or more positive equilibria. A particularly successful approach in this direction has been that
of injective CRNs, i.e. CRNs for which the corresponding vector field f = Γv (10) is an injective function
on positive stoichiometry classes for any choice of rate constants. A very simple, but perhaps illuminating
example of a non-injective CRN is 2A 
 A; for rate constants equal to one, the mass action vector field
is equal to −x2

A + xA, which is not injective on the unique stoichiometry class, namely R>0. Clearly, an
injective CRN cannot have the capacity for multiple positive equilibria, since the latter requires that two
points in the same positive stoichiometry class be both mapped by f to 0. Note, however that injectivity is
not equivalent to the lack of capacity for multiple positive equilibria (see Exercise 1 below).

The study of injective CRNs was started by Craciun and Feinberg for fully open networks [26] and has
since been extended by work of various authors [27, 35, 36, 37, 38, 39]. These papers have led to complete
characterizations of injective CRNs, some of which are gathered in the theorem below. First, we introduce
some terminology and notation.

Definition 11 (Positive and negative matrices). For a real matrix (or vector) A, write A ≥ 0 to denote the
fact that all entries of A are nonnegative, and A > 0 to denote the fact that A ≥ 0 and A 6= 0.

Definition 12 (Qualitative class). Given A ∈ Rn×m, the qualitative class Q(A) ⊆ Rn×m of A consists
of all matrices with the same sign pattern as A, i.e., B ∈ Q(A) if and only if (Aij > 0) ⇒ (Bij > 0);
(Aij < 0)⇒ (Bij < 0); and (Aij = 0)⇒ (Bij = 0). If A is a set of matrices or vectors, we write Q(A) for
∪A∈AQ(A).

Finally, if A,B ∈ Rn×m we write A ◦r B > 0 (respectively, A ◦r B < 0) if the product of any pair of
corresponding r × r minors of A and B is non-negative (non-positive), and at least one of these products is
positive (respectively, negative). To be precise, A ◦r B > 0 if for any α ⊂ {1, . . . , n}, β ⊂ {1, . . . ,m} with
|α| = |β| = r we have

A[α|β]B[α|β] ≥ 0

and at least one such product is positive.
Consider a CRN with stoichiometric matrix Γ and reactant matrix Γl, and let r = rank Γ.
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Theorem 1. The following are equivalent:

1. (Injectivity) The mass action vector field Γv(x) := ΓDk(x
Γl)t (as a function of x) is injective on any

positive stoichiometry class, for any rate constants k ∈ Rm>0.

2. (Nonvanishing of reduced Jacobian) The reduced Jacobian detΓ(ΓDv) (as a polynomial in x and k) is
non-zero and all of its terms have the same sign.

3. (Concordance) Γ ◦r Γtl > 0 or Γ ◦r Γtl < 0.

4. (Sign condition) Γtl(Q(im Γ)\{0}) ∩Q(ker Γ) = ∅.

For the proofs of these and other related results, the reader is referred to [27] and [35]. A network is called
concordant if condition 3 in Theorem 1 above holds. Concordance was first defined in [38] in an equivalent
way, and versions of the results above appear in that work. In many cases, the concordance condition may
be easiest to check – note that its calculation does not involve the rate constants. On the other hand, the
reduced Jacobian is also not hard to compute – recall from Proposition 1 that the reduced Jacobian is the
sum of r × r principal minors of the Jacobian matrix ΓDv.

Next, we discuss an example illustrating the applicability of Theorem 1. For more examples, the reader
is referred to the exercises at the end of the section. Consider the following version of the futile cycle (1),
where metabolite S gets transformed into a product P in a reaction catalyzed by enzyme E, while the
reverse process does not require an enzymatic mechanism:

E + S
k1


k2
ES

k3→ E + P, P
k4→ S. (15)

Setting species E,S,ES, P in this order, the corresponding stoichiometric matrix Γ, reactant matrix Γl,
and ODE system are

Γ =


−1 1 1 0
−1 1 0 1
1 −1 −1 0
0 0 1 −1

 , Γl =


1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 1

 , ẋ =


−1 1 1 0
−1 1 0 1
1 −1 −1 0
0 0 1 −1



k1x1x2

k2x3

k3x3

k4x4

 .
The Jacobian matrix can be computed as

ΓDv =


−1 1 1 0
−1 1 0 1
1 −1 −1 0
0 0 1 −1



k1x2 k1x1 0 0

0 0 k2 0
0 0 k3 0
0 0 0 k4

 =


−k1x2 −k1x1 k2 + k3 0
−k1x2 −k1x1 k2 k4

k1x2 k1x1 −k2 − k3 0
0 0 k3 −k4

 ,
and since rank Γ = 2, the reduced Jacobian of the system is the sum of all 2 × 2 principal minors of ΓDv,
i.e.

detΓ(ΓDv) =

∣∣∣∣−k1x2 0
0 −k4

∣∣∣∣+

∣∣∣∣−k1x1 k2

k1x1 −k2 − k3

∣∣∣∣+

∣∣∣∣−k1x1 k4

0 −k4

∣∣∣∣+

∣∣∣∣−k2 − k3 0
k3 −k4

∣∣∣∣
= k1k3x1 + k1k4x1 + k1k4x2 + k2k4 + k3k4.

This polynomial in x1, . . . , x4, k1, . . . , k4 has only positive coefficients, and so Theorem 1 implies that the
vector field is injective on each positive stoichiometry class. Therefore, the mass action network (15) does
not have the capacity for multiple positive equilibria.

One may reach the same conclusion by checking concordance of the network, i.e. by computing products
of corresponding 2× 2 minors of Γ and −Γtl . By inspection, the only non-zero products Γ[α|β]Γl[α|β] occur
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for (α|β) ∈ {({1, 4}|{1, 4}), ({2, 3}|{1, 3}), ({2, 4}|{1, 4}), ({3, 4}|{2, 4}), ({3, 4}|{3, 4})}. The corresponding
products are∣∣∣∣−1 0

0 −1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ , ∣∣∣∣−1 0
1 −1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ , ∣∣∣∣−1 1
0 −1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ , ∣∣∣∣−1 0
0 −1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ , ∣∣∣∣−1 0
1 −1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ ,
and are all equal to one. Therefore the network is concordant, and injectivity follows. Note that the number
of non-zero products of minors (five) equals the number of monomials in the reduced determinant computed
above. This is not coincidental; it turns out that in general, the pairwise products of minors from the
definition of concordance are precisely the coefficients of the polynomial detΓ(ΓDv) – see for example [27],
and Exercise 2.

Finally, we illustrate how one checks the sign condition 4 in the theorem above. We note that our
treatment here is rather rudimentary, and there is a great deal of subtlety that we miss in a short description
like this one. For a detailed discussion of the sign condition and for insightful connections with the machinery
of oriented matroids, the reader is referred to [45]. Informally, Γtl acts on sign vectors using the commutative
addition rules (+) + (+) = +, (−) + (−) = (−), (+) + (0) = +, (−) + (0) = −, (+) + (−) ∈ {0,+,−}.

Choosing the second and fourth column of Γ as basis, we can write im Γ = {[x, x + y,−x,−y]t | x, y ∈
R}. The possible nonzero sign patterns of im Γ are obtained by listing all sign combinations of x and
y: (0,+), (+, 0), (+,+), (+,−), (0,−), (−, 0), (−,−), (−,+). The first three sign combinations of x and y
produce precisely one sign pattern and the fourth one, (+,−) produces three more depending on the relative
sizes of |x| and |y|. The last four sign pairs give rise to the negative of the sign patterns we have so far.
Therefore Q(im Γ) \ {0} consists of twelve sign patterns, listed here:

0
+
0
−

 ,


+
+
−
0

 ,


+
+
−
−

 ,


+
0
−
+

 ,


+
+
−
+

 ,


+
−
−
+

 ,


0
−
0
+

 ,

−
−
+
0

 ,

−
−
+
+

 ,

−
0
+
−

 ,

−
−
+
−

 ,

−
+
+
−

 .
Applying Γtl to all sign vectors above, one obtains the sign patterns in Γtl(Q(im Γ) \ {0}) (for simplicity,

we only list the combinations with the first non-zero component equal to “+”; the remaining ones are simply
the negative of these): 

+
0
0
−

 ,


+
−
−
0

 ,


+
−
−
−

 ,


+
−
−
+

 ,


0
+
+
−

 ,


+
+
+
−

 . (16)

On the other hand, ker Γ = {[x+y, x, y, y]t | x, y ∈ R} and therefore Q(ker Γ) has the following non-zero
sign patterns (once again, for shortness, we only list those whose first non-zero coordinate is “+”):

+
0
+
+

 ,


+
+
0
0

 ,


+
+
+
+

 ,


0
+
−
−

 ,


+
+
−
−

 ,


+
−
+
+

 . (17)

Since no sign pattern appears in both (16) and (17), the sign condition is satisfied and therefore the network
is injective.

Checking the various injectivity conditions can be easily implemented computationally. For example, the
software packages CoNtRol [46, 47] and CRNToolbox [48] include this functionality and many other CRN
computation tools.
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Exercises

1. (1D injective CRNs). Find all injective one-species mass action CRNs. Give an example of a non-
injective CRN without capacity for MPE.

2. (Coefficients of the reduced determinant). Show that the coefficients of the reduced Jacobian of a
CRN (as a polynomial in x and k) are precisely the products Γ[α|β]Γl[β|α], with α ⊆ {1, . . . , n},
β ⊆ {1, . . . ,m}, |α| = |β| = rank Γ (as usual, Γ denotes the stoichiometric matrix of the CRN).

Hint. Use the Cauchy-Binet formula: Given A ∈ Rn×m, B ∈ Rm×n, and any α, β ⊆ {1, . . . , n},
|α| = |β| = r > 0, we have

(AB)[α|β] =
∑

γ⊆{1,...,m}
|γ|=r

A[α|γ]B[γ|β].

3. Phoshporylation networks. Are the following networks injective? Use CoNtRol to double check your
answer.

a. (futile cycle)

E + S 
 ES → E + P

F + P 
 FP → F + S.

b. (distributive double phosphorylation)

E + S1 
 ES1 → E + S2 
 ES2 → E + S3

F + S3 
 FS3 → F + S2 
 FS2 → F + S1.

c. (distributive double phosphorylation without shared enzymes)

E1 + S1 
 E1S1 → E1 + S2, E2 + S2 
 E2S2 → E2 + S3

F1 + S3 
 F1S3 → F1 + S2, F2 + S2 
 F2S2 → F2 + S1.

d. (processive double phosphorylation)

E + S1 
 ES1 → ES2 → E + S3

F + S3 
 FS3 → FS2 → F + S1.

Remark. Injectivity is just one example of how dynamics changes as an effect of enzyme sharing, or
by switching from distributive to processive mechanisms. See [49, 50, 51] for further discussion.

4 Necessary conditions for multistationarity II: the DSR graph

There is a great deal of stable behavior in networks of chemical reactions, and, to a lesser degree, in
biological networks. This can be explained in part by the fact that the possibility of exotic behavior (such as
multistability) places rather delicate constraints on the structure of an interaction network; a seminal remark
is due to R. Thomas, who noticed that positive feedback in the logical structure of a CRN are necessary for
multistationarity [19]. Subsequent theoretical work proved this claim [11]; here we discuss the DSR graph
condition, a far-reaching refinement of Thomas’ observation. The DSR (directed species-reaction) graph,
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introduced by Banaji and Craciun [40] is based on earlier work by Craciun and Feinberg [14], and it provides
an elegant sufficient condition for injectivity of CRNs. We note that this condition is not also necessary, so
that the methods of Section 3 are more powerful than the results that follow here. However, the DSR graph
is closely related to the typical diagram depicting a biological network, and it offers unique insight into the
connection between its structure and its capacity for multiple equilibria.

Throughout this section we consider nonautocatalytic networks, i.e. networks for which no species occurs
on both sides of the same reaction. We note that the DSR theory doesn’t need this restriction. However, the
exposition is significantly simpler for nonautocatalytic networks, and moreover, most networks in practice
are nonautocatalytic. In what follows, we regard each reversible reactions as one reaction, as opposed to
splitting them in two irreversible reactions, and we (arbitrarily) choose a left side and a right side of a
reversible reaction. This way, every species that enters a reversible reaction is either a left reactant or a right
reactant. We also recall that species involved in an irreversible reactions are either reactant species (inputs),
product species (outputs), or possibly both.

Definition 13 (DSR graph, [40]). The DSR graph of a CRN is a labeled bipartite directed multigraph, with
nodes corresponding to species and reactions. The labels are all positive, but the graph will contain positive
and negative edges. Moreover, given a species node S and a reaction node R, two edges S → R and R→ S
of the same sign are by convention merged into one undirected edge S −−R of the same sign. The DSR is
defined in the following way:

1. For every irreversible reaction R and every one of its reactant species S, we draw an undirected negative
edge (depicted as a dashed line) S − −R. The edge is labeled with the stoichiometric coefficient of S
in R, i.e. the number of molecules of S consumed in reaction R.

2. For every irreversible reaction R and every one of its product species S, we draw a directed positive
edge (depicted as a solid arrow) R→ S. The edge is labeled with the stoichiometric coefficient of S in
R, i.e. the number of molecules of S produced in reaction R.

3. For every reversible reaction R and every one of its left reactant species S, we draw an undirected
negative edge S−−R. The edge is labeled with the stoichiometric coefficient of S in R, i.e. the number
of molecules of S that enter reaction R.

4. For every reversible reaction R and every one of its right reactant species S, we draw an undirected
positive edge S −R. The edge is labeled with the stoichiometric coefficient of S in R, i.e. the number
of molecules of S that enter reaction R.

Figure 5 is perhaps illuminating; it illustrates two examples of DSR graphs, one of which corresponds to
CRN (15). By convention, edge labels equal to 1 are omitted from the figure. As we will see below, the way
various cycles intersect in the DSR graph may allow conclusions about the lack of multiple equilibria of the
CRN’s fully open extension. We carry on with a little more terminology.

Recall that a cycle in a directed graph is a path from some vertex to itself which repeats no other vertices,
and which respects the orientation of any edges traversed. The unoriented edges in the DSR graph can be
viewed as having two orientations, and can be traversed either way. Let |C| denote the length of a cycle in
the DSR graph, i.e. the number of vertices (or edges) it contains. For an edge e, let l(e) denote its positive
label as defined above. Recall that e is also assigned a sign, +1 (solid) or −1 (dashed). Also note that since
DSR is bipartite, each cycle has even length.

Definition 14 (Sign of cycles, e-cycles, o-cycles, s-cycles, odd intersections, [14, 40]). Let C be a cycle in a
DSR graph.

1. The sign of C, denoted sign(C), is the product of the signs of its edges. In other words, a cycle is
positive (has sign +1) if it contains an even number of negative edges.
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2. C is called an e-cycle if (−1)|C|/2sign(C) = 1 and is called an o-cycle if (−1)|C|/2sign(C) = −1. In
other words, a cycle C is an e-cycle if the number of its negative (equivalently, the number of its
positive) edges has the same parity as |C|/2.

3. Let {e1, . . . , e2r} denote the edges of C traversed in order. C is called an s-cycle if

r∏
i=1

l(e2i−1) =
r∏
i=1

l(e2i).

Note that this product does not depend on the vertex of C where we start enumerating its edges.

4. Two cycles in the DSR graph are compatibly oriented if their orientations coincide on each undirected
edge in their intersection. Two cycles of the DSR graph have odd intersection if they are compatibly
oriented and each component of their intersection contains an odd number of edges.

To illustrate, we refer to Figure 5a. The DSR has four species nodes, three reaction nodes, and two
cycles: C1 : 1 → ES → 2 → E → 1 and C2 : 1 → ES → 2 → P → 3 → S → 1. Both are s-cycles, and
e-cycles: for example, C2 has 3 negative edges, the same as half of its length. Moreover, C1 and C2 are
compatible oriented, and do not have odd intersection; their intersection is the path 1→ ES → 2.

Likewise, Figure 5b. depicts the DSR graph of the network

2A+B → C → 3A, A
 B. (18)

Here we have four cycles; C1 : 1→ C → 2→ A→ 1, C2 : 1→ B → 3→ A→ 1, C3 : 1→ A→ 3→ B → 1,
and C4 : 1→ C → 2→ A→ 3→ B → 1. Note that C2 and C3 have the same edges, traversed in opposite
directions. C1 and C4 are e-cycles, and C2 and C3 are o-cycles: for example, half of the length of C2 is even
(two), whereas the number of its negative edges is odd (one). None of the cycles are s-cycles: for example,
the two products of alternating labels for C1 are 1 · 3 6= 1 · 2. Cycles C1 and C2 have odd intersection,
as do C1 and C4, and C3 and C4. For example, the latter pair intersect along the path of length three
A→ 3→ B → 1.

a. E

S

P

1

2

ES

3

b.

B

A

C

3

1

2

2
3

Figure 5: Examples of DSR graphs: a. E + S 
 ES → E + P, P → S. b. 2A+B → C → 3A, A
 B.

Theorem 2. (The DSR graph Theorem, [40]) Suppose R is a mass action CRN whose DSR graph satisfies
the following property: all its e-cycles are s-cycles, and no two e-cycles have odd intersection. Then the fully
open extension of R is injective, and therefore it doesn’t have the capacity for MPE.

Most networks found in applications only involve stoichiometric coefficients equal to one, and in that
case all cycles are e-cycles; therefore the first condition in Theorem 2 is very often satisfied in practice. DSR
e-cycles are related to feedback loops; the DSR theorem implies not only that positive feedback is needed
for MPE (as in the conjecture of Thomas), but that they satisfy additional conditions. Indeed, the DSR
theorem is a quite a bit more powerful result [52].
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All cycles are s-cycles in (Figure 5a.), and since the two cycles do not have odd intersection, one quickly
rules out the capacity for multiple positive equilibria of the fully open extension of network (15). On the
other hand, Theorem 2 stays silent for the open extension of network (18). Here both conditions of the
theorem fail: C1 is an e-cycle, but not an s-cycle, and the e-cycles C1 and C4 have odd intersection. In fact,
one can show by methods of Section 5 that the open extension of (18) does have the capacity for MPE. We
emphasize that in general, however, failure of the hypotheses in Theorem 2 is merely a necessary condition
for non-injectivity (see Exercise 1).

The DSR graph theorem has been implemented in CoNtRol [46], which also includes a useful tool for
drawing DSR graphs.

Exercices

1. (Injective fully open CRN for which the DSR Theorem does not apply). Construct the DSR graph of
the following network (the futile cycle with enzyme sharing):

E + S 
 ES → E + P

E + P 
 EP → E + S

E 
 0, S 
 0, P 
 0, ES 
 0, EP 
 0.

What conclusions does the DSR theorem allow? Show that the network is injective.

2. (DSR of some enzymatic networks). Study the injectivity of the fully open extensions of CRNs in
Exercise 3 of Section 3. When the DSR theorem stays silent, use the methods of Theorem 1.

3. (The sequestration network [34, 53]). Show that if m = 1 or n ≥ 1 is even, then the fully open
extension of the following mass action network is injective:

X1 +X2 → 0 (19)

X2 +X3 → 0

...

Xn−1 +Xn → 0

X1 → mXn.

Remark. One can show that all remaining possibilities for m,n lead to networks with capacity for MPE
[34]. It is however an open question whether these equilibria are nondegenerate [53].

5 Sufficient conditions for multistationarity: inheritance of multiple
equilibria

There has been much recent interest in studying “network motifs” in biological systems, namely small,
frequently occurring subnetworks from which dynamical behaviors of the whole network can be inferred [54].
The results collected in this section fall broadly in this research direction; they study how multistationarity
of a network is inherited from smaller structures, or “motifs”. Specifically, we list a number of situations
where MPNE and MPSE (Definitions 9 and 10) persist as we build up a network from smaller subnetworks.
Here we focus on results that are shown by analytic methods, e.g. the implicit function theorem [28, 29],
although approaches of algebraic nature also exist in recent literature; for example the results in [30] stem
from an algebraic technique for linear elimination of species.
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Using something like the implicit function theorem is quite natural: certain modifications of the network
result in small perturbations of the vector field which allow for local continuations of each nondegenerate
positive equilibrium. For example, adding new reactions to a network without changing the stoichiometric
subspace, and assigning them small rate constants results in new nullcline manifolds that are merely per-
turbations of the original ones. In this case the steady state configuration will (locally) stay the same –
imagine a small perturbation of the steady state curve in Figure 4c.. On the other hand, if the network is
modified in a way that the stoichiometric subspace changes, then it is possible for equilibria to vanish, or
become degenerate; see Exercise 1.

Throughout this section, we consider a mass action CRN R which the capacity for MPNE, and order its
species in a vector X = (X1, . . . , Xn). Recall that complexes are formal linear combinations of species, with
non-negative integer coefficients. If a = (a1, . . . , an) ∈ Nn, we use the convenient notation a ·X to denote
the complex a1X1 + · · · + anXn. The zero complex 0x1 + · · · + 0xn will be denoted 0. The theorem below
collects a series of results about the preservation of the capacity for MPNE when R is being “enlarged” into
a new network R′.

Theorem 3. Let R be a CRN that admits MPNE. If R′ is a CRN obtained by modifying R in any of the
following ways, then R′ admits MPNE. If additionally R admits MPSE, then R′ does as well.

1. (Adding a dependent reaction [28, 29]) R′ is obtained by adding a new irreversible reaction with reaction
vector in the stoichiometric subspace of R.

2. (Adding a trivial species [28]) R′ is obtained by adding into the reactions of R a new species Y which
occurs with the same stoichiometry on both sides of each reaction in which it participates.

3. (Adding inflows and outflows for all species [28, 29, 37, 40]) R′ is obtained by adding to R the reactions
0 
 Xi for each i ∈ {1, . . . , n}.

4. (Adding a new species with inflow and outflow [28, 29]) R′ is obtained by adding into the reactions of
R the new species Y in an arbitrary way, while also adding the new reaction 0 
 Y .

5. (Adding new reversible reactions involving new species [28]) R′ is obtained by adding m ≥ 1 new
reversible reactions involving k new species such that the submatrix of the new stoichiometric matrix
corresponding to the new species has rank m (this forces k ≥ m).

6. (Adding intermediate complexes involving new species [28]) R′ is obtained by replacing each of the m
reactions:

ai ·X → bi ·X with a chain ai ·X → ci ·X + βi · Y → bi ·X, (i = 1, . . . ,m) .

Here Y is a list of k new species whose coefficient matrix β = (β1|β2| · · · |βm) has rank m (this implies
k ≥ m), and ai, bi and ci are arbitrary nonnegative vectors and any or all may coincide.

Remark. The proof of Theorem 3 relies on a continuation of each nondegenerate equilibrium of R into an
equilibrium ofR′. With that in mind, the theorem actually says more: R′ has at least as many nondegenerate
equilibria as R. In particular, if R has a positive nondegenerate equilibrium, then so does R′.

We illustrate the applicability of these results starting with our favorite example (6):

2A+B → 3A, A → B. (20)

Recall from Sections 2.5 and 2.6 that this system has the capacity for MPNE. We now build on this network
using modifications of the type shown in Theorem 3 to arrive at a significantly more complicated network,
whose capacity for MPNE is otherwise not easy to study. For example, we can add A 
 0, B 
 0
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(modification 2), and B → A (modification 1); note that one can always add the reverse of an existing
reaction keeping the capacity for MPNE (or MPSE). Next, we add the reversible reactions A + C 
 2D
and C + D 
 2B; this is allowed by modification 5, since the submatrix of the stoichiometric matrix

corresponding to the new species C and D, i.e.

[
−1 −1
2 −1

]
has rank 2. Next we can replace A → 0 by

A+E → E (modification 2), and then replace this reaction and the reaction 2A+B → 3A by the two chains
A + E → C + F → E and 2A + B → F + 2G → 3A; this is allowed by modification 6 since the matrix of

coefficients

[
1 1
0 2

]
for the two new species F and G has rank 2. Finally, we can add H 
 0 and add H to

the reactions A→ B and 0→ B by A+ 2H → B and 2H → B respectively. We conclude that the resulting
network

2A+B → F + 2G→ 3A

A+ 2H → B → A
 0

H 
 0→ B ← 2H

A+ C 
 2D

C +D 
 2B

A+ E → C + F → E

inherits the capacity for MPSE from network (20). This example may be overtly made up, but it illustrates
how the simple modifications listed in Theorem 3 allow one to draw conclusions that are otherwise very
difficult. We note that here we started with a simple network with capacity for MPNE and concluded that
the (much more) complicated one keeps this property. In practice however, one starts with a large network,
and the inverse process is needed, namely finding a MPNE “subnetwork” and a series of modifications
that transforms it into the large network. This is a daunting task in general, although for relatively small
networks, familiarity with MPNE motifs like (20) and some trial and error will work in many cases. Such
an example is presented in Exercise 3, which discusses an important biological example.

Exercises

1. (Variations of network (20)). a. Show that the fully open extension of network (18):

2A+B → C → 3A, A
 B, A
 0 
 B

admits MPNE.

b. Show that the network
2A+B → 3A, A→ B, 0 � B

does not have the capacity for MPE.

c. Show that the network
2A+B → 3A, A→ B, 0 � A+B

has the capacity for MPE, but not the capacity for MPNE.

Remark. CRNs b. and c. show that adding reactions may destroy the capacity for MPE/MPNE [28]).

2. (One-species networks [55]). A network involving a single species can be naturally represented as a
sequence of arrows on the real line. For example, 0 � A, 2A → 3A, 4A → 3A corresponds to the

diagram
0 1 2 3 4
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a. Show that a one-species reaction network has the capacity for MPNE if and only if it contains an
arrow subsequence of the form → ← → or ← → ← . (Here the length of the arrow is not important,
only its direction; the condition says that there are three reactions with distinct reactant complexes,
arranged in order of their stoichiometric coefficient, that proceed left, right, left, or right, left, right.)

b. Characterize the one-species networks with capacity for MPE.

3. (Adding enzymatic mechanisms [28]). Let R be a CRN with capacity for MPNE and vector of species
X as in Theorem 3, whose notation we adopt.

a. Suppose R′ is obtained by replacing reaction a·X → b·X with the chain cE+a·X 
 I → cE+b·X,
where E and I are new species and c ≥ 0. Show that R′ has the capacity for MPNE.

b. Suppose that we add the chain in a., while also keeping the reaction a ·X → b ·X. Show that this
new network has the capacity for MPNE.

4. (Multistationarity of the Huang-Ferrell-Kholodenko MAPK cascade with negative feedback [56]).

a. Show that the following version of mass action double phosphorylation has the capacity for MPSE

[28]. In the diagram, reactions X
E→ Y are shortened representations of an enzymatic chain E +X 


EX → E + Y . The list of all reactions is also included.

X X-ppX-p

Y-pp

Y-pp+X 
 Y-pp–X→ Y-pp+X-p→ Y-pp+X-pp

X-pp→X-p→X

b. Show that the following network has the capacity for MPSE [28].

X X-ppX-p

Y Y-ppY-p

Z Z-p

E1

F1

F2 F2

F3 F3

E1+Z 
 E1–Z→ E1+Z-p,
F1+Z-p 
 F1–Z-p→ F1+Z

Z-p+Y 
 Z-p–Y→ Z-p+Y-p 
 Z-p–Y-p→ Z-p+Y-pp
F2+Y-pp 
 F2–Y-pp→ F2+Y-p 
 F2–Y-p→ F2+Y

Y-pp+X 
 Y-pp–X→ Y-pp+X-p 
 Y-pp–X-p→ Y-pp+X-pp
F3+X-pp 
 F3–X-pp→ F3+X-p 
 F3–X-p→ F3+X

E1 + X-pp 
 E1–X-pp
E1–X-pp+Z 
 E1–X-pp–Z
E1–X-pp–Z 
 E1–Z+X-pp.

6 Sufficient conditions for multistationarity II: the determinant opti-
mization method

As we have seen (Section 3, Exercise 1), non-injectivity of a CRN does not imply its capacity for MPE.
The following result shows that non-injectivity together with an additional condition on the stoichiometric
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matrix insures the capacity for MPE for fully open systems. The result is essentially Theorem 4.1 in [26],
but we present it here using the matrix-theoretic framework developed in [27]. We also refer the reader to
[53] for related results.

Theorem 4. [26, 27] Let R be a fully open mass action CRN and let Γ and Γl denote the stoichiometric
matrix and reactant matrix of the CRN obtained from R by removing all inflow reactions 0→ Xi. Suppose
there exists a diagonal matrix D such that det(−ΓDΓtl) < 0 and ΓD1 ≤ 0, where 1 denotes the column
vector with all entries equal to 1. Then R has the capacity for MPE.

Condition det(−ΓDΓtl) < 0 simply states that the the CRN is not injective (Exercise 1). Verifying the
hypothesis of the theorem amounts to finding a solution for a nonlinear system of inequalities in the entries of
D, which can be easily implemented computationally (the webserver CoNtRol [46] includes this calculation).
On the other hand, for small CRNs this can be done by hand, as we illustrate for the following example.
Consider the mass action network

2A+B 
 3A, A→ B, A
 0, B 
 0.

It is already clear that this CRN has the capacity for MPE, as easily shown by using tools from previous
sections. Here we apply Theorem 4, and search for positive d1, d2, d3, d4 such that

det

[−1 1 1 0
1 −1 0 1

]
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4




2 1
1 0
1 0
0 1


 < 0,

and [
1 −1 −1 0
−1 1 0 −1

]
d1

d2

d3

d4

 ≤ 0,

or equivalently,
d1d3 − 2d1d4 + d2d4 + d3d4 ≤ 0, d1 ≤ d2 + d3, d2 ≤ d1 + d4.

The first inequality can be rewritten as −d1d4 + d1d3 + d4(d2 + d3 − d1), and one may notice that these
inequalities are satisfied by choosing d1 close to d2 +d3 and d4 large enough; for example, d1 = 9, d2 = d3 =
5, d4 = 6.

Exercises

1. With the notations of Theorem 4, show that there exists a positive diagonal matrix D such that
det(−ΓDΓtl) < 0 if and only if R is not injective.

2. Show that the following sequestration network has the capacity for MPE [53]:

X1 +X2 → 0, X2 +X3 → 0, X3 → 2X1,

X1 
 0, X2 
 0, X3 
 0.

3. Use the determinant optimization method to show that the following network [26] has the capacity for
MPE:

2A+B 
 3A, A
 0 
 B.
23



7 Results based on deficiency theory

Network deficiency was introduced by Horn, Jackson, and Feinberg in the 1970s in a series of seminal papers
[57, 41, 42]. The name ‘deficiency’ refers to a nonnegative integer that connects the structure of a reaction
network and the existence of (multiple) equilibria for the corresponding system of ODEs.

The reaction network structure enters in the definition of the deficiency via the rank of the stoichiometric
matrix (denoted by s), the number of complexes (denoted by N), and the number of connected components
(denoted by `). For example, the network given in Figure 6 consists of N = 6 complexes and ` = 2 connected
components of the reaction graph.

A+B C 2F

D+E

F+A G

Figure 6: A reaction network with N = 6 complexes (nodes) and ` = 2 connected components.

Definition 15 (Network deficiency). The deficiency δ of a CRN is defined as

δ = N − `− s. (21)

It turns out that the deficiency of a CRN is always a non-negative integer [42]. Quite a lot is known
about CRNs of deficiency zero or one. We present below results pertaining to existence and uniqueness of
positive equilibria, but we note that for deficiency zero CRNs, a great deal is known about the dynamics as
well [41, 42, 58]. For now, we carry on with a few deficiency computations.

It is easy to see that the CRN in Figure 6 has stoichiometric subspace of dimension 4, so that its deficiency
is δ = 6 − 4 − 2 = 0. The network in Figure 2 has N = 7 complexes, ` = 3 connected components, and its
stoichiometric subspace has dimension s = 4. The deficiency of the CRN is 7− 3− 4 = 0.

The following version of (6) also has deficiency zero:

2A+B 
 3A. (22)

Indeed, it is clearly the case that s = 1, and so δ = 2− 1− 1 = 0.
For a biologically relevant example, consider again the futile cycle (1) and its stoichiometric matrix:

E + S 
 ES → E + P

F + P 
 FP → F + S

Γ =



−1 1 1 0 0 0
−1 1 0 0 0 1

1 −1 −1 0 0 0
0 0 1 −1 1 0
0 0 0 −1 1 1
0 0 0 1 −1 −1

 .
The species ordering here was chosen (E,S,ES, P, F, FP ). A simple calculation shows that s = rank Γ =

3, and since the futile cycle involves N = 6 complexes and ` = 2 connected components, its deficiency is
δ = 6− 3− 2 = 1.

7.1 The Deficiency Zero and Deficiency One Theorems

We present two theorems exhibiting settings where a CRN cannot have the capacity for MPE. The first result
is a weak version of the Deficiency Zero Theorem [58]. Although our focus is on existence and uniqueness of
equilibria, the real power of the Deficiency Zero Theorem resides in its strong conclusions about dynamical
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properties of certain CRNs. While we omit these altogether, the reader is encouraged to survey the vast
recent literature on global stability of equilibria in CRNs satisfying the hypotheses of the Deficiency Zero
Theorem [62, 63, 64, 65, 66, 67, 68]. We start by setting up some terminology.

Definition 16 (Strongly connected components, terminal strongly connected components, weakly reversible
CRNs). Two complexes C1 and C2 are called strongly connected if C1 = C2 or if there exist reaction paths
from C1 to C2, and from C2 to C1. A strongly connected component of the reaction graph is a maximal
subset of nodes that are pairwise strongly connected. A strongly connected component C is called terminal
if there is no reaction from a complex in C to a complex outside C. A CRN is called weakly reversible if
all connected components in its reaction graph are strongly connected. In other words, a CRN is weakly
reversible if whenever there is a path following reaction arrows from a complex C1 to a complex C2, there is
also a path from C2 to C1.

For example, in Figure 6, C and 2F are strongly connected while A + B and C are not, and neither
are C and G. The strongly connected components of the CRN in Figure 6 are {A + B}, {C, 2F}, {D +
E}, {F + A,G}; out of these {D + E} and {F + A,G} are terminal. The network in Figure 1 is weakly
reversible, and so is the CRN (22) – more generally, a CRN that contains only reversible reactions is clearly
weakly reversible. On the other hand, the CRN in Figure 6 is not weakly reversible, and neither is the futile
cycle: for instance, there is a path from ES to E + P , but not the other way around.

Theorem 5 (Equilibria in deficiency zero CRNs [58, Theorem 4.1]). Consider a mass action CRN with zero
deficiency.

1. If the network is not weakly reversible, then for any choice of rate constants, the CRN has no positive
equilibria.

2. If the network is weakly reversible, then for any choice of rate constants, there exists exactly one
equilibrium in each positive stoichiometry class.

A quick application of this theorem shows, for example, that the CRN in Figure 1 has one equilibrium
in each positive stoichiometry class, regardless of the choice of rate constants. The same is true for CRN
(22). Notice that this network is related to our favorite multistationary example (6); in fact, adding inflows
and outflows to (22) results in a CRN with capacity for MPE (Exercise 3 in Section 6). This is yet another
illustration of the subtle connection between the structure of a network and its capacity for multistationarity.
Finally, the CRN in Figure 6 has no positive equilibria, no matter what rate constants it is being assigned.

Deficiency theory can be applied to draw conclusions about the existence and uniqueness of positive
equilibria even if the deficiency is strictly positive. In particular, a useful result is the Deficiency One
Theorem which we present next.

Theorem 6 (Deficiency One Theorem [58]). Consider a CRN with mass action kinetics that satisfies the
following conditions:

1. The deficiency of every connected component is either zero or one.

2. The deficiency of the overall network is the sum of the deficiencies of the connected components.

3. Every connected component contains exactly one terminal strongly connected component.

If for some values of rate constants the CRN has a positive equilibrium, then (for the same rate constants)
the CRN has precisely one equilibrium in each positive stoichiometry class. Moreover, if the network is weakly
reversible, then for any values of rate constants, the CRN has precisely one equilibrium in each positive
stoichiometry class.

Note that “Deficiency One” in the name of Theorem 6 refers to the deficiencies of the connected com-
ponents of the network, and not to the deficiency of the network itself, which can be much higher.
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7.2 The deficiency one algorithm and the advanced deficiency algorithm

The Deficiency Zero and Deficiency One theorems are remarkable results, not only due to the powerful
conclusions they allow, but also because of their elegant statements. While unfortunately, many biologically
relevant CRNs do not fall under the scope of these results, the theorems are the basis for widely applicable
algorithms that have been developed by M. Feinberg and his research group [69, 70]. A precise discussion
of these requires machinery beyond the scope of this chapter. We merely note that the Deficiency One
Algorithm (applicable to networks of deficiency one) and the Advanced Deficiency Algorithm (for CRNs
with arbitrary deficiency) translate the steady state equations into a collection of (potentially many) linear
inequality systems. If at least one of these linear systems is feasible, then multistationarity is possible and
every solution defines a pair of steady states and corresponding rate constants. If none of the systems are
feasible, then capacity for MPE is ruled out. Both algorithms are implemented in the Chemical Reaction
Network Toolbox [48]. We also refer the reader to a strand of very interesting results related to the Deficiency
One Algorithm [76, 77].

The Deficiency One and Advanced Deficiency algorithms work well for many examples of biologically
relevant networks. In particular, they can be used in a systems biology context to discriminate between
different reaction mechanisms [71], or to study multistable signaling motifs [72], or to analyze whole families
of enzymatic networks [50].

Exercises

1. a. Show that the futile cycle with enzyme sharing has exactly one equilibrium in each positive stoi-
chiometry class, for any values of the rate constants (see also Exercise 1 of Section 4):

E + S 
 ES → E + P, E + P 
 EP → E + S.

b. Show that adding reversible inflow-outflow reactions for any one species or for any combination of
two species results in CRNs that have exactly one equilibrium in each positive stoichiometry class.

2. Let N ∈ N. Show that the following mass action CRN (the McKeithan network [78]) has exactly one
equilibrium in each stoichiometry class, for any choice of rate constants:

T +M C0 C1 . . . CN

3. Consider the mass action CRN

2X → Y + Z, 2Y → Z +X, 2Z → X + Y.

a. Set up and solve the corresponding mass action algebraic system to show that the CRN has precisely
one equilibrium in each positive stoichiometry class.

b. Use deficiency theory to show the conclusion of a. (Hint. Find a weakly reversible, deficiency zero
reaction network with the same ODEs (dynamically equivalent, [79]) as the one in the exercise. An
algorithm for finding weakly reversible networks, dynamically equivalent to a given CRN, is the object
of [80].
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[44] P Erdi, J Tóth. Mathematical models of chemical reactions. Nonlinear Science: Theory and Applications
Manchester Univ. Press, 1989

[45] S Muller, G Regensburger. Generalized mass action systems: Complex balancing equilibria and sign
vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math. 72(6) 2012.

[46] M. Banaji, P. Donnell, A. Marginean, and C. Pantea. CoNtRol – Chemical Reaction Network analysis
tool, 2013. https://control.math.wvu.edu/.

[47] P. Donnell, M. Banaji, A. Marginean, C. Pantea. CoNtRol: an open source framework for the analysis
of chemical reaction networks. Bioinformatics 30(11), 2014.

[48] P. Ellison, M. Feinberg, H. Ji Chemical Reaction Network Toolbox,
http://www.crnt.osu.edu/CRNTWin

[49] E. Feliu, C. Wiuf. Enzyme sharing as a cause of multistationarity in signaling systems. J. R. Soc.
Interface, 9(71), 2012.

[50] C. Conradi and A. Shiu. A global convergence result for processive multisite phosphorylation systems.
77, 04 2014.

[51] J. Gunawardena. Distributivity and processivity in multisite phosphorylation can be distinguished
through steady-state invariants. Biophys. J. 93, 2007.

[52] M. Banaji. Graph-theoretic conditions for injectivity of functions on rectangular domains. J. Math.
Anal. Appl. 370, 2010.

[53] A. Shiu, B. Felix and Z. Woodstock. Analyzing multistationarity in chemical reaction networks using
the determinant optimization method. Applied Mathematics and Computation. 287–288, 2016.

[54] U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8:450–461,
2007.

29



[55] B. Joshi and A. Shiu. Which small reaction networks are multistationary? SIAM J. Appl. Dyn. Sys.
16(2), 2016.

[56] B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-
activated protein kinase cascades. Eur. J. Biochem., 267(6):1583–1588, 2000.

[57] F. Horn and R. Jackson. General mass action kinetics. Arch. Ration. Mech. Anal., 47 (1972), pp. 81–116.

[58] M. Feinberg. The existence and uniqueness of steady states for a class of chemical reaction networks.
Archive for Rational Mechanics and Analysis, 132(4):311–370, 1995.

[59] L. Chang, M. Karin. Mammalian MAP kinase signaling cascades. Nature 410, 2001.

[60] C. Huang, J.E. Ferrell Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl.
Acad. Sci. USA 93, 1996.

[61] L. Wang, E.D. Sontag On the number of steady states in a multiple futile cycle. J. Math. Biol. 57,
2008.

[62] G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels. Toric Dynamical Systems. J. Sym. Comp 44:11,
2009.

[63] D.F. Anderson, A. Shiu. The dynamics of weakly reversible population processes near facets. SIAM J.
Appl. Math. 70:6, 2010.

[64] D. F. Anderson. A proof of the Global Attractor Conjecture in the single linkage class case. SIAM J.
Appl. Math., 71:4, 2011.

[65] C. Pantea. On the persistence and global stability of mass action systems. SIAM J. Math. Anal. 44:3,
2012.

[66] G. Craciun, F. Nazarov, C. Pantea. Persistence and permanence of mass action and power-law dynam-
ical systems. SIAM J. Appl. Math. 73, 2013.

[67] Manoj Gopalkrishnan, Ezra Miller and Anne Shiu. A geometric approach to the global attractor con-
jecture. SIAM J. Appl. Dyn. Syst., 13:2, 2014.

[68] G. Craciun. Toric Differential Inclusions and a Proof of the Global Attractor Conjecture.
arXiv:1501.02860.

[69] M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors –
II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci., 43(1), 1-25, 1988.

[70] P.R. Ellison. The advanced deficiency algorithm and its applications to mechanism discrimination. The
University of Rochester, 1998.

[71] C. Conradi, J. Saez-Rodriguez, E.D. Gilles, and J. Raisch Using chemical reaction network theory to
discard a kinetic mechanism hypothesis. IEE Proc. - Sys. Bio., 152(4), 243-248, 2005.

[72] J. Saez-Rodriguez, A. Hammerle-Fickinger, O. Dalal, S. Klamt, E.D. Gilles and C. Conradi. Multista-
bility of signal transduction motifs. IET Sys. Bio, 2(2), 80-93, 2008.

[73] C. Conradi, D. Flockerzi. Multistationarity in mass action networks with applications to ERK activation.
J. Math. Biol., 65(1), 107-156, 2012.

30



[74] K. Holstein, D. Flockerzi and C. Conradi. Multistationarity in sequential distributed multisite phos-
phorylation networks. Bull. Math. Bio., 75(11), 2028-2058, 2013.

[75] D. Flockerzi, K. Holstein and C. Conradi. N-site phosphorylation systems with 2N-1 steady states. ,
76(8), 1892-1916, 2014.

[76] B. Boros. On the existence of the positive steady states of weakly reversible deficiency-one mass action
systems. Math. Biosci., 245(2):157-170, 2013

[77] B. Boros. Notes on the Deficiency-One Theorem: Multiple linkage classes. Math. Biosci., 235(1):110-122,
2012

[78] E. Sontag. Structure and stability of certain chemical networks and applications to the kinetic proof-
reading model of t-cell receptor signal transduction. IEEE Trans. Automatic Control, 46(7), Jan 2001.

[79] G. Craciun and C. Pantea. Identifiability of chemical reaction networks. Journal of Mathematical
Chemistry, 44(1):244–259, 2008.
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